King Fahd University of Petroleum and Minerals

College of Computer Sciences and Engineering

Information and Computer Science Department
Second Semester (082)

ICS 202: Data Structures
PAGE
082 ICS 202: Major 1

Page 2 of 9

Major Exam 1
Wednesday, 8th April, 2009
Time: 120 minutes
	Name:
	

	ID#:
	

	Circle You Section
	
	Question #
	Maximum Mark
	Obtained Mark

	01

Hamdi Yahyaoui

SMW 9 – 9:50AM
	
	1
	45
	

	
	
	2
	35
	

	02
Wasfi Al-Khatib

SMW 10 – 10:50AM
	
	3
	45
	

	
	
	4
	25
	

	03
El-Sayed El-Alfy
SMW 11 – 11:50AM
	
	Total
	150
	

	
	
	
	
	

	Instructions:
	
	
	
	

0. Write your name and ID in the respective boxes above and circle your section.

1. This exam consists of 9 pages, including this page, containing 4 questions.

2. You have to answer all 4 questions.

3. The exam is closed book and closed notes. No calculators or any helping aides are allowed. Make sure you turn off your mobile phone and keep it in your pocket if you have one.

4. The questions are not equally weighed.

5. The maximum number of points for this exam is 150.

6. You have exactly 120 minutes to finish the exam.

7. Make sure your answers are readable.

8. If there is no space on the front of the page, feel free to use the back of the page. Make sure you indicate this in order for me not to miss grading it.

9. Page 9 is a reference sheet that you can detach and keep with you.
Question 1 (45 points): Design Patterns
Assuming you have a class RentalCar that implements the Comparable interface and has four instance variables: plateNumber, make (Toyota, Honda, etc), numberOfSeats and onHire (a boolean variable that indicates if the car is currently on hire or not).
Provide the code for the following:
(a) (20 points) A Visitor class CarPartitionVisitor that partitions a container containing RentalCar objects into two containers: those that are on hire and those that are not. Your Visitor must have two additional methods getHired() and getAvailable() that return the respective containers.
(b) (25 points) A SearchableContainer class in which objects are associations between owners (considered as Strings) and cars. You just need to provide the code for the method find(Comparable owner) that finds a car for the parameter owner.
Question 2 (35 points): Linked Lists and Recursion
i. (20 points) Complete the code for the following recursive method that reverses the elements in a given singly linked list S using the available methods in the singly linked list only.

 void reverseList(MyLinkedList S){
ii. (3 points) What is the asymptotic time complexity (in Big-O notation) of the above algorithm?

(a) (12 points) Write down the worst-case time complexity in Big-O notation for each of the following methods in MyLinkedList and DoublyLinkedList, when the number of elements in the list is n.

	
	extract
	insertBefore
	append
	prepend

	MyLinkedList
	
	
	
	

	DoublyLinkedList
	
	
	
	

Question 3 (45 points): Complexity Analysis
(a) (35 points) Consider the following method:

 public void myMethod(int n) {

 if((n%2) == 0){

 for (int k = 1; k <= n; k++){

 int j = 1;

 while(j <= n) {

 System.out.println(k + j); //statement 1

 j = j * 2;

 }
 }
 }
 else { //Else Block
 for(int m = 1; m <= n; m += 2)
 System.out.println(m);

 MyLinkedList list = new MyLinkedList();

 for(int k = 1 ; k < 1000; k++)

 list.prepend(new Integer(k*k));

} // End of Else Block
 }
i. (15 points) Count the number of times statement 1 gets executed when n is a power of 2.
 public void myMethod(int n) {

 if((n%2) == 0){

 for (int k = 1; k <= n; k++){

 int j = 1;

 while(j <= n) {

 System.out.println(k + j); //statement 1

 j = j * 2;

 }
 }
 }
 else { //Else Block
 for(int m = 1; m <= n; m += 2)
 System.out.println(m);

 MyLinkedList list = new MyLinkedList();

 for(int k = 1 ; k < 1000; k++)

 list.prepend(new Integer(k*k));

} // End of Else Block
 }
ii. (15 points) Find the time complexity of the Else Block (using Big-O notation) when n is an odd number.
iii. (5 points) Using your findings above, what is the best-case and the worst-case time complexities of the method myMethod() above (using Big-O notation).
(b) (10 points) For the following method, derive the recurrence relation representing the number of times the println statement is executed. No need to solve the recurrence relation.
public static void hanoi(int n, char from, char to, char temp){

 if (n == 1)

 System.out.println(from + " --------> " + to);

 else{

 hanoi(n - 1, from, temp, to);

 System.out.println(from + " --------> " + to);

 hanoi(n - 1, temp, to, from);

 }

}

Question 4 (25 points): Stacks and Queues
(a) (10 points) Assume that Q is an initially empty queue that holds integer values. Show the contents of Queue Q after carrying out the following operations in the given order:

Q.enqueue(5) ,
Q.enqueue(9) ,
Q.enqueue(7) ,
Q.enqueue(2) ,
Q.enqueue(8) ,

Q.getHead() ,
Q.getHead() ,
Q.enqueue(10) ,
Q.dequeue() ,
Q.dequeue() , Q.enqueue(1) ,
Q.enqueue(6) ,
Q.dequeue() ,
Q.enqueue(12),
Q.enqueue(11), Q.getHead() ,
Q.dequeue() ,
Q.dequeue().
(b) (15 points) Consider the following postfix expression:

[image: image1.png]52+ 31— % 10 — 8

i. (12 points) Using a stack data structure, evaluate the above mathematical expression showing all intermediate steps.

ii. (3 points) What is the equivalent infix expression that corresponds to the above postfix expression? Feel free to add parentheses as needed.

Quick Reference Sheet

	public interface Iterator {

boolean hasNext();

Object next() throws NoSuchElementException;

}

public interface Visitor {

void visit (Object object);

boolean isDone();

}

public interface Container {

int getCount();

boolean isEmpty();

boolean isFull();

void purge();

void accept (Visitor visitor);

Iterator iterator();

}

public interface SearchableContainer extends Container {

boolean isMember (Comparable object);

void insert (Comparable object);

void withdraw (Comparable obj);

Comparable find (Comparable object);

}

public class Association implements Comparable

 public Association(Comparable key, Object val)

public Association(Comparable key)

public Comparable getKey()

public Object getValue()

 public void setKey(Comparable key)

public void setValue(Object value)

 public int compareTo(Object obj)

 public boolean equals(Object obj)

public String toString()

}
	public class MyLinkedList {

public void purge()

public Element getHead()

public Element getTail()

public Element find(Object obj)

public boolean isEmpty()

public Object getFirst()

public Object getLast()

public void prepend(Object obj)

public void append(Object obj)

public void assign(MyLinkedList list)

public void extract(Object obj)

 public void extractFirst()

 public void extractLast()

public String toString()

 public Iterator iterator()

public final class Element {

 public Object getData()

 public Element getNext()

 public void insertAfter(Object obj)

 public void insertBefore(Object obj)

 public void extract()

}

}

public interface Stack extends Container {

 Object getTop();

 void push(Object obj);

 Object pop();

}

public interface Queue extends Container {

 Object getHead();

 void enqueue(Object obj);

 Object dequeue();

}

[image: image2.wmf]2

)

1

(

1

+

=

å

=

n

n

i

n

i

,

[image: image3.wmf]6

)

1

2

)(

1

(

1

2

+

+

=

å

=

n

n

n

i

n

i

,

[image: image4.wmf](

)

2

1

3

2

1

÷

ø

ö

ç

è

æ

+

=

å

=

n

n

i

n

i

[image: image5.wmf]å

=

+

¹

-

-

=

n

i

n

i

a

a

a

a

0

1

1

where

1

1

,

[image: image6.wmf]b

a

b

a

log

log

log

-

=

,

[image: image7.wmf]b

a

a

b

ln

ln

log

=

[image: image8.wmf]log

a

b

ab

=

PAGE

_1300944588.unknown

_1300944590.unknown

_1300944592.unknown

_1300944593.unknown

_1300944591.unknown

_1300944589.unknown

_1300944587.unknown

