Page 1 of 10

[image: image1.png]

King Fahd University of Petroleum & Minerals

College of Computer Science and Engineering

Information and Computer Science Department

Second Semester 092 (2009/2010)

ICS 202 – Data Structures
Major Exam 1

Monday, 1st November, 2010
Time: 2 hours
Name: ___
	ID#
	
	
	
	
	
	
	
	
	

Please circle your section number below:

	02 – Wasfi – 10-10:50am

	05 – Alvi – 09-09:50am

	Question #
	Max Marks
	Marks Obtained
	Remarks

	1
	20
	
	

	2
	20
	
	

	3
	20
	
	

	4
	20
	
	

	5
	20
	
	

	Total
	100
	
	

Instructions:

1. Write your name and ID in the respective boxes above and circle your section.

2. This exam consists of 10 pages, including this page, containing 5 questions.

3. You have to answer all 5 questions.

4. The exam is closed book and closed notes. No calculators or any helping aids are allowed. Make sure you turn off your mobile phone and keep it in your pocket if you have one.

5. The questions are equally weighed.

6. The maximum number of marks for this exam is 100.

7. You have exactly 120 minutes to finish the exam.

8. Make sure your answers are readable.

9. If there is no space on the front of the page, feel free to use the back of the page. Make sure you indicate this in order not to miss grading it.

10. Page 10 is a reference sheet that you can detach
Q. 1: [8 + 6 + 6 = 20 marks] Give short answers to each of the following:
(a) [8 marks] Using methods from the interfaces Container, Iterator and SearchableContainer, write a method public void deleteLastHalf() for a concrete implementation of a SearchableContainer. This method works as follows: If the SearchableContainer contains an even number of elements, then this method deletes the last n/2 elements. If the SearchableContainer contains an odd number of elements, then it deletes the last (n + 1)/2 elements from the SearchableContainer.
(b) [6 marks] State the big-O complexity of each of these data structures for each of the following methods:

	
	extract
	prepend

	MyLinkedList
	
	

	DoublyLinkedList
	
	

	Arrays
	
	

(c) [3 + 3 = 6 marks] Consider the following infix expression:

(25 + (80/(15 + 5)) – 1

(i) Show the postfix equivalent of the above expression.

(ii) Evaluate the postfix expression using a stack. Show the contents of the stack after each operation.
[image: image2.png]LU
LU

Q. 2 [10 + 10 = 20 marks] Consider the following piece of code:

public static int method(int[] array, int n) {

for (i = 1; i < n; i++)

for (j = 1; j <= i; j++)

if (array[j] < array[j+1])

for (k = 1; k <= n; k++)

{

array[k] = array[k] * 2;

}

}

Count the number of basic operations in the above algorithm in the
(a) [10 marks] best case ,

(b) [10 marks] worst case.
Hence state the big-O complexity of the algorithm for both these cases.
Assume that the array index of the first element in the array is 1.
Q. 3 [15 + 5 = 20 marks]
(a) [15 marks] Write a method void prependList(MyLinkedList s) for inserting a singly linked list s (size m) at the beginning of "this" linked list (size n), as shown in the figure.

[image: image3]
(b) [5 marks] What is the asymptotic time complexity (in Big-O notation) of your proposed algorithm? Justify your answer.
Q. 4: [10 + 10 = 20 marks]
(a) [10 marks] Assuming that the Integer queue Q is initially empty, show the output of the following code and all the contents of the queue Q, indicating the front element.

for (i = 0; i < 5; i++) {

Q.enqueue(Integer(i));

Q.enqueue(Integer(5 – i));

System.out.println(Q.dequeue());

//Show the contents of the queue at this point

}

(b) [10 marks] Using a stack, write a method public boolean isPalindrome(String s) for testing whether a given string is a palindrome or not. A palindrome is a string that reads the same forwards and backwards. For example isPalindrome(“packcap”) returns true, while isPalindrome(“meter”) is false.

Q. 5: [10 + 10 = 20 marks]
(a) Write a recursive method to compute the binomial coefficient C(n, k) according to the definition:

C(n, k) = 1

if k = 0 or k = n
C(n, k) = C(n – 1, k – 1) + C(n – 1, k)

otherwise

(b) What is the value of C(3, 2) and C(2, 3) according to your method? Give a tracing of the recursive calls carried out for both C(3, 2) and C(2, 3). If there is a case of infinite recursion, clearly state it.
Quick Reference Sheet

	public interface Iterator {

boolean hasNext();

Object next() throws NoSuchElementException;

}

public interface Visitor {

void visit (Object object);

boolean isDone();

}

public interface Container {

int getCount();

boolean isEmpty();

boolean isFull();

void purge();

void accept (Visitor visitor);

Iterator iterator();

}

public interface SearchableContainer extends Container {

boolean isMember (Comparable object);

void insert (Comparable object);

void withdraw (Comparable obj);

Comparable find (Comparable object);

}

public class Association implements Comparable

 public Association(Comparable key, Object val)

public Association(Comparable key)

public Comparable getKey()

public Object getValue()

 public void setKey(Comparable key)

public void setValue(Object value)

 public int compareTo(Object obj)

 public boolean equals(Object obj)

public String toString()

}
	public class MyLinkedList {

public void purge()

public Element getHead()

public Element getTail()

public Element find(Object obj)

public boolean isEmpty()

public Object getFirst()

public Object getLast()

public void prepend(Object obj)

public void append(Object obj)

public void assign(MyLinkedList list)

public void extract(Object obj)

 public void extractFirst()

 public void extractLast()

public String toString()

 public Iterator iterator()

public final class Element {

 public Object getData()

 public Element getNext()

 public void insertAfter(Object obj)

 public void insertBefore(Object obj)

 public void extract()

}

}

public interface Stack extends Container {

 Object getTop();

 void push(Object obj);

 Object pop();

}

public interface Queue extends Container {

 Object getHead();

 void enqueue(Object obj);

 Object dequeue();

}

[image: image4.wmf]2

)

1

(

1

+

=

å

=

n

n

i

n

i

,

[image: image5.wmf]6

)

1

2

)(

1

(

1

2

+

+

=

å

=

n

n

n

i

n

i

,

[image: image6.wmf](

)

2

1

3

2

1

÷

ø

ö

ç

è

æ

+

=

å

=

n

n

i

n

i

.......

Tail

Head

.......

Tail

Head

S

.......

Tail

Head

.......

_1377109109.unknown

_1377109110.unknown

_1377109111.unknown

_1377109108

