PAGE
11
ICS Dept., KFUPM, Dhahran
ICS202: Data Structures Final Examination

King Fahd University of Petroleum & Minerals
College of Computer Sciences & Engineering

Information & Computer Science Department

ICS 202: Data Structures

First Semester (061)

Final Examination

Time Allowed: 120 minutes.
	ID#:
	
	
	
	
	
	
	Section#:
	

	Name:
	

Notes:
· Attempt ALL questions.

· Show all details of your answers.

· If you need to make any reasonable assumptions, write them down as part of your answers.

Make sure there are 5 questions in this exam booklet in 14 pages. The last two pages contain the help-sheet. You may detach these last two pages.

Scores:

	Questions
	Points
	Scores

	Q1
	30
	

	Q2
	15
	

	Q3
	20
	

	Q4
	20
	

	Q5
	15
	

	Total Score
	100
	

Q1. [(30 Points)] Answer each of the following questions completely but briefly. Each question is worth 2 points.

1. Which graph traversal algorithm uses a queue?
2. How can you detect the presence of cycles in a directed graph?

3. Give one real-life example where the shortest path algorithm is applicable.
4. How can you test if an undirected graph is connected or not?

5. What is the minimum and the maximum number of keys that can be present in a non-root node of a B-Tree of order 11.
Minimum: ______________ , Maximum: ______________
6. Draw a final min-heap tree when the following array is converted into a min-heap:
	index
	1
	2
	3
	4
	5
	6

	value
	21
	11
	5
	6
	8
	3

7. Mention two characteristics of a good hash function.

8. Write down any property that must be satisfied by the method c(i) that is used to resolve collisions in an open-addressed hash-table.
9. State an advantage of quadratic probing over linear probing.
10. (i) Mention one real-life application of Hashing
(ii) Mention one problem for which hashing is not suitable

11. LZW requires no prior information about the input data stream, while Huffman coding requires prior information. (True/False)?
12. In the following code, which object(s) can be garbage collected by the Java Garbage Collector? Write your answer in terms of Ahmed and Mosa.

Employee a1 = new Employee(“Ahmed”);

Employee a2 = new Employee(“Mosa”);

a2 = null;

a1 = a2;
13. Reference counting is one technique for garbage collection where the system keeps track of the number of references referring to an object. When does this technique fail?
14. Stop-and-copy technique for garbage collection divides the heap into two parts: active and inactive. When memory in the active part is full, it copies all live data from the active to the inactive part and then it reverses the roles of these two regions. Write one advantage and one disadvantage of this technique.

Advantage:
 Disadvantage:
15. A key insertion in an AVL tree caused the deepest unbalanced node to have a balance factor of –2 and the left child of this node to have a balance factor of +1. What type of rotation is necessary to rebalance the tree? Assume that :

balanceFactor = height(right) - height(left)
Q2. (a) [5 points] Consider the following AVL tree:

[image: image1.wmf]25

47

19

23

7

20

37

Note: Each of the following questions is to be answered using the original AVL tree given above

(i) What is the maximum integer key that when inserted will cause a single right rotation?
(ii) What is the minimum integer key that when inserted will cause a double left-right rotation?

(iii) Mention two integer keys that when inserted one after the other will cause a double right-left rotation. Note: The first key inserted must not cause any rotation.
	First key to be inserted
	Second key to be inserted

	
	

Q2. (b) [10 points] Write a recursive instance method:
public boolean keysAsBST()

of the BinaryTree class that returns true if the key of each node in the invoking BinaryTree object satisfies the BST ordering property with the key of each of its children [A node may have one or two non-empty children]; otherwise it returns false.
Note: Your recursive method must not use:

· any looping statements

· instance or static variables

· getEnumeration or traversal methods
Note: You don’t need to use a helper method in this question.
Example: Your method keysAsBST() will return true if the invoking tree is the following non-BST tree; because each key satisfies the BST ordering property with respect to its children:
 [image: image2.jpg]

 Note: Your method must be general; it must work for any given BinaryTree object.
Q3.(a)
 [10 points] A graph g1 is a subgraph of a graph g2 if each vertex of g1 is a vertex of g2 and if each edge of g1 is an edge of g2. Write an instance method:

 public boolean isSubgraph(DigraphAsLists g)

of the DigraphAsLists class that returns true if the graph g is a subgraph of the invoking DigraphAsLists object; otherwise it returns false.
Q3.(b) [10 points] Use Dijkstra's algorithm to find the shortest paths from vertex A to all the other vertices of the following graph. Show details of your work using any of the given tables. Also draw a vertex-weighted graph representing your results.
	[image: image3.jpg]

	result:

	Pass:
	initial
	1
	2
	3
	4
	5
	6
	shortest distance
	predecessor

	Active vertex:
	
	
	
	
	
	
	
	
	

	A

	
	
	
	
	
	
	
	
	

	B

	
	
	
	
	
	
	
	
	

	C

	
	
	
	
	
	
	
	
	

	D

	
	
	
	
	
	
	
	
	

	E

	
	
	
	
	
	
	
	
	

	F

	
	
	
	
	
	
	
	
	

	
	initial
	pass1
	pass2
	pass3
	pass4
	pass5
	pass6

	
	d
	p
	k
	d
	p
	k
	d
	p
	k
	d
	p
	k
	d
	p
	k
	d
	p
	k
	d
	p

	A
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	B
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	C
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	D
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	E
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	F
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Q4. (a) [5 points] Draw the final Minimum-Cost Spanning Tree that will be obtained, when Kruskal’s algorithm is applied to the following graph.
	[image: image5.wmf]A

B

F

G

C

D

E

8

9

4

6

7

5

3

7

3

2

7

8

	[image: image6.wmf]A

B

F

G

C

D

E

8

9

4

6

7

5

3

7

3

2

7

8

Ans:

Q4.(b) [7 points: 4 + 3]
 Consider the following hash table:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	occupied
	occupied
	empty
	occupied
	occupied
	occupied
	empty
	occupied
	deleted
	occupied
	deleted

	11
	33
	
	25
	15
	27
	
	18
	
11
	9
	
32

Write the probe sequences for the operations find(26) and insert(22) using quadratic

 probing in which h(key) = key % 11 and c(i) = ±i2 . Show your computations.
	Operation
	Probe sequence

	find(26)
	

	insert(22)
	

Q4.(c) [8 points: 4 + 4] Give the PreOrder-DepthFirst and BreathFirst traversals of the following graph starting from vertex A. If at any point in a traversal there is more than one vertex that can be visited; visit the vertices in alphabetical order.
 [image: image4.png]

	PreOrder Depth First Traveral:
	

	BreadthFirst Traversal:
	

Q5(a). [5 points] Compress the string RRSRSSRSSSRSRRSSSTRSSST
using the LZ78 compression algorithm. Show all details of your work using a properly labeled table (i.e. you must indicate the title of each column in your table).

Q5(b). [5 points] Decompress the codewords (0,R) (1,R) (2,R) (1,S) (2,T) (2,S) (5,T)
using the LZ78 decompression algorithm. Show all details of your work using a properly labeled table.
Q5(c). [5 points] Use the LZW compression algorithm to compress the message:

 ABBABBABBBABA

Show all details of your work using a properly labeled table. Note that the ASCII code of A is 65 and that of B is 66.
ICS 202 – Data Structures

Quick Reference Sheet

	public interface MyComparable {

boolean isLT (MyComparable object);

boolean isLE (MyComparable object);

boolean isGT (MyComparable object);

boolean isGE (MyComparable object);

boolean isEQ (MyComparable object);

boolean isNE (MyComparable object);

int compare (MyComparable object);

}

public interface Enumeration {

boolean hasMoreElements();

Object nextElement() throws NoSuchElementException;

}

public interface Visitor {

void visit (Object object);

boolean isDone();

}

public interface Container extends MyComparable {

int getCount();

boolean isEmpty();

boolean isFull();

void purge();

void accept(Visitor visitor);

Enumeration getEnumeration();

}

public interface SearchableContainer extends Container {

boolean isMember (MyComparable object);

void insert (MyComparable object);

void withdraw (MyComparable obj);

MyComparable find (MyComparable object);

}

public class Association extends AbstractObject

public Association(MyComparable c, Object o)

public Association(MyComparable c)

public MyComparable getKey()

public Object getValue()

public void setValue()

public String toString()

}
	public class MyLinkedList {

public void purge()

public Element getHead()

public Element getTail()

public Element find(Object obj)

public boolean isEmpty()

public Object getFirst()

public Object getLast()

public void prepend(Object obj)

public void append(Object obj)

public void assign(MyLinkedList list)

public void extract(Object obj)

public String toString()

public final class Element {

public Object getDatum()

public Element getNext()

public void insertAfter(Object o)

public void insertBefore(Object o)

public void extract()

}

}

public interface Stack extends Container {

 Object getTop();

 void push(Object obj);

 Object pop();

}

public interface Queue extends Container {

 Object getHead();

 void enqueue(Object obj);

 Object dequeue();

}

public interface PriorityQueue extends Container {

 void enqueue(MyComparable c);

 MyComparable findMin();

 MyComparable dequeueMin();

}

	public interface Tree extends Container {

Object getKey();

Tree getSubtree(int i);

boolean isLeaf();

int getDegree();

int getHeight();

void preorderTraversal(Visitor visitor);

 void inorderTraversal(Visitor visitor);

 void postorderTraversal(Visitor visitor);

 void breadthFirstTraversal(Visitor visitor);

}

public class BinaryTree extends AbstractTree

 public BinaryTree(Object obj, BinaryTree left, BinaryTree right)

 public BinaryTree()

 public BinaryTree(Object obj)

 public void purge()

 public boolean isLeaf()

 public int getDegree()

 public boolean isEmpty()

 public Object getKey()

 public BinaryTree getLeft()

 public BinaryTree getRight()

 public void attachKey(Object obj)

 public Object detachKey()

}

public interface SearchTree extends Tree, SearchableContainer {

 MyComparable findMin();

 MyComparable findMax();

}

public class BinarySearchTree extends BinaryTree implements SearchTree {

 private BinarySearchTree getLeftBST()

 private BinarySearchTree getRightBST()

 public boolean isMember(MyComparable c)

 public MyComparable find(MyComparable c)

 public MyComparable findMin()

 public MyComparable findMax()

 public void attachKey(Object obj)

 public void insert(MyComparable comparable)

 public void withdraw(MyComparable comparable)

}

public class AVLTree extends BinarySearchTree {

 public AVLTree()

 public int getHeight()

 public void insert(MyComparable comparable)

 public void attachKey(Object obj)

 public Object detachKey()

}
	public interface Graph extends Container {

 int getNumberOfEdges();

 int getNumberOfVertices();

 boolean isDirected();

 void addVertex(int v);

 void addVertex(int v, Object obj);

 Vertex getVertex(int v);

 void addEdge(int v, int w);

 void addEdge(int v, int w, Object obj);

 Edge getEdge(int v, int w);

 boolean isEdge(int v, int w);

 boolean isConnected();

 boolean isCyclic();

 Enumeration getVertices();

 Enumeration getEdges();

 void preorderDepthFirstTraversal(Visitor v, int

 start);

 void postorderDepthFirstTraversal(Visitor v,

 int start);

 void breadthFirstTraversal(Visitor visitor, int

 start);

}

public interface Digraph extends Graph {

 boolean isStronglyConnected();

 void topologicalOrderTraversal (Visitor visitor);

}

public interface Edge extends MyComparable {

 Vertex getV0();

 Vertex getV1();

 Object getWeight();

 boolean isDirected();

 Vertex getMate(Vertex vertex);

}

public interface Vertex extends MyComparable {

 int getNumber();

 Object getWeight();

 Enumeration getIncidentEdges();

 Enumeration getEmanatingEdges();

 Enumeration getPredecessors();

 Enumeration getSuccessors();

}

� EMBED SmartDraw.2 ���

_1229928586.bin

_1229933016.bin

