PAGE
13
ICS Dept., KFUPM, Dhahran

ICS202: Data Structures Major Examination I

King Fahd University of Petroleum & Minerals
College of Computer Sciences and Engineering

Information and Computer Science Department

ICS 202: Data Structures

Second Semester 2006-2007 (062)

Major Examination 1

Time Allowed: 120 minutes.
Student ID & Name:___

Lecture Section:___
Notes:
· Attempt ALL questions.

· Show all details of your answers.

· If you need to make any reasonable assumptions, write them down as part of your answers.

MAKE SURE THE EXAM BOOKLET CONTAINS SIX QUESTIONS IN 12 PAGES. PAGE 13 CONTAINS THE REFERENCE SHEET; YOU MAY DETACH THIS LAST PAGE.

Scores:

	Questions
	Points
	Scores

	Q1: P (i)
	6
	

	Q1: P (ii)
	6
	

	Q1: P (iii)
	8
	

	Q2
	20
	

	Q3
	15
	

	Q4
	20
	

	Q5
	15
	

	Q6
	10
	

	Total Score
	100
	

Q1. [20 Points] Answer each of the following questions completely but briefly. Each question is worth 2 points.

Part (i): Design Patterns:
1. Write Java statement(s) required to create an Association object a, whose key is the string “Eshroon” and whose value is the integer 20.

2. Suppose there are two Association objects: a and b. The key of a is integer 10 and that of b is integer 20. The value of a is string “xyz” and that of b is null. What will be the output of the following Java statement?

3. Which method of the AbstratVisitor class should be overridden if we want to visit just few elements of the container and not all of them?

Part (ii): Data Structures:
4. State whether the following recursive method is tail or non-tail recursive:

public static int method1(int n){
 if (n == 0) return 0;

 else if (n % 2 != 0)

 return method1(n-1);

 else

 System.out.println(n);
 }

5. Write one advantage of Linked Lists over arrays
6. Write the assignment statement(s) required to transform Figure 1 to Figure 2:

	Figure 1:

[image: image1.png]it

f

	Assignment statement(s):

	Figure 2:

[image: image2.png]g
f

	

Part (iii): Complexity Analysis:

7. What is the number of basic operations performed by the following code?

for(int k = 0; k < n; k++){

 int x = 2 * k + 3;

 System.out.println(x + 10);

}

8. State the big-O complexity of each of the following operations:

	Extracting the last element from Singly Linked List
	

	Searching an element in a Doubly Linked List
	

9. An algorithm of complexity O(n) is always more time-efficient than an algorithm of complexity O(n2), even for small values of n. True or false?
10. If the number of basic operations in an algorithm is given by:

2n2 + 100 n log n + 2000n + 400

Write the Big-O complexity of the algorithm.
Question#2 [20 points: 10 + 10]

Consider the following Patient class:

public class Patient implements Comparable{

 private int id;

 private String disease;

 public Patient(int id, String disease){

this.id = id;

this.disease = disease;

 }

 public int getID(){

return id;

 }

 public String getDisease(){

return disease;

 }

 public int compareTo(Object object){

return id - ((Patient)object).getID();

 }

 public String toString(){

return “ID#: “ + id + “ Disease: “ + disease;

 }

 }

Suppose that each day a hospital treats a limited number of patients suffering from each disease.

(a) Write a visitor class that has the following constructor header:

public PatientsVisitor(String diseaseX, int dailyMaxNum)

When an instance of the visitor visits a container containing Patient objects, it creates a MySearchableContainer containing at most dailyMaxNum patients suffering from diseaseX. These will be the only patients suffering from diseaseX that will be treated today.

Your visitor must:

· Contain a public method to return the created MySearchableContainer.

· Stop visiting the container of Patients if the number of visited Patients
 suffering from diseaseX reaches dailyMaxNum.

(b) Assume that a MySearchableContainer instance has been initialized with 200
 Patient objects:

 MySearchableContainer container = new MysearchableContainer();

container.insert(new Patient(1, “Diabetes”));

container.insert(new Patient(2, “Malaria”));

. . .

container.insert(new Patient(200, “Measels”));

Write a Java program fragment that uses an instance of PatientVisitor and an appropriate iterator object to print all patients suffering from Diabetes that will NOT be treated today. Assume that the number of Diabetes patients to be treated today is 25.

Q3. (a) [10 points] Study the following code segment carefully and write the big-O complexity of the parts indicated in the table at the end of the question. You may write your answer directly without counting the number of basic operations.

public static int M1(int n){

 for(int i = 1; i <= n; i++)

 for(int j = n; j > 0; j--)

 x++;

 return x – i - j;

 }

 // Block 5

 for(int i = 1; i < n; i*=2)

 {

//Block 4
MyLinkedList list = new MyLinkedList();

int y = M1(n)

 if(y > 50)

 {

// Block 1
for(int j = 1; j < n ; j*=2)

{

List.append(new Integer(j));

}

}

// Block 3

else

{

for (int k = n; k > 0; k--){

{

int j = 0;

// Block 2
while(j < n){

System.out.println(j++);

}

}

}

}

Note: Each block contains all the blocks within it. So please solve the question in the following sequence: Block1, Block2, Block3, Block4, Block5.
Answer:
	Big-O Complexities

	Block 1
	Block 2
	Block 3
	Block 4
	Block 5

	
	
	
	
	

Q3. (b) [5 points] By finding appropriate values of c and n0, prove that:

 f(n) = 4 n log n + 2 n2 + 2 n + 6 is O(n2)
Q4. (a) [10 points] list1 is a DoublyLinkedList object initialized with Integer objects having the following values:

 list1 = {1,2,3,1,2,2,1}

What is the output of the following code fragment?

	dll.myMethod();

System.out.println(dll);

dll.myMethod();

System.out.println(dll);

dll.myMethod();

System.out.println(dll);

dll.myMethod();

System.out.println(dll);
	Output:

The method, myMethod, is defined in DoublyLinkedList class as follows:

public void myMethod(Object obj) {

Element e = head;

boolean var = false;

if(e!=null){

Object obj = e.data;

e = e.next;

while(e != null){

if(obj.equals(e.data)){

head = head.next;

head.previous = null;

e.previous.next = e.next;

e.next.previous = e.previous;

return;

}

e = e.next;

}

tail.previous.next = null;

tail = tail.previous;

}

Q4. (b) [10 points] Write an instance method having the following signature in DoublyLinkedList class:

public void FindandRemove(Object target)

The method searches for the element whose data is same as target. If this element is found, the function will remove the element before this element from the linked list. If the target element is the head, the function should ignore it.

Note: You are not allowed to use any method of the Element class except the constructor.
For Example assume you have the following linked list:

[image: image3.png]Head —| | > 2 > 4 » 5 fe— Tail

Calling your function as

list.FindandRemove(new Integer(3));

should result in the following list.
[image: image4.png]Head —{ 1 B »] 4 s[5 Je— Tl

Q5. (a) [5 points] Study the following code segment carefully and write the output of the method display if it is called by:

 display(5, 10);

	Code Segment
	Output

	
public static void display(int i, int k){

if(i < k){

System.out.println(k-i);

 display(i+2, k-1) ;

 System.out.println(i+k);

 } else {

 System.out.println(i);

 }

}
	

Q5. (b) [10 points]

 (i) Complete a method,

 public boolean search(int myArray[], int target)
so that it calls a private recursive helper method searchHelper that searches the target in the array. If the target is found, the method returns true otherwise it returns false. Note: Do not use a loop.

(ii) Write the recursive searchHelper method that is called by the search method:
Question6.[10 points: 6 + 4]

(a)
Write a method, public static void duplicate(Queue queue), that will cause every element in the parameter queue to be duplicated. For example, if the queue contains Integer objects [1, 2, 3, 4, 5], after calling the method it must contain [1, 1, 2, 2, 3, 3, 4, 4, 5, 5].
Note:

· You are only allowed to use the queue and one stack in the process.

· The only operations you may use are: enqueue, dequeue, push, pop, isEmpty, and getTop

(b) Consider the following two methods:

public static void method1(int value){

 stack1.push(value);

}

public static int method2(){

 if(stack1.isEmpty())

 throw new ContainerEmptyException();

 while(! stack1.isEmpty())

 stack2.push(stack1.pop());

 int returnValue = stack2.pop();

 while(! stack2.isEmpty())

 stack1.push(stack2.pop());

 return returnValue;

}
Assuming that stack1 and stack2 have been created, what is the output of the following program fragment?

	 for(int k = 10; k <= 30; k = k + 10)

 method1(k);

 System.out.print(method2() + " ");

 method1(40);

 System.out.print(method2() + " ");

 System.out.print(method2() + " ");

	Output:

ICS 202 – Data Structures
Quick Reference Sheet

	public interface Iterator {

boolean hasNext();

Object next() throws NoSuchElementException;

}

public interface Visitor {

void visit (Object object);

boolean isDone();

}

public interface Container {

int getCount();

boolean isEmpty();

boolean isFull();

void purge();

void accept (Visitor visitor);

Iterator iterator();

}

public interface SearchableContainer extends Container {

boolean isMember (Comparable object);

void insert (Comparable object);

void withdraw (Comparable obj);

Comparable find (Comparable object);

}

public class Association implements Comparable

 public Association(Comparable key, Object val)

public Association(Comparable key)

public Comparable getKey()

public Object getValue()

 public void setKey(Comparable key)

public void setValue(Object value)

 public int compareTo(Object obj)
 public boolean equals(Object obj)

public String toString()

}
	public class MyLinkedList {

public void purge()

public Element getHead()

public Element getTail()

public Element find(Object obj)

public boolean isEmpty()

public Object getFirst()

public Object getLast()

public void prepend(Object obj)

public void append(Object obj)

public void assign(MyLinkedList list)

public void extract(Object obj)

 public void extractFirst()

 public void extractLast()

public String toString()

 public Iterator iterator()

public final class Element {

public Object getData()

public Element getNext()

public void insertAfter(Object obj)

public void insertBefore(Object obj)

public void extract()

}

}

public interface Stack extends Container {

 Object getTop();

 void push(Object obj);

 Object pop();

}

public interface Queue extends Container {

 Object getHead();

 void enqueue(Object obj);

 Object dequeue();

}

