PAGE
12
ICS Dept., KFUPM, Dhahran

ICS202: Data Structures Major Examination I

King Fahd University of Petroleum & Minerals
College of Computer Sciences and Engineering

Information and Computer Science Department

ICS 202: Data Structures

Second Semester 2006-2007 (062)

Major Examination 1

Time Allowed: 120 minutes.
Student ID & Name:___

Lecture Section:___
Notes:
· Attempt ALL questions.

· Show all details of your answers.

· If you need to make any reasonable assumptions, write them down as part of your answers.

MAKE SURE THE EXAM BOOKLET CONTAINS SIX QUESTIONS IN 12 PAGES. PAGE 12 CONTAINS THE REFERENCE SHEET; YOU MAY DETACH THIS LAST PAGE.

Scores:

	Questions
	Points
	Scores

	Q1: P (i)
	6
	

	Q1: P (ii)
	6
	

	Q1: P (iii)
	8
	

	Q2
	20
	

	Q3
	15
	

	Q4
	20
	

	Q5
	15
	

	Q6
	10
	

	Total Score
	100
	

Q1. [20 Points] Answer each of the following questions completely but briefly. Each question is worth 2 points.

Part (i): Design Patterns:
1. Write Java statement(s) required to create an Association object a, whose key is the integer 100 and whose value is the string “Hundred”.

2. Which method is implemented by the AbstractVisitor class?

3. What is the type of the object returned by the iterator() method of MyContainer?

Part (ii): Data Structures:
4. State whether the following recursive method is tail or non-tail recursive:

public static int method1(int n){
 if (n == 0) return 0;

 else if (n % 2 != 0)

 return 1 + method1(n-1);

 else

 return method(n-1);
 }

5. Is the following recursive method correct? If not, mention the error.

public static int sum(int n){
 if (n == 0) return 0;

 else return n + sum(n--);

}

6. Write the assignment statement(s) required to transform Figure 1 to Figure 2:

	Figure 1:

[image: image1.png]g
f

	Assignment statement(s):

	Figure 2:

[image: image2.png]it

f

	

Part (iii): Complexity Analysis:

7. State the big-O complexity of each of the following operations on a singly linked list that has both head and tail references:

	Extracting the last element
	

	Appending an element at the end of the list
	

8. For small values of n, an algorithm of complexity O(n2) may be more time-efficient than an algorithm of complexity O(n). True or false?
9. Big-O notation is mainly used to compare algorithms in the same big-O complexity class. True or false?
10. If the number of basic operations in an algorithm is given by:

4n2 + 2 n log n + n + 10

Write the Big-O complexity of the algorithm.
Q2. [20 points: 3 + 7 + 5 + 5]
Consider the following Student class:
public class Student {

private int id;

private String department;

private MyContainer gradesContainer;

public Student(int id, String department){

this.id = id;

this.department = department;

gradesContainer = new MyContainer();

}

public int getID(){

return id;

}

public String getDepartment(){

return department;

}

public MyContainer getGradesContainer(){

return gradesContainer;

}

public void insertGrade(double grade){

gradesContainer.insert(new Double(grade));

}

public String toString(){

return "{ID#: " + id + ", Department: " + department +

 ", Grades: " + gradesContainer + " }";

}

}

(a) Write a Java program fragment that will create a Student object, insert three grades for him and then insert the object in a MyContainer called studentContainer. Use the following data:

id : 250000 , department: ICS, grades: 80.0, 95.5, 77.0

(b) Assume that studentContainer you created in (a) has been initialized with many student objects. Write a Visitor class whose constructor has the header:
public StudentVisitor(String targetDepartment)

When an instance of StudentVisitor visits studentContainer, it creates a MyContainer object containing students from targetDepartment. Your visitor must have a method to return this container.

(c) Assume that the studentContainer you created in (a) has been initialized with many student objects. Write a test program fragment that will test an instance of the StudentVisitor. The code should use StudentVisitor and PrintingVisitor to print all students in studentContainer who belong to “ICS” Department.

(d) Assume that the studentContainer you created in (a) has been initialized with many student objects. Write a test program fragment that will use Iterators to print the ID and average grade of each student in studentContainer.
Q3. (a) [10 points] Study the following code segment carefully and write the big-O complexity of the parts indicated in the table at the end of the question. You may write your answer directly without counting the number of basic operations.
public static int myMethod(int n){

 int x = 0;

 for(int k = 1; k <= n; k++)

 for(int j = n; j > 0; j--)

 if ((k+j)%3 == 0)

 x++;

 return x;

 }

 // Block 5
 if(myMethod(n) > 50){

 //Block 4
 for (int k = n; k > 0; k--){

 int j = n;

 // Block 3

 while(j > 1) {

 System.out.println(k + j);
 j = j / 2;
 }

 }
 }

 else{

 // Block 2
 for(int m = 1; m <= n; m += 2)

 System.out.println(m);

 // Block 1

 MyLinkedList list = new MyLinkedList();

 for(int k = 1 ; k < 100; k++)

 list.prepend(new Integer(k*k));

}
Note: Each block contains all the blocks within it. So please solve the question in the following sequence: Block1, Block2, Block3, Block4, Block5.
Answer:
	Big-O Complexities

	Block 1
	Block 2
	Block 3
	Block 4
	Block 5

	
	
	
	
	

Q3. (b) [5 points] By finding appropriate values of c and n0, prove that:

 f(n) = 3 n log n + 4 n2 + 3 n is O(n2)
Q4. (a) [10 points] list1 is a DoublyLinkedList object initialized with Integer objects having the following values:

 list1 = {1,2,3,4,5,6}

What is the output of the following code fragment?
	list1.myMethod(new Integer(3));

System.out.println(list1);

list1.myMethod(new Integer(5));

System.out.println(list1);

list1.myMethod(new Integer(13));

System.out.println(list1);

list1.myMethod(new Integer(3));

System.out.println(list1);

	Output:

The method, myMethod, is defined in DoublyLinkedList class as follows:

public void myMethod(Object obj) {

Element e = head;

while(e!= null) {

if(e.data.equals(obj)){

e = e.next;

if(e!= null && e.next != null){

e.next.previous = e.previous;

e.previous.next = e.next;

}

return;

}

e = e.next;

}

head = head.next;

}
Q4. (b) [10 points] Write an instance method having the following signature in MyLinkedList class:
public void insertSpecial(Object obj)

The method inserts a new node with obj as its data after the node has the same data as obj. If the obj does not exist in the list, the method should insert this object at the end of the list.

Note: You are not allowed to use any method of the Element class.

For Example if the following sequence is added in the list it will grow as follows:

5, 8, 5, 4, 8

Q5. (a) [5 points] Study the following code segment carefully and write the output of the method display if it is called by:
 display(1, 5);

	Code Segment
	Output

	public void display(int i, int k){

 if(i < k){

 System.out.print(k-i);

 display(i+1, k-1) ;

 System.out.print(i+k);

 } else {

 System.out.println(i);

 }

}
	

Q5. (b) [10 points]

 (i) Complete a method,

 public void printAlternate(int myArray[])
so that it calls a private recursive helper method printAlternateHelper that displays all the alternate elements of myArray starting at index 0. Assume that myArray is filled with values. Calling this function with an array of {1,2,3,9,7,5,6,8} should print the values 1,3,9,7,6

(ii) Write the recursive printAlternateHelper method that is called by the printAlternate method:
Q6. [10 points] A priority queue is a queue in which elements are inserted (enqueued) according to their priorities. An element with a higher priority is inserted before an element with a lower priority. Complete the implementation of PriorityQueueAsLinkedList by overriding the enqueue method that it inherits from QueueAsLinkedList.

Note: You may assume that the elements inserted are Integer objects. The priority of each element is the value of that element.

public class QueueAsLinkedList extends AbstractContainer implements Queue {

protected MyLinkedList list;

 public QueueAsLinkedList(){

 list = new MyLinkedList();

 }

 public void enqueue(Object obj){

 list.append(obj);

 count++;

 }

 // . . . other methods of QueueAsLinkedList

}

public class PriorityQueueAsLinkedList extends QueueAsLinkedList{

 public void enqueue(Object obj){

 // to be completed by students

 }

}

ICS 202 – Data Structures
Quick Reference Sheet

	public interface Iterator {

boolean hasNext();

Object next() throws NoSuchElementException;

}

public interface Visitor {

void visit (Object object);

boolean isDone();

}

public interface Container {

int getCount();

boolean isEmpty();

boolean isFull();

void purge();

void accept (Visitor visitor);

Iterator iterator();

}

public interface SearchableContainer extends Container {

boolean isMember (Comparable object);

void insert (Comparable object);

void withdraw (Comparable obj);

Comparable find (Comparable object);

}

public class Association implements Comparable

 public Association(Comparable key, Object val)

public Association(Comparable key)

public Comparable getKey()

public Object getValue()

 public void setKey(Comparable key)

public void setValue(Object value)

 public int compareTo(Object obj)
 public boolean equals(Object obj)

public String toString()

}
	public class MyLinkedList {

public void purge()

public Element getHead()

public Element getTail()

public Element find(Object obj)

public boolean isEmpty()

public Object getFirst()

public Object getLast()

public void prepend(Object obj)

public void append(Object obj)

public void assign(MyLinkedList list)

public void extract(Object obj)

 public void extractFirst()

 public void extractLast()

public String toString()

 public Iterator iterator()

public final class Element {

public Object getData()

public Element getNext()

public void insertAfter(Object obj)

public void insertBefore(Object obj)

public void extract()

}

}

public interface Stack extends Container {

 Object getTop();

 void push(Object obj);

 Object pop();

}

public interface Queue extends Container {

 Object getHead();

 void enqueue(Object obj);

 Object dequeue();

}

8

Tail

4

8

5

5

Head

Tail

8

5

5

Head

8

5

5

Head

Tail

4

5

Head

Tail

8

Head

Tail

5

