PAGE  
13
ICS Dept., KFUPM, Dhahran

ICS202: Data Structures                                Major Examination II       


King Fahd University of Petroleum & Minerals 
College of Computer Sciences and Engineering 

Information and Computer Science Department 

ICS 202: Data Structures 

Second Semester 2006-2007 (062) 


Major Examination 2 


Time Allowed: 120 minutes. 
Student ID & Name:_____________________________________________

Lecture Section:_________________________________________________
Notes: 
· Attempt ALL questions. 

· Show all details of your answers. 

· If you need to make any reasonable assumptions, write them down as part of your answers. 

MAKE SURE THE EXAM BOOKLET CONTAINS SIX QUESTIONS IN 13 PAGES. PAGE 12&13 CONTAINS THE REFERENCE SHEET; YOU MAY DETACH THESE LAST TWO PAGES.

Scores: 

	Questions
	Points
	Scores

	Q1: Part (i)
	24
	

	Q1: Part (ii)
	4
	

	Q2
	12
	

	Q3
	25
	

	Q4
	10
	

	Q5
	10
	

	Q6
	15
	

	Total Score
	100
	


Q1. [28 Points] 
Answer each of the following questions completely but briefly. Each question is worth 2 points.

Part (i): Data Structures and Algorithms:
1. Postorder traversal prints the keys of a binary tree in the reverse order of its 
     Preorder traversal. (True/False)
2. What will be the height of a complete binary tree having 25 nodes? _______
3. Draw a Binary Search Tree which is also a valid Maximum Binary Heap.

4. A complete Binary Search Tree is a valid Heap Tree. (True/False)
5. A node in a heap tree, which is represented using an array, is stored at index 4 in the array.  At what index will the right child of this node be stored?  Assume that the right child exists and that the array is indexed starting from 1. ____________

6. What is the Big-O complexity of the insert operation in AVL tree? __________
7. Suppose a new node having key 15 is inserted in the following AVL tree.  Draw the resulting AVL tree.

	
[image: image1.wmf]5

8

3

10



	Answer:




8. Draw a B-Tree of order m = 5 that has an underflow in one of the leaf nodes.
9. What is the minimum number of keys in a B-Tree of order m = 6 that has more than one nodes? ______
10. Name any two representations used to implement a graph. 

11. Draw a graph containing three vertices that is strongly connected.

12. The in-Degree and out-Degree of a node in a directed Graph is always the same (True/False)
Part (ii): Data Compression:
13. The Huffman Code tree is unique for a particular set of characters to be encoded. (True/False)
14. Huffman Algorithm generates longer codes for higher frequency characters and shorter codes for lower frequency characters. (True/False)
Q2. [12 points: 2 + 10]
(a) [2 points] Write the recurrence relation that represents the running time T(n) of the following method:

  public static int  methodQ2(int n){


      if(n > 0) {




   System.out.println(n);



      return methodQ2(n-2) + n;



   }else




   return 0;


  }

           Note: DO NOT EXPAND THE RECURRENCE RELATION

(b) [10 points] The running time T(n) of an algorithn is represented by the following recurrence relation:
[image: image8.wmf]b

n

n

T

n

T

a

T

+

+

-

=

=

2

)

1

(

)

(

)

0

(


[image: image9.wmf]0

>

"

n

                                                      ...................


Where a and b are constants. Solve the recurrence relation by iteration and then determine the big-O complexity of the algorithm.

You may find the following summation formulae useful:

	
[image: image2.wmf]å

=

+

=

n

i

n

n

i

1

2

)

1

(



	
[image: image3.wmf]6

)

1

2

)(

1

(

1

2

+

+

=

å

=

n

n

n

i

n

i



	
[image: image4.wmf]1

1

0

2

1

2

2

1

-

-

=

-

=

å

k

k

i

i



	
[image: image5.wmf]1

2

2

1

0

-

=

å

-

=

k

k

i

i




Q3. [25 points: 8 + 12 + 5]

Note: All your methods in (a) and (b):

· must not use any instance or static variable except key, left and right.

· must not use any looping statements.

· must not use any BinaryTree or BinarySearchTree traversal method or Iterator.

· must not use any methods of the BinaryTree or BinarySearchTree class except 

      getKey( ), getLeft( ), getRight( ), getRightBST( ), getLeftBST( ), isEmpty( ) and

      isLeaf( ). 

   Your methods must be general.

(a) [8 points] Write an instance method: public Comparable max( ) of the BinaryTree class that returns the maximum key in the invoking BinaryTree object.
Your method:

· must throw an appropriate exception for any invalid case.

· must call a recursive helper method:
private Comparable maxHelper(Comparable x)

(b) [12 points] Write a recursive instance method:
public boolean hasPath(Comparable key1, Comparable key2) 

of the BinarySearchTree class that returns true if the invoking BinarySearchTree contains a directed path from the node with key1 to the node with key2 otherwise it returns false. Your method must throw an appropriate exception if key1 is not in the tree. 

Hint: Use two recursive methods: the public method hasPath must call another private recursive method in one of its base cases.
Example:  Consider the following BinarySearchTree:

	key1
	key2
	Value of hasPath

	5
	10
	true

	30
	25
	true

	4
	30
	false

	22
	18
	false



[image: image6.jpg]e




(c)  [5 points] Suppose the following is an instance method of the BinaryTree class:

public void myTraversal(){


  if(! isEmpty()){



   System.out.print(key + “  ”);



   right.myTraversal();



   left.myTraversal();



   System.out.print(key + “  ”);


   }


}

What is the output of:

tree.myTraversal();

if tree is the following BinaryTree?

[image: image10.wmf]5

10

20

20

25

29

30

22

27




	


Q4. [10 points]

(a) [6 points] The BinaryHeap class implements a min-heap by using a Comparable array with indexes that start at 1. Write an iterative instance method: 

   public int level(Comparable key)

of the BinaryHeap class that will return the level of the first occurrence of key in the corresponding complete binary tree. If the key is not in the heap, the method should return -1.

For example, if the BinaryHeap is representing the following binary tree, the result of the method for different values of key will be as shown.

[image: image11.wmf]b

n

n

T

n

T

a

T

+

+

-

=

=

2

)

1

(

)

(

)

0

(


	Value of key
	Returned result of level method

	5
	0

	10
	1

	20
	1

	25
	2

	27
	3

	23
	-1


(b) [4 points] Draw the resulting binary heap tree when the following array is converted bottom-up into a min-heap:

	43
	12
	18
	29
	34
	4
	19
	24
	9


Q5. [10 points: 5 + 5]

(a) [5 points] Draw the intermediate and final B-tree when the keys 36, and 37 are inserted, in this order, in the B-Tree of order 3 given below. Your output should have at least 2 trees, one after each insertion operation. [Note: The second insertion is to be done on the B-tree modified by the first insertion]

[image: image12.wmf]0

>

"

n


(b) [5 points] Draw the intermediate and final B-tree when the keys 39, and 47 are deleted, in this order, from the B-Tree of order 3 given below. Your output should have at least 2 trees, one after each deletion operation. [Note: The second deletion is to be done on the B-tree modified by the first deletion]


[image: image7]
Q6. [15 points: 5 + 10]

(a) [5 points] Give the PreOrder-DepthFirst and BreathFirst traversals of the following directed graph starting from vertex A. If at any point in a traversal there is more than one vertex that can be visited; visit the vertices in alphabetical order.
[image: image13.jpg]



(b) [10 points] A directed graph with n vertices is a star if it has:

· one vertex with in-degree of n-1
·  n-1 vertices each with out-degree of 1
Example: The following figure shows a star.

[image: image14.wmf]5

10

20

20

25

29

30

22

27


Write a static method,  

public boolean isStar(Graph g)

that takes a graph as input and returns true if the graph is a star, and false if it is not.
ICS 202 – Data Structures
Quick Reference Sheet

	public interface Iterator {


boolean hasNext( );


Object next( ) throws NoSuchElementException;

}

public interface Visitor  {


void visit (Object object);


boolean isDone( );

}

public interface Container {


int getCount( );


boolean isEmpty( );


boolean isFull( );


void purge( );


void accept (Visitor visitor);


Iterator iterator( );

}

public interface SearchableContainer extends Container {


boolean isMember (Comparable object);


void insert (Comparable object);


void withdraw (Comparable obj);


Comparable find (Comparable object);

}

public class Association implements Comparable

     public Association(Comparable key, Object val)


public Association(Comparable key)


public Comparable getKey( )


public Object getValue( )

      public void setKey(Comparable key)


public void setValue(Object value )

      public int compareTo(Object obj)
      public boolean equals(Object obj)


public String toString( )

}
	public class MyLinkedList {


public void purge( )


public Element getHead( ) 


public Element getTail( ) 


public Element find(Object obj)


public boolean isEmpty( ) 


public Object getFirst( )


public Object getLast( )


public void prepend(Object obj)


public void append(Object obj) 


public void assign(MyLinkedList list) 


public void extract(Object obj)

      public void extractFirst( )

      public void extractLast( )


public String toString( )

      public Iterator iterator( )


public final class Element {



public Object getData( )



public Element getNext( )



public void insertAfter(Object obj) 



public void insertBefore(Object obj)



public void extract( ) 


}

}

public interface Stack extends Container {

           Object getTop( );

           void push(Object obj);

          Object pop( );

}

public interface Queue extends Container {

          Object getHead( );

          void enqueue(Object obj);

          Object dequeue( );

}




	public class BinaryTree extends AbstractContainer implements Comparable{    public BinaryTree(Object obj, BinaryTree left, BinaryTree right)

    public BinaryTree( )

    public BinaryTree(Object obj)

    public void purge( )

    public boolean isLeaf( )

    public boolean isEmpty( )

    public Object getKey( )

    public BinaryTree getLeft( )

    public BinaryTree getRight( )

    public void attachKey(Object obj)

    public Object detachKey( )

    public void preorderTraversal(Visitor v)
    public void inorderTraversal(Visitor v)
   public void postorderTraversal(Visitor v)
   public void breadthFirstTraversal(Visitor visitor)
   public void accept(Visitor visitor)
   public boolean isMember(Object obj)
   public int getHeight()
} 

public class BinarySearchTree extends BinaryTree {

    private BinarySearchTree getLeftBST( )

    private BinarySearchTree getRightBST( )

    public boolean isMember(Comparable  c)

    public Comparable find(Comparable  c)

    public Comparable findMin( )

    public Comparable findMax( )

    public void attachKey(Object obj)

    public void insert(Comparable comparable)

    public void withdraw(Comparable comparable)

} 

public class AVLTree extends BinarySearchTree {

    public AVLTree( )

    public int getHeight( )

    public void insert(Comparable comparable)

    public void attachKey(Object obj)

    public Object detachKey( )

}

// implemented by MinHeap

public interface PriorityQueue extends Container{

    public abstract void enqueue(Comparable c);

    public abstract Comparable findMin( );

    public abstract Comparable dequeueMin( );

}

	public interface Graph{

    public int getNumberOfEdges( );

    public int getNumberOfVertices( );

    public Iterator getVertices( );

    public Iterator getEdges( );

    public void addVertex(String label);

    public void addVertex(String label, Comparable weight);

    public Vertex getVertex(String label);

    public int getIndex(Vertex v);

    public void addEdge(String from, String to);

    public void addEdge(String from, String to, Comparable weight);

    public Edge getEdge(String from, String to);

    public boolean isReachable(String from, String to);

    public boolean isDirected( );

    public boolean isWeighted( );

    public boolean isConnected( );

    public abstract boolean isStronglyConnected( );

    public abstract boolean isWeaklyConnected( );

    public boolean isCyclic( );

    public void preorderDepthFirstTraversal(Visitor visitor, Vertex start);

    public void postorderDepthFirstTraversal(Visitor visitor, Vertex start);

    public void breadthFirstTraversal(Visitor visitor, Vertex start);

    public abstract int topologicalOrderTraversal(Visitor visitor);

}

public interface Edge extends Comparable{

    public abstract Vertex getFromVertex( );

    public abstract Vertex getToVertex( );

    public abstract Comparable getWeight( );

    public abstract boolean isDirected( );

    public abstract Vertex getMate(Vertex vertex);

}

public interface Vertex  extends Comparable{
    public String getLabel( );

    public Comparable getWeight( );

    public Iterator getIncidentEdges( );

    public Iterator getEmanatingEdges( );

    public Iterator getPredecessors( );

    public Iterator getSuccessors( );

}


60





39





55





10





47





33





60





39





55





20





10





Start





 B





 G





 E





 F





 D





 C





 A





6





3





4





5





2





1








� EMBED Equation.3  ���





� EMBED Equation.3  ���











� EMBED SmartDraw.2  ���








33





47









_1163780549.unknown

_1239525098.unknown

_1239536256.bin

_1239891486.bin

_1239524966.unknown

_1163780008.unknown

_1163780491.unknown

_1079147509.unknown

