PAGE
15
ICS Dept., KFUPM, Dhahran

ICS202: Data Structures Final Exam

King Fahd University of Petroleum & Minerals
College of Computer Sciences and Engineering

Information and Computer Science Department

ICS 202: Data Structures

Second Semester 2007-2008 (071)

Final Examination
Time Allowed: 120 minutes.
Student ID & Name:___

Lecture Section:___
Notes:
· Attempt ALL questions.

· Show all details of your answers.

· If you need to make any reasonable assumptions, write them down as part of your answers.

MAKE SURE THE EXAM BOOKLET CONTAINS SIX QUESTIONS IN 15 PAGES. THE LAST TWO PAGES CONTAIN THE REFERENCE SHEET; YOU MAY DETACH THESE LAST TWO PAGES.

Scores:

	Questions
	Points
	Scores

	Q1
	20
	

	Q2
	20
	

	Q3
	15
	

	Q4
	15
	

	Q5
	15
	

	Q6
	15
	

	Total Score
	100
	

Q1. [20 Points]
Answer each of the following questions completely but briefly. Each question is worth 2 points.

1. Draw a resulting tree when the key 15 is deleted from the following Binary search tree by any deletion by copying method:

	[image: image1.jpg]

	Answer:

2. In a non-empty B-tree of order 9, the root node can have between ____ and ______ keys. Each other interior node can have between ______ and ______ keys.

3. A key insertion in an AVL tree caused the deepest unbalanced node to have a balance factor of –2 and the left child of this node to have a balance factor of +1. What type of rotation is necessary to rebalance the tree? Assume that :

 balanceFactor = height(rightSubtree) - height(leftSubtree)

4. Draw the resulting heap-tree when the root key is deleted from the following heap:

[image: image2.jpg]A

5. A person uses quadratic probing to load items into a hash table using the hash function: h(key) = key % tableSize. He loads 100 items into the hash table and there was no collision. Will there be any collisions if he loads the same 100 items, in the same order, using the same hash function, in the same empty hash table if he decides to use a different collision resolution strategy? Explain.

6. Mention the Big-O complexities of the acquire and release operations for both singly linked-list and doubly linked-list implementations of free-list.

	
	acquire
	release

	singly linked-list
	
	

	doubly linked-list
	
	

7. In the Buddy Systems implementation of free-list, a block of memory starts at address 11001100. What is the starting address of the buddy of this block, if the blocks are of size:

(a) 8 bytes:_____________________

(b) 16 bytes:_____________________

8. Give one example of each of the following compression techniques:

a. Static Lossless:

b. Dynamic Lossless:

9. Draw the adjacency list representation of the following graph:

[image: image3.jpg]

10. Give the postorder depth first traversal of the following graph if the start vertex is A:
[image: image4.jpg]

Q2. [15 points: 10 + 10]
Q2. (a) Suppose the following two instance methods of the BinaryTree class have been implemented for you:

	public boolean isLess(Comparable x)
	returns true if all keys in the invoking BinaryTree are less than x; otherwise it returns false

	public boolean isGreater(Comparable x)
	returns true if all keys in the invoking BinaryTree are greater than x; otherwise it returns false

Write a recursive instance method public boolean isBinarySearchTree() of the BinaryTree class that returns true if the invoking BinaryTree object is a Binary search tree otherwise it returns false.
Note:

· Your method MUST use the method isLess and isGreater.

· Your method must not use instance variables, static variables, loops, or iterators.

Q2.(b) [10 points] Suppose myMethod() is an instance method of BinaryTree class:

public void myMethod(){

BinaryTree tree = this;

StackAsLinkedList stack = new StackAsLinkedList();

if(! tree.isEmpty()){

 stack.push(tree);

 while(! stack.isEmpty()){

 tree = (BinaryTree) stack.pop();

 System.out.print(tree.key + " ");

 if(! tree.getLeft().isEmpty())

 stack.push(tree.getLeft());

 if(! tree.getRight().isEmpty())

 stack.push(tree.getRight());

 }

}

}
What is the output of the call:
 tree.myMethod();

if tree is the following BinaryTree instance:

	
[image: image5]
	Output:

Q3. [15 points: 12 + 3]

Q3. (a): [12 points] The intersection of two graphs g1 and g2 can be defined as a new graph having all the vertices and edges that are present in both g1 and g2. If a vertex or edge is present in only one of the input graphs, then it is not included in the result graph. Write a static method of the following signature that takes two graphs as parameters and returns the intersection of the two graphs:

public static Graph intersection(Graph g1, Graph g2)

Note: Your method should work for both directed and undirected graphs. If both of the input graphs are directed (or undirected), the result should be a directed (or undirected) graph. If one input graph is directed and the other is not, your method should throw an appropriate exception.

Q3. (b) [3 points] Write down a topological listing of the vertices of the following graph.

[image: image8.wmf]A

D

C

B

E

F

Question 4: [Points:7 + 3 + 5]

Q4. (a) [7 points] Trace Dijkstra's Shortest Path algorithm to find the shortest path from
 vertex C to each of the other vertices. Use the table given below:

[image: image6.jpg]

	Pass:
	initial
	1
	2
	3
	4
	5
	6
	shortest distance
	predecessor

	Active vertex:
	
	
	
	
	
	
	
	
	

	A

	
	
	
	
	
	
	
	
	

	B

	
	
	
	
	
	
	
	
	

	C

	
	
	
	
	
	
	
	
	

	D

	
	
	
	
	
	
	
	
	

	E

	
	
	
	
	
	
	
	
	

	F

	
	
	
	
	
	
	
	
	

Q4. (b) [3 points] Draw the vertex-weighted digraph that is labeled by the shortest
 distances from vertex C:
Q4. (c) [5 points] Use Kruskal’s algorithm to find a minimum-cost spanning tree for the
 following graph. Use the table given below and then draw the resulting tree:

 [image: image7.jpg]

	edge
	
	
	
	
	
	
	
	
	
	

	weight
	
	
	
	
	
	
	
	
	
	

	insertion status
	
	
	
	
	
	
	
	
	
	

 The minimum-cost spanning tree is:
Q5. [15 points: 5 + 10]

Q5a. [5 points] Consider the following hash table:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	occupied
	occupied
	empty
	empty
	empty
	occupied
	occupied
	[image: image9.wmf]A

D

C

B

E

F

deleted
	occupied
	empty
	occupied

	22
	32
	
	
	
	27
	6
	18
	8
	
	21

Write the probe sequences for the operations find(28) and withdraw(32) using linear probing in which h(key) = key % 11 and c(i) = i:

	Operation
	Probe sequence

	find(28)
	

	withdraw(32)
	

Q5b. [10 points] Using quadratic probing, in which
h(key) = key % 11 and c(i) = (i2,
insert the keys:
 18, 19, 26, 15, 14, 28.
in the given order in the following partially-filled hash table of size 11. Show all computations, including the computations to insert the last key.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	
	
	
	
	
	
	
	29
	
	31
	32

	KEY
	Computations

	18
	

	19
	

	26
	

	15
	

	41
	

Q6. [15 points: 5 + 5 + 5]
Q6. (a): [5 points] Compress the string: CLLCDDDDCLC
using the LZ78 compression algorithm. Show all details of your work using a properly labeled table (i.e. you must indicate the title of each column in your table).
65. (b): [5 points] Decompress the codewords: (0,L) (1,C) (2,C) (3,C) (2,L) (4,D)

using the LZ78 decompression algorithm. Show all details of your work using a properly labeled table.
Q6. (c): [5 points] Use the LZW compression algorithm to compress the message:

 ABABBABBBABA

Show all details of your work using a properly labeled table. Note that the ASCII code of A is 65 and that of B is 66.
ICS 202 – Data Structures
Quick Reference Sheet

	public interface Iterator {

boolean hasNext();

Object next() throws NoSuchElementException;

}

public interface Visitor {

void visit (Object object);

boolean isDone();

}

public interface Container {

int getCount();

boolean isEmpty();

boolean isFull();

void purge();

void accept (Visitor visitor);

Iterator iterator();

}

public interface SearchableContainer extends Container {

boolean isMember (Comparable object);

void insert (Comparable object);

void withdraw (Comparable obj);

Comparable find (Comparable object);

}

public class Association implements Comparable

 public Association(Comparable key, Object val)

public Association(Comparable key)

public Comparable getKey()

public Object getValue()

 public void setKey(Comparable key)

public void setValue(Object value)

 public int compareTo(Object obj)
 public boolean equals(Object obj)

public String toString()

}

public interface Stack extends Container {

 Object getTop();

 void push(Object obj);

 Object pop();

}

	public class MyLinkedList {

public void purge()

public Element getHead()

public Element getTail()

public Element find(Object obj)

public boolean isEmpty()

public Object getFirst()

public Object getLast()

public void prepend(Object obj)

public void append(Object obj)

public void assign(MyLinkedList list)

public void extract(Object obj)

 public void extractFirst()

 public void extractLast()

public String toString()

 public Iterator iterator()

public final class Element {

public Object getData()

public Element getNext()

public void insertAfter(Object obj)

public void insertBefore(Object obj)

public void extract()

}

}

public interface Queue extends Container {

 Object getHead();

 void enqueue(Object obj);

 Object dequeue();

}

public class AVLTree extends BinarySearchTree {

 public AVLTree()

 public int getHeight()

 public void insert(Comparable comparable)

 public void attachKey(Object obj)

 public Object detachKey()

}

	public class BinaryTree extends AbstractContainer implements Comparable{ public BinaryTree(Object obj, BinaryTree left, BinaryTree right)

 public BinaryTree()

 public BinaryTree(Object obj)

 public void purge()

 public boolean isLeaf()

 public boolean isEmpty()

 public Object getKey()

 public BinaryTree getLeft()

 public BinaryTree getRight()

 public void attachKey(Object obj)

 public Object detachKey()

 public void preorderTraversal(Visitor v)
 public void inorderTraversal(Visitor v)
 public void postorderTraversal(Visitor v)
 public void breadthFirstTraversal(Visitor visitor)
 public void accept(Visitor visitor)
 public boolean isMember(Object obj)
 public int getHeight()
}

public class BinarySearchTree extends BinaryTree {

 private BinarySearchTree getLeftBST()

 private BinarySearchTree getRightBST()

 public boolean isMember(Comparable c)

 public Comparable find(Comparable c)

 public Comparable findMin()

 public Comparable findMax()

 public void attachKey(Object obj)

 public void insert(Comparable comparable)

 public void withdraw(Comparable comparable)

}

// implemented by MinHeap

public interface PriorityQueue extends Container{

 public abstract void enqueue(Comparable c);

 public abstract Comparable findMin();

 public abstract Comparable dequeueMin();

}
public abstract class AbstractGraph implements Graph {

public AbstractGraph(boolean directed)
}

public class GraphAsArrayLists extends AbstractGraph {
 public GraphAsArrayLists(int size, boolean directed)

}
	public interface Graph{

 public int getNumberOfEdges();

 public int getNumberOfVertices();

 public Iterator getVertices();

 public Iterator getEdges();

 public void addVertex(String label);

 public void addVertex(String label, Comparable weight);

 public Vertex getVertex(String label);

 public int getIndex(Vertex v);

 public void addEdge(String from, String to);

 public void addEdge(String from, String to, Comparable weight);

 public Edge getEdge(String from, String to);

 public boolean isReachable(String from, String to);

 public boolean isDirected();

 public boolean isWeighted();

 public boolean isConnected();

 public abstract boolean isStronglyConnected();

 public abstract boolean isWeaklyConnected();

 public boolean isCyclic();

 public void preorderDepthFirstTraversal(Visitor visitor, Vertex start);

 public void postorderDepthFirstTraversal(Visitor visitor, Vertex start);

 public void breadthFirstTraversal(Visitor visitor, Vertex start);

 public abstract int topologicalOrderTraversal(Visitor visitor);

}

public interface Edge extends Comparable{

 public abstract Vertex getFromVertex();

 public abstract Vertex getToVertex();

 public abstract Comparable getWeight();

 public abstract boolean isDirected();

 public abstract Vertex getMate(Vertex vertex);

}

public interface Vertex extends Comparable{
 public String getLabel();

 public Comparable getWeight();

 public Iterator getIncidentEdges();

 public Iterator getEmanatingEdges();

 public Iterator getPredecessors();

 public Iterator getSuccessors();

}

9

16

6

5

� EMBED SmartDraw.2 ���

15

10

_1261638123.bin

