King Fahd University of Petroleum & Minerals
College of Computer Sciences and Engineering

Information and Computer Science Department

ICS 202: Data Structures

Second Semester 2007-2008 (072)

Major Examination 1

Time Allowed: 120 minutes.
Student ID & Name:___

Lecture Section:___
Notes:
· Attempt ALL questions.

· Show all details of your answers.

· If you need to make any reasonable assumptions, write them down as part of your answers.

THE LAST PAGE CONTAINS THE REFERENCE SHEET; YOU MAY DETACH THIS LAST PAGE.

Scores:

	Questions
	Points
	Scores

	Q1
	24
	

	Q2
	20
	

	Q3
	15
	

	Q4
	26
	

	Q5
	15
	

	Total Score
	100
	

Q1. [24 Points] Answer each of the following questions completely but briefly. Each question is worth 2 points.

Part (i): Design Patterns:
1. To define a visitor class in our ICS202 design framework, you must either implement the ______________ interface, or extend the ___________________________ class.

2. Why is the isDone() method of the AbstractVisitor class returning false?

Part (ii): Data Structures:
3. Write the assignment statement(s) required to transform Figure 1 to Figure 2:

	Figure 1:

[image: image1.png]

	Assignment statement(s):

	Figure 2:

[image: image2.png]

	

4. The following operations are applied to an empty queue of integers: enqueue(3),enqueue(5),dequeue(),enqueue(8),enqueue(2),dequeue()
What element is at the front of the queue and what element is at the rear of the queue after these operations?

	Element at queue Front
	Element at queue Rear

	
	

5. Evaluate the postfix expression 5 2 4 * 2 / + 3 -

6. Consider an arithmetic expression E containing only one type of parenthesis: {, (, or [. Which data structure is suitable for verifying the validity of E?

7. Write a valid Java method that is tail recursive.

Part (iii): Complexity Analysis:

8. Given that f1(n)=O(n2) and f2(n)=O(n2), then f1(n) = f2(n). True or false?

9. Which of the following functions has the worst Big-O complexity?

 (a.) 100n (b.) 2n (c.) 1000 (d.) 2n (e.) n100 (f.) n log n
10. For small values of n, an algorithm of complexity O(n2) may be more time-efficient than an algorithm of complexity O(n). True or false?

11. If the number of basic operations in an algorithm is given by:

2n2 + 1000 n log n + 300n + 4000
Write the Big-O complexity of the algorithm.

12. By finding appropriate values of c and n0, prove that:

f(n) = 3 n2 + 8 n + 4 is O(n2)

Q2.
[20 Points] Assume that a class Student implements the Comparable interface, and that it has an accessor method, long getID(). Do the followings:

a) Write a visitor class, StudentVisitor that, when it visits a container of Student objects, it associates each student with his instructor initials and puts the associated objects into a MySearchableContainer. The visitor class must have an accessor method to return the MySearchableContainer object. The instructors are assigned students according to the following table:

	ID range
	Instructor initials

	>979999
	“MK”

	>989999
	“JA”

	>200000
	“SA”

	>210000
	“SJ”

b) Assume that studentContainer (an object of MySearchableContainer) is populated with Student objects. Write test code that uses the StudentVisitor to display all students associated with instructor “SJ”.
Q3. [15 points] Study the following code segment carefully and write the big-O complexity of the parts indicated in the table at the end of the question. You may write your answer directly without counting the number of basic operations.

public static int calculate(int n){
 int result = 0;
 for(int k = 1; k <= n; k++)

 for(int j = 1; j <= n; k++)

 result += k*j;

 return result;

 }

 // Block 5

 // Block 1
 MyLinkedList list = new MyLinkedList();
 for(int j = 1; j < n ; j*= 2)

 list.append(new Integer(j));

 for(int i = 1; i < n; i*= 2)
 {

//Block 2
int y = calculate(n);
 MyLinkedList.Element e = list.find(new Integer(i));

If(e != null) System.out.println(e.data);

// Block 4
if(y > 50)

 System.out.println(y);

 else

{

for (int k = n; k > 0; k--){

{

 //Block 3

 int m = 1;

 while(m < n){

 System.out.println(m++);

 }

}
 }

 }

Note: Each block contains all the blocks within it. So please solve the question in the following sequence: Block1, Block2, Block3, Block4, Block5.

Answer:
	Big-O Complexities

	Block 1
	Block 2
	Block 3
	Block 4
	Block 5

	
	
	
	
	

Q4. (a) [10 points] d2List is a DoublyLinkedList object initialized with Integer
 objects having the following values:

 d2List = {20, 40, 30, 12, 6, 15}

What is the output of the call:

 d2List.myMethod();
if the method, myMethod, is defined in DoublyLinkedList class as follows:

public void myMethod(){
 Element e = head;
 for(int k = 1; k <= 3; k++){
 tail = tail.previous;
 head = tail.next;
 tail.next = null;
 head.next = e;
 e = head;
 System.out.println(this);
 }

 tail.previous = tail.previous.previous;
 tail .previous.next = tail;

 System.out.println(this);
 }

	Output:

Q4 (b): [10 points] Assume that:

· a DoublyLinkedList has more than two elements

· the elements are numbered from 1 to N
· the elements contain Comparable objects as their data and they are distinct

Write a method deleteMin() in DoublyLinkedList class that will delete the element having the smallest data value in the range of Element# 2 to Element# N-1.

NOTE: You MUST NOT use any other method of the DoublyLinkedList class or the Element class.
Q4 (c): [6 points] What is the output of the following program?

import ics202.*;

public class StackQueue {

static Stack stack = new StackAsLinkedList();

static Queue queue = new QueueAsLinkedList();

static void method1(int n){

stack.push(n);

queue.enqueue(stack.getTop());

}

static void method2(){

while (!stack.isEmpty())

System.out.println(
queue.dequeue() +" "+ stack.pop());

}

public static void main (String[] a){

for (int i=5;i<15;i=i+5)

method1(i);

method2();

method1(20);

method2();

}

}
	Output:

Q5. (a) [7 points] Study the following program carefully and write down its output.

	public class Major1Q5{

 public static void myMethod(int n) {

 if (n>0) {

 System.out.print(" "+n);

 myMethod(n-1);

 myMethod(n-1);

 }

 }

 public static void main(String args []){

 myMethod(3);

 }

}

	Output:

Q5. (b) [8 points] Write a recursive method with the following signature:

 public static int countGreaterThan(int[] array, int n)

The method should return the number of integers in the array that are greater than the integer n.

ICS 202 – Data Structures
Quick Reference Sheet

	public interface Iterator {

boolean hasNext();

Object next() throws NoSuchElementException;

}

public interface Visitor {

void visit (Object object);

boolean isDone();

}

public interface Container {

int getCount();

boolean isEmpty();

boolean isFull();

void purge();

void accept (Visitor visitor);

Iterator iterator();

}

public interface SearchableContainer extends Container {

boolean isMember (Comparable object);

void insert (Comparable object);

void withdraw (Comparable obj);

Comparable find (Comparable object);

}

public class Association implements Comparable

 public Association(Comparable key, Object val)

public Association(Comparable key)

public Comparable getKey()

public Object getValue()

 public void setKey(Comparable key)

public void setValue(Object value)

 public int compareTo(Object obj)
 public boolean equals(Object obj)

public String toString()

}
	public class MyLinkedList {

public void purge()

public Element getHead()

public Element getTail()

public Element find(Object obj)

public boolean isEmpty()

public Object getFirst()

public Object getLast()

public void prepend(Object obj)

public void append(Object obj)

public void assign(MyLinkedList list)

public void extract(Object obj)

 public void extractFirst()

 public void extractLast()

public String toString()

 public Iterator iterator()

public final class Element {

public Object getData()

public Element getNext()

public void insertAfter(Object obj)

public void insertBefore(Object obj)

public void extract()

}

}

public interface Stack extends Container {

 Object getTop();

 void push(Object obj);

 Object pop();

}

public interface Queue extends Container {

 Object getHead();

 void enqueue(Object obj);

 Object dequeue();

}

