PAGE
ICS Dept., KFUPM, Dhahran
 ICS202: Data Structures Major Exam II Page 16/16

King Fahd University of Petroleum & Minerals
College of Computer Sciences and Engineering

Information and Computer Science Department

ICS 202: Data Structures

Second Semester 2007-2008 (072)

Major Examination 2

Time Allowed: 120 minutes.
Student ID & Name:___

Lecture Section:___
Notes:
· Attempt ALL questions.

· Show all details of your answers.

· If you need to make any reasonable assumptions, write them down as part of your answers.

Scores:

	Questions
	Points
	Scores

	Q1
	20
	

	Q2
	10
	

	Q3
	15
	

	Q4
	10
	

	Q5
	10
	

	Q6
	20
	

	Q7
	15
	

	Total Score
	100
	

Q1. [20 Points]
Answer each of the following questions completely but briefly. Each question is worth 2 points unless otherwise noted.

1. Let v be an arbitrary node in an arbitrary tree t. Then, is the following true or false?

depth(v) + height(v) = height(t)

2. Write the depthfirst postorder traversal of the following Binary tree.
[image: image1.jpg]°@ae o)

3. What is the minimum and maximum number of keys that a binary heap of height 3 can have?

4. Find the smallest value of x so that after the keys 7, x, 11 are inserted, in this order, into an initially empty AVL tree, a double right-left rotation is performed.

5. The following array represents a Heap in which indexes start at 1. Draw the resulting heap as tree after deleting one element from the original heap.

	5
	8
	6
	12
	18
	30
	10
	15

6. Build a maxHeap top-down from the following numbers: 5, 8, 12, 18, 30, and 15. Draw the final maxHeap as tree.

7. Why are B-trees better than AVL trees in external data storage?

8. Show two differences between a B-tree and an ordinary Multiway tree?

9. Mention two types of trees that are height-balanced.

10. The following code-word set is a valid set of Huffman code-words. True or false?

{10, 00, 100, 010, 1101, 1110}
Q2. [10 points]
Determine the big-O running time of a recursive method from which the following recurrence relations are obtained. Determine the running time by solving the recurrence relations using the technique of iteration.
T(n) = a if n = 1

T(n) = 4T(n / 2) + b
if n >= 2

You may find the following summation formulae useful:

	[image: image5.wmf]1

1

0

2

1

2

2

1

-

-

=

-

=

å

n

n

k

k

	[image: image6.jpg]nn+1)

Sk=1+2+._.+n=
=1 2

	
[image: image2.wmf]1

1

1

0

-

-

=

å

-

=

x

x

x

n

n

k

k

 if x (1

	[image: image7.png]ikz _nn+1)@n+1)

k=1 6

Q3. [15 points: 10 + 5]

(a) [10 points]
Write an efficient recursive instance method:
public int sumRange(Comparable key1, Comparable key2)
 of the BinarySearchTree class that returns the sum of all keys in the path from key1 to key2 inclusive. Assume that key1 is not equal to key2 and that all keys in the tree are Integer objects. Your method must throw an IllegalArgument exception if any of these conditions is detected:

· key1 is not in the invoking tree.

· key2 is not in the subtree that is rooted at a node that has key1 as the key.
Your method may call another private recursive method.

Your methods must not use loops, iterators, instance or static variables, or any method of the BinaryTree or BinarySearchTree classes except: key, getKey(), isLeaf(), isEmpty(), getLeftBST(), and getRightBST().
Also do not implement any method that is similar to a method in either BinaryTree or BinarySearchTree.
[This page is left blank intentionally for your answer]
(b) [5 points] Show the output of the following program.
import ics202.*;

public class Major2Q3b {

public static void main (String[] args){

 BinaryTree t1 = new BinaryTree(new Integer(2));

 BinaryTree t2 = new BinaryTree(new Integer(8));

 BinaryTree t3 = new BinaryTree(new Integer(6));

 BinaryTree t4 = new BinaryTree(new Integer(1),t2, t1);

 BinaryTree t5 = new BinaryTree(new Integer(4),t4, t3);

 TreeSubtrees(t5);

 }

 public static void printTree(BinaryTree tree){

 Visitor v = new PrintingVisitor();

 tree.breadthFirstTraversal(v);

 System.out.println();

 }

 public static void TreeSubtrees(BinaryTree tree){

 BinaryTree treeL ;

 BinaryTree treeR ;

[image: image8.wmf]1

1

0

2

1

2

2

1

-

-

=

-

=

å

n

n

k

k

 if (!tree.isEmpty()){

 System.out.print("\nT:");

 printTree(tree);

 treeL = tree.getLeft();

 System.out.print("LT:");

 printTree(treeL);

 treeR = tree.getRight();

 System.out.print("RT:");

 printTree(treeR);

 TreeSubtrees(treeL);

 TreeSubtrees(treeR);

 }

 }

}

Q4. [10 points]

Write a properly validated method with the following signature:

public static void childrenOf(int [] heap, int index)

The first parameter of the method is a binary heap represented as an array. The method should display the children, if any, of a node at position index. Note that a node at index may have one child, two children or no child at all. Your method should print an appropriate message if the node at index is a leaf. Assume that the array heap is indexed starting from zero. Test code for the method is shown below.

	import ics202.*;

class Major2Q4{

 public static void main(String [] args){

 int [] heap = {32,28,15,19,13,10,9,12,5,6}; // put valid heap.

 showChildren(heap);

 }

 public static void showChildren(int [] heap){

 for(int i = 0; i<heap.length; i++)

 childrenOf(heap,i);

 }

 // your code should go here

}

Q5. [10 points: 5 + 5]

(a) [5 points: 2 + 3] Draw the intermediate and final B-tree when the keys 35 and then 5 are inserted, in this order, in the B-Tree of order 3 given below. [Note: The second insertion is to be done on the B-tree modified by the first insertion]

[image: image3.wmf]8

13

23

30

39

(b) [5 points: 2 + 3] Draw the intermediate and final B-tree when the key 98 and then 39 is deleted from the following B-tree of order 5: [Note: The second deletion is to be done on the B-tree modified by the first deletion]

[image: image4.wmf]23

32

42

45

53

56

64

66

75

77

81

84

91

95

98

39

49

69

80

88

60

Q6. [20 points: 10 + 10]

(a) [10 points] Insert the keys: 15, 5, 10, 7, 9, 20, 16, 19, and 17, in this order, into an initially empty AVL tree. Whenever a rotation is needed, write the kind of rotation you make and the key that causes the rotation in the following table. Just write SL (for Single Left rotation), SR (for Single Right rotation), DLR (for Double Left-Right rotation) and DRL (for Double Right-Left rotation) as appropriate in each stage.

	Key that (when inserted) causes a rotation
	
	
	
	
	

	Type of rotation
	
	
	
	
	

(b) [10 points] Write a recursive method public boolean isAVL() of BinarySearchTree class that tests whether the invoking tree is AVL or not. You are allowed to use other methods of the BinaryTree and BinarySearch tree classes.
Q7. [15 points] The following table shows the characters appearing in a file x along with their frequencies:

	Character:
	B
	F
	I
	M
	S

	Frequency:
	8
	3
	4
	6
	2

	Codeword:
	
	
	
	
	

a) [6 points] Draw a Huffman Code tree to encode the file x [following the ICS202 procedure. Show all steps.
b) [2 points] Write the Huffman codeword of each character in the above table.
	Character
	B
	F
	I
	M
	S

	Frequency
	8
	3
	4
	6
	2

	Codeword
	
	
	
	
	

c) [1 points] Encode the string IBMF
d) [2 points] Decode the bit-stream 010101011010011 if possible.
e) [4 points] Calculate the difference in the number of bits between the uncompressed file and the compressed file.

 Note:
· Don’t include the bits required to send the Huffman-code tree in your computations.
· Show the details of your computations.

	Character
	A
	E
	H
	L
	R
	Total

	Frequency
	8
	3
	4
	6
	2
	

	Codeword
	
	
	
	
	
	

	bits
	
	
	
	
	
	

ICS 202 – Data Structures
Quick Reference Sheet

	public interface Iterator {

boolean hasNext();

Object next() throws NoSuchElementException;

}

public interface Visitor {

void visit (Object object);

boolean isDone();

}

public interface Container {

int getCount();

boolean isEmpty();

boolean isFull();

void purge();

void accept (Visitor visitor);

Iterator iterator();

}

public interface SearchableContainer extends Container {

boolean isMember (Comparable object);

void insert (Comparable object);

void withdraw (Comparable obj);

Comparable find (Comparable object);

}

public class Association implements Comparable

 public Association(Comparable key, Object val)

public Association(Comparable key)

public Comparable getKey()

public Object getValue()

 public void setKey(Comparable key)

public void setValue(Object value)

 public int compareTo(Object obj)
 public boolean equals(Object obj)

public String toString()

}
	public class MyLinkedList {

public void purge()

public Element getHead()

public Element getTail()

public Element find(Object obj)

public boolean isEmpty()

public Object getFirst()

public Object getLast()

public void prepend(Object obj)

public void append(Object obj)

public void assign(MyLinkedList list)

public void extract(Object obj)

 public void extractFirst()

 public void extractLast()

public String toString()

 public Iterator iterator()

public final class Element {

public Object getData()

public Element getNext()

public void insertAfter(Object obj)

public void insertBefore(Object obj)

public void extract()

}

}

public interface Stack extends Container {

 Object getTop();

 void push(Object obj);

 Object pop();

}

public interface Queue extends Container {

 Object getHead();

 void enqueue(Object obj);

 Object dequeue();

}

	public class BinaryTree extends AbstractContainer implements Comparable{ public BinaryTree(Object obj, BinaryTree left, BinaryTree right)

 public BinaryTree()

 public BinaryTree(Object obj)

 public void purge()

 public boolean isLeaf()

 public boolean isEmpty()

 public Object getKey()

 public BinaryTree getLeft()

 public BinaryTree getRight()

 public void attachKey(Object obj)

 public Object detachKey()

 public void preorderTraversal(Visitor v)
 public void inorderTraversal(Visitor v)
 public void postorderTraversal(Visitor v)
 public void breadthFirstTraversal(Visitor visitor)
 public void accept(Visitor visitor)
 public boolean isMember(Object obj)
 public int getHeight()
}

public class BinarySearchTree extends BinaryTree {

 private BinarySearchTree getLeftBST()

 private BinarySearchTree getRightBST()

 public boolean isMember(Comparable c)

 public Comparable find(Comparable c)

 public Comparable findMin()

 public Comparable findMax()

 public void attachKey(Object obj)

 public void insert(Comparable comparable)

 public void withdraw(Comparable comparable)

}

	public class AVLTree extends BinarySearchTree {

 public AVLTree()

 public int getHeight()

 public void insert(Comparable comparable)

 public void attachKey(Object obj)

 public Object detachKey()

}

// implemented by MinHeap

public interface PriorityQueue extends Container{

 public abstract void enqueue(Comparable c);

 public abstract Comparable findMin();

 public abstract Comparable dequeueMin();

}

Output:

� EMBED Equation.3 ���

_1271952906.bin

_1271959613.bin

_1205036516.unknown

_1190803397.unknown

