
EVSec: An Approach to Extract and Visualize Security Scenarios
from System Logs

Jameleddine Hassine
jhassine@kfupm.edu.sa

Information and Computer Science Department, KFUPM
Interdisciplinary Research Center for Intelligent Secure Systems, KFUPM

Dhahran, KSA

ABSTRACT
Logs, a.k.a. execution traces, provide a glimpse into the functional-
ities of running systems that have poor, incomplete, or outdated
documentation. Logs contain a rich amount of information that can
be used to facilitate troubleshooting/debugging, track events, detect
security breaches, maintain regulatory requirements, and profile
user behavior and workload. Driven by the growing complexity
of today’s software platforms, reverse engineering of high-level
models from system logs has gained momentum in recent years. In
this paper, we introduce EVSec, an approach to extract and visualize
security scenarios from system logs. The collected logs are first
merged, filtered, labeled, and segmented into execution phases. The
resulting phases are then visualized using the ITU-T standard, Use
Case Maps (UCM) notation, extended with security annotations.
We show the applicability of our proposed EVSec approach using
two real-world security features, namely, Cisco IOS Login block
and Cisco Unicast Reverse Path Forwarding (uRPF).

CCS CONCEPTS
• Security andprivacy→ Software reverse engineering; •Human-
centered computing → Information visualization.

KEYWORDS
Logs, extraction, filtering, visualization, security scenarios, Use
Case Maps (UCM), Cisco security features
ACM Reference Format:
Jameleddine Hassine. 2022. EVSec: An Approach to Extract and Visualize
Security Scenarios from System Logs. In The International Conference on
Evaluation and Assessment in Software Engineering 2022 (EASE 2022), June
13–15, 2022, Gothenburg, Sweden. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3530019.3531338

1 INTRODUCTION
Security threats are causing considerable financial losses for govern-
ments, organizations, and individuals. According to the 2020 IBM
data security breach report [11], that surveyed 524 organizations
from 17 industries and located in 17 countries/regions, the average

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EASE 2022, June 13–15, 2022, Gothenburg, Sweden
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9613-4/22/06. . . $15.00
https://doi.org/10.1145/3530019.3531338

time required to identify a security breach is 207 days. Security
features have been introduced to help protect systems against ma-
licious attacks. Security features, generally implement a logging
system that enables an organization to record important events and
to detect security incidents. Typically, a system log is a sequence of
temporal events captured during a particular execution of a system.
Each log entry can contain user activities, events triggered during
execution, and software execution paths. Implementing proper log
management and monitoring will ensure a timely detection of an
incident or a security breach.

Dynamic analysis aims to analyze system behavior at run time [1].
It does not require the availability of source code and make use of
system logs instead. Dynamic analysis, nevertheless, suffers from
the size explosion problem [17]. Many log abstraction techniques
have been proposed to address this issue [14], which allow for the
grouping of execution points that share certain attributes, resulting
in a more abstract representation.

The widespread interest in dynamic analysis of software quality
attributes provides the major motivation of this research.We, in par-
ticular, focus on extracting and visualizing security scenarios from
system logs implementing security features. This paper provides
the following contributions:

• It introduces the EVSec approach to recover and visualize
security scenarios from native system logs. EVSec is intended
to be used primarily by analysts who want to monitor the
triggering of security features, without having to look into
the distributed and cumbersome logs. Collected logs are
merged, filtered, and segmented into clusters, called “execu-
tion phases”, describing the executed security scenario. The
segmented log is visualized as a hierarchy of UCM (Use Case
Maps [12]) maps, extended with security annotations [9]
and implemented within the jUCMNav [13] tool. Use Case
Maps allow for the visual integration of multiple scenarios
from many architectural components into one single map.
Furthermore, the use of UCM stub/plugin concept to hide
the details of execution phases enhances the readability of
the produced UCM and provides a scalable solution for the
visualization problem.

• It demonstrates the applicability of the EVSec approach by ap-
plying it to two real-world network security features, namely,
Cisco IOS Login block and Cisco Unicast Reverse Path For-
warding (uRPF).

The remainder of this paper is organized as follows. Related
work is presented in Sect. 2, followed by the necessary research
background in Sect. 3. Section 4 describes the details of the pro-
posed EVSec approach. The experimental evaluation of EVSec is

446

https://orcid.org/0000-0001-8170-9860
https://doi.org/10.1145/3530019.3531338
https://doi.org/10.1145/3530019.3531338
https://doi.org/10.1145/3530019.3531338

EASE 2022, June 13–15, 2022, Gothenburg, Sweden Jameleddine Hassine

presented in Sect. 5. Section 6 discusses the threats to validity of
our proposed approach. Finally, conclusions are drawn in Sect. 7.

2 RELATEDWORK
Log security analysis has recently received much attention due to
its importance in identifying and potentially stopping intruders
attacks. Many strategies to analyze security logs have been pro-
posed in the literature [6, 15, 16, 18], including machine learning,
anomaly detection, text analysis, data mining, event correlation,
statistical analysis, etc. These techniques can be discussed from log
abstraction, log analysis, and log visualization perspectives. Given
the limited space, we will focus on the visualization aspects in de-
scribing security from log data, in order to alleviate the overhead
that analysts face when dealing with high volume of logs.

In [16], visualizations for security analysis were categorized into
hierarchical and non-hierarchical. Zhang et al. [18] presented a
survey of security visual analytics, where the authors identified
five visualization classes, namely, text-based, parallel, hierarchical,
three-dimensional (3D), and other designs. Haggerty and Hughes-
Roberts [6] proposed an approach for the visualization of log files
to aid security post-incident analysis. Two interactive visualization
schema were introduced: (1) a network graph, showing events or
IP addresses as network nodes and lines to represent relationships
between them, (2) a tag cloud, created from the log text, to produce
a narrative view of qualitative data (according to the frequency
of occurrence, which will reduce noise and highlight important
aspects).

In this paper, we propose to use the Use Case Maps (UCM) [12]
notation to visualize security system logs. UCMs have been suc-
cessfully used to visualize availability requirements from execution
traces [8]. The most closely related work to ours is by Hassine et
al. [10], who introduced a dynamic analysis framework to recover
high availability (HA) scenarios from system execution traces. The
authors [10] opted for the UCM language [12] in order to visualize
the retrieved HA scenarios. In this paper, we follow a similar ap-
proach in extracting and visualizing security scenarios from system
logs.

3 RESEARCH BACKGROUND
In an attempt to make this paper self-contained, we include some of
the core background information relevant to this research. We start
by providing a brief description of the security tactics, introduced
by Bass et al. [2], then we present the Use Case Maps (UCM) [12]
notation and its security annotations [9].

3.1 Security tactics
Bass et al. [2] introduced a comprehensive classification of security
tactics based on whether they handle attacks detection, resistance,
reaction or recovery. Four classes have been introduced and re-
fined into a number of tactics: (1) Detecting attacks (e.g., intrusions,
service denial, compromised integrity, and man-in-the-middle), (2)
reacting to attacks (e.g., revoke access, lock computer and inform
actors), (3) recovering from attacks (e.g., trace and identify the at-
tacker and restore the service using availability tactics, such as

redundancy) are aimed at dealing with successful attacks, (4) resist-
ing to attacks (e.g., Limit access, Limit exposure, etc.), aiming to
protect a system’s confidentiality and integrity.

3.2 The Use Case Maps (UCM) Notation
The Use Case Maps (UCM), part of the ITU-T User Requirements
Notation (URN) [12] standard, provides a visual and abstract de-
scription of scenarios in terms of causal relationships between
responsibilities (, i.e., steps of a scenario) along paths (a map-like)
allocated to a set of architectural components, represented as). A
UCM normal path starts with one or many start points () and ends
with one or many end points (). UCM scenarios can be integrated
sequentially, as alternatives (with OR-forks and OR-joins),
or concurrently (with AND-forks and AND-joins). When
maps become large to be represented as one single UCM, their de-
tails can be hidden in sub-diagrams, called plug-in maps, contained
in stubs (). A plug-in map is bound (i.e., connected) to its parent
map by binding the in-paths of the stub with the start points of the
plug-in map and by binding the out-paths of the stub to end points
of the plug-in map.

UCM allows for the definition of exception paths that start with
a failure start point (F) and has a guard condition that can be
initialized as part of a scenario definition (i.e., scenario triggering
condition) or can be modified as part of a responsibility expression.
The URN standard [12] supports theMetadatamechanism allowing
the profiling of the notation to a particular domain. URN Metadata
describes name-value pairs (i.e., a name (string) and a value (string))
that can be used to tag any URN specification or its model elements,
hence providing an extensible semantics to URN. Metadata feature
is supported by jUCMNav [13], the most comprehensive URN tool
available to date. For a complete description of the Use Case Maps
language, interested readers are referred to the ITU-T standard [12].

3.3 UCM Security annotations
Security tactics [2] have been used as a basis for extending the UCM
language [12] with security annotations [9]. Security requirements
are modeled at the responsibility and at the scenario path levels.
At the Responsibility level, the following two metadata attributes
may be attached to a responsibility: (1) SecCategory denoting
the tactic category, if any, that the responsibility is implementing,
and (2) SecTactic denoting the deployed security tactic. A detailed
definition of these attributes and their possible values is described in
the UCM security metamodel, introduced in [9]. The assumption of
having a responsibility realizing one single tactic has been relaxed in
this research, to allow a responsibility to implement many tactics.
At the scenario path level a hierarchical structure of cascading
failure scenario paths can be used to model different categories of
security tactics (i.e., detection, resistance, reaction, recovery).

Figure 1(a) illustrates an example of a UCM security scenario,
where the successful detection of an attack (modeled at the normal
scenario path using responsibility “R1” that implements the Detect-
Intrusion tactic) triggers a failure scenario path, by setting the failure
guard R1-AttackDetected to true. Consequently, the system may be
able to resist the ongoing attack using responsibility “R3” in Fig. 1(b)
(part of the plugin map enclosed in the “R1-ResistReactRecover”
static stub of Fig. 1(a)) that implements the LimitAccess tactic. In

447

EVSec: An Approach to Extract and Visualize Security Scenarios from System Logs EASE 2022, June 13–15, 2022, Gothenburg, Sweden

(a) UCM Security scenario root map

R3

(b) R1-ResistReactRecover plugin

R4

(c) R3-ReactRecover plugin

R5

(d) R4-Recover plugin

Figure 1: UCM Modeling of attack detection, resistance, re-
action, and recovery

the case of an unsuccessful resistance, a system may be able to
react to the attack using responsibility “R4” in Fig. 1(c) (part of the
plugin map enclosed in the “R3-ReactRecover” static stub in Fig. 1(b))
that implements the RevokeAccess tactic). Finally, the system may

be compromised (e.g., lost data, etc.). In such a case, the system
should be able to recover from the attack using responsibility “R5” in
Fig. 1(d) (part of the plugin map enclosed in the “R4-Recover” static
stub in Fig. 1(c)) that implements the Restore tactic, which is refined
using the availability tactics. For a description of the UCM-based
availability tactics, interested readers are referred to [7].

It is worth noting that upon a system might not implement the
four categories of tactics, which will reduce the number of levels in
the presented cascading stub hierarchy.

4 EVSEC: EXTRACTION AND
VISUALIZATION OF SECURITY SCENARIOS

In this section, we describe our proposed approach to extract and
visualize security scenarios. The approach is composed of four main
phases, as shown in Fig. 2: (1) Log merging, (2) Log filtering, (3) Log
tagging and segmenting, and (4) Security scenario visualization.

LOG MERGING

LOG FILTERING

System logs Dictionary of keywords

Timestamp upper bound Timestamp lower bound

SECURITY SCENARIO VISUALIZATION

LOG TAGGING AND SEGMENTING

UCM SECURITY SCENARIO

Filtering keywords

Figure 2: Security requirements recovery approach

4.1 Log merging
The first step consists of merging all system logs from all compo-
nents relevant to the conducted analysis. Although, the content
and format of logs can vary from one manufacturer to another
and even among systems from the same manufacturer, log entries
share many common attributes such as timestamps, the process
ID generating the event/error, operation/event prefix, severity of
the event, and a brief description of the event/error. In our context,
the log merging is performed according to the events’ timestamps.
All log entries from all components are ordered chronologically.
Furthermore, since the log size is huge, the analyst may specify a
log window, i.e., lower and upper bound timestamps. The output of
this step is a consolidated log that preserves all log entries as well
as their originating components.

4.2 Log filtering
Since not all the captured data is useful for our security analysis
task, the second step consists of filtering the merged system logs,
through applying customization criteria to include or exclude log

448

EASE 2022, June 13–15, 2022, Gothenburg, Sweden Jameleddine Hassine

entries based on features/protocols names, types of specific systems
or services (e.g., IP address), administrator operator actions (e.g.,
add/remove configurations, shut/unshut network interfaces, etc.),
events to monitor (e.g., session timeout, network interfaces state
changes, neighbors up/down, etc.). A list of filtering keywords may
be supplied as input to this step. The output of this step is a merged
and reduced log.

4.3 Log tagging and segmenting
Once the log is filtered, we proceed with tagging individual log en-
tries as “User” (i.e., entries relative to user actions), “Sec” (i.e., entries
describing security events/actions, such as login block, denial of
service), and “Network” (i.e., entries describing non-security system
events; these are general network events). The tagging is performed
according to a dictionary of user-defined keywords. Given the vari-
ety of network features/events, an entry that cannot be tagged as
“User” or “Sec” is considered as part of “Network” category.

The labeled log entries are then parsed sequentially and grouped
into “execution phases”. An execution phase is composed of a se-
quence of log entries tagged with the same label, e.g., “User”, “Sec”,
or “Network”. A new execution phase is created when we come by a
log entry with a different tag. The output of this step is a segmented
and tagged log.

4.4 Security scenario visualization
The fourth step consists of mapping the “execution phases” into Use
Case Maps (UCM) models with security annotations. Each log entry
is mapped to a single UCM responsibility. To increase the readability
and the scalability of the resulting UCM, an execution phase with
more than three responsibilities is presented using a static stub,
that encloses a plugin map. “User” or “Network” execution phases
should be placed in the normal path, while “Sec” execution phases
should be placed in an exception path (i.e., a scenario path starting
with a failure start point F) attached to the normal path using a
UCM Or-Join.

Phase 1 (User/Network) Phase 3 (User/Network)

Phase 2 (Sec)

StartSec

Figure 3: Generic Security Requirements Visualization

A generic UCM security scenario is shown in Fig. 3. By enabling
the triggering condition within the final responsibility before the
Or-Join (e.g., “Cond := true”), control is transferred from the normal
path to the exception path. Despite the fact that this triggering
condition is not part of the execution phase, it is required in order
to maintain phase causality and ensure that the final model adheres
to UCM dynamic traversal semantics. The assignment of a specific
security tactic category/type to a responsibility is performed based
on the existing dictionary of keywords.

It is worth noting that the execution phases/responsibilities may
be part of different UCM components (not shown in Fig. 3).

5 EXPERIMENTAL EVALUATION
In this section, we apply our proposed approach to two Cisco IOS
security features: (1) Cisco IOS Login Block feature, and (2) Cisco
Unicast Reverse Path Forwarding (uRPF) feature.

5.1 Mapping Cisco IOS log entries to jUCMNav
metadata attributes

Cisco IOS execution logmessages [3] can contain up to 80 characters
and have the following format:
timestamp: %facility-severity-MNEMONIC:description

where the timestamp is followed by facility denoting the system
or the device with logging enabled, e.g., PARSER (parser), SEC (IP
Security). Severity, between 0 and 7, represents the severity of the
message. MNEMONIC uniquely describes the message and descrip-
tion contains detailed information about the logged event.

The produced Cisco IOS log from both case studies is mapped to
jUCMNav as follows: Each log entry is mapped to one responsibility
(i.e., responsibility name, description, and metadata attributes). All
responsibility fields follow a one-to-onemapping schema, except for
the responsibility’s Name, which is limited to the first N characters
(N may be supplied as a parameter) of the description. An excerpt
of the description can be used in order to improve the readability of
the UCM. However, sometimes descriptions are difficult to shorten
and still maintain accuracy and readability. For this reason, the full
description of the log entry is stored in the Description field. Table 1
summarizes the mapping.

Table 1: Mapping of Cisco IOS log fields to jUCMNav respon-
sibility metadata

jUCMNav responsibility metadata attribute Cisco IOS
log entry
field

Timestamp metadata attribute timestamp
Facility metadata attribute facility
Severity metadata attribute severity
Mnemonic metadata attribute MNEMONIC
Description description
Name (firstN characters or an excerpt of the description) description

5.2 Experimental setup
We have used GNS3 (Graphical Network Simulator) [5] as our sim-
ulation tool. GNS3 is a graphical, open source software that allows
for the emulation of complex networks in a virtual environment.

Figure 4 illustrates our testbed topology. In our setup, we use four
Cisco c7200 routers (Hacker, R2, R3, and Target) running Cisco IOS
15.2(4)S6 software release. OSPF (Open Shortest Path First) routing
protocol is provisioned on routers Target (on interfaces pos1/0 and
pos3/0), R2 (on interfaces ethernet4/0 and pos1/0), R3 (on interfaces
ethernet4/1 and pos3/0), and Hacker (on interface ethernet4/1 only).
Hence, the loopback address of Hacker (i.e., 1.1.1.1/32) is not ad-
vertised on interface ethernet4/0 since OSPF is disabled on that
interface. Instead, a default route is configured on Hacker in order
to route traffic through ethernet4/0 in case of OSPF failure.

It is worth noting that we don’t have access to the router Hacker
since it denotes the malicious actor.

449

EVSec: An Approach to Extract and Visualize Security Scenarios from System Logs EASE 2022, June 13–15, 2022, Gothenburg, Sweden

Figure 4: Experimental testbed

5.3 Case study 1: Cisco IOS Login Block
The management of a router, at either the user or executive level, is
most frequently performed using Telnet or SSH (secure shell) from
a remote host. If the connection address of a router is discovered
and is reachable, two types of attacks can be organized against it:

• A malicious user may attempt to interfere with the nor-
mal operations of the router by flooding it with connection
requests, referred to as Denial-of-Service (DoS) attack. The
router may become too busy trying to process the repeated
login connection attempts to properly handle normal rout-
ing services or may not be able to provide the normal login
service to legitimate system administrators.

• Unlike a typical DoS attack, a malicious user may attempt
a dictionary attack in order to gain administrative access
to the router. A dictionary attack is an automated process
to try to login by attempting thousands, or even millions,
of username/password combinations. The profile for such
attempts is typically the same as for DoS attempts; multiple
login-attempts in a short period of time.

The Cisco IOS Login Block feature, also called Login Enhance-
ments, allows users to enhance the security of a router by configur-
ing options to automatically block repeated failed login attempts by
refusing further connection requests (login blocking). Furthermore,
it can slow down “dictionary attacks” by enforcing a “quiet period”,
to protect the router from DoS attacks. Legitimate connection at-
tempts can still be permitted during a quiet period by configuring
an Access Control List (ACL) with the addresses that you know to
be associated with system administrators.

Security feature configuration: We have configured Login
Block feature on router Target to enter a 100 second quiet period if
more than 5 login failures occur in 100 seconds or less. All login
requests are denied during the quiet period. A login delay of 2
seconds is applied between two login attempts. All successful/failed
logins are logged. The used Login Block configuration is as follows:
login block-for 100 attempts 5 within 100

login delay 2
login on-failure log
login on-success log

Attack scenario: In our attack scenario, we attempt to telnet
into router Target from router Hacker. The authentication of the
first five login attempts failed because of invalid user/password,
causing the router to enter the quiet mode. Once the block period
expires, we issue another login attempt from router R3 using valid
administrator credentials.

Log merging, filtering, and segmenting: Console logs col-
lected from routers R2, R3, and Target are merged then filtered.
Only the log from router Target is relevant for our attack scenario,
as no activity were observed on routers R2 and R3. Fig. 5 illustrates
the filtered log. Following the guidelines introduced in Sect. 4, the
filtered log has been segmented into three phases. The first phase
described the feature configuration entered by the user. The sec-
ond phase, labeled as “Sec” denotes all security related log entries.
Finally, Phase3 shows the user admin logout from the router.

UCM Scenario visualization: Figure 6(a) illustrates the result-
ing UCM of the log presented in Fig. 5. Each log entry is mapped
to a responsibility and stored using jUCMNav metadata according
to the schema introduced in Sec. 5.1. Since phases 1 and 3 have
more than three responsibilities each, their corresponding UCM
maps, i.e., Fig. 6(b) and Fig. 6(c), have been refactored into two
static stubs “userConsoleLoggedCommand” and “LoginBlock”. The
Boolean condition C1 has been added to the failure point to ensure
the transfer of control from the stub “userConsoleLoggedCommand”
to the security scenario path.

The first five responsibilities of the “LoginBlock” stub plugin
(Fig. 6(c)) corresponding to the first five login failures, implement
the IdentifyActors, AuthenticateActors, and AuthorizeActors tactics.
Responsibility “QuiteModeOn” implements the LockComputer tactic.

5.4 Case study 2: Cisco Unicast Reverse Path
Forwarding (uRPF)

Unicast Reverse Path Forwarding (uRPF) [4] is used to limit mali-
cious traffic on an enterprise network by verifying the reachability
of the source address in packets being forwarded; hence limiting
the appearance of spoofed addresses on a network. If the source
IP address of a packet is not valid, the packet is discarded. There
are two uRPF modes: (1) Strict mode: Checks whether the source
address of the received packet exists in the routing table and that
the source address is reachable by a path through the input inter-
face (the interface on which the packet enters the router), and (2)
Loose mode: Checks whether the source address of the received
packet exists in the routing table and that a valid path through any
interface.

Security feature configuration: We have configured strict
uRPF on interface POS1/0 on router Target. In order to avoid silent
drops of packets, a common practice is to configure an ACL (Access
Control List) to capture traffic denial. The used uRPF configuration
is as follows:
interface POS1/0
ip address 172.17.0.2 255.255.255.0
ip verify unicast source reachable-via rx 100
ip access-list extended 100

450

EASE 2022, June 13–15, 2022, Gothenburg, Sweden Jameleddine Hassine

Component Merged and filtered log
Execution

Phase
Execution

Label

Target

*Jun 8 16:43:07.015: %PARSER-5-CFGLOG_LOGGEDCMD: User:console logged command:login block-for 100 attempts 5 within 100
*Jun 8 16:43:07.019: %PARSER-5-CFGLOG_LOGGEDCMD: User:console logged command:login delay 2
*Jun 8 16:43:07.019: %PARSER-5-CFGLOG_LOGGEDCMD: User:console logged command:login on-failure log
*Jun 8 16:43:07.895: %PARSER-5-CFGLOG_LOGGEDCMD: User:console logged command:login on-success log

1 User

Target

*Jun 8 16:43:51.327: %SEC_LOGIN-4-LOGIN_FAILED: Login failed [user: root] [Source: UNKNOWN] [localport: 23] [Reason: Login Authentication Failed]
*Jun 8 16:44:02.319: %SEC_LOGIN-4-LOGIN_FAILED: Login failed [user: root] [Source: UNKNOWN] [localport: 23] [Reason: Login Authentication Failed]
*Jun 8 16:44:12.803: %SEC_LOGIN-4-LOGIN_FAILED: Login failed [user: cisco] [Source: UNKNOWN] [localport: 23] [Reason: Login Authentication Failed]
*Jun 8 16:44:33.223: %SEC_LOGIN-4-LOGIN_FAILED: Login failed [user: root] [Source: UNKNOWN] [localport: 23] [Reason: Login Authentication Failed]
*Jun 8 16:44:44.471: %SEC_LOGIN-4-LOGIN_FAILED: Login failed [user: admin] [Source: UNKNOWN] [localport: 23] [Reason: Login Authentication Failed]
*Jun 8 16:44:44.475: %SEC_LOGIN-1-QUIET_MODE_ON: Still timeleft for watching failures is 2 secs, [user: admin] [Source: UNKNOWN] [localport: 23]
[Reason: Login Authentication Failed] [ACL: sl_def_acl]
*Jun 8 16:46:24.471: %SEC_LOGIN-5-QUIET_MODE_OFF: Quiet Mode is OFF, because block period timed out
*Jun 8 16:46:40.551: %SEC_LOGIN-5-LOGIN_SUCCESS: Login Success [user: admin] [Source: UNKNOWN] [localport: 23]

2 Sec

Target *Jun 8 16:48:13.827: %SYS-6-LOGOUT: User admin has exited tty session 2(10.1.0.1) 3 User

Figure 5: Log relative to the login block feature

(a) Login Block scenario rootmap Map

(b) UserConsoleLoggedCommand stub plugin

(c) LoginBlock stub plugin

Figure 6: Login Block log visualization

10 deny ip any any log

Attack scenario: In our attack scenario, we start an extended
ping from router Hacker towards router Target using the source IP
address of the Hacker (i.e., 1.1.1.1). The ping packets travel through
the interface e4/1 on Hacker, using the OSPF adjacencies, to reach
router Target on interface POS3/0 (note that POS3/0 is not pro-
tected). Next, we shut down the interface POS3/0 on Target forcing
the ping traffic to take the e4/0 path on router Hacker (since OSPF
adjacency with R3 is down). The ICMP Echo Request packets reach
router Target on interface POS1/0, configured with uRPF. Since
the router Hacker IP address 1.1.1.1 is not reachable through this
interface, these packets will be denied. Once the interface POS3/0 is
unshut, ping traffic will flow again through POS3/0 on router Target.

Log merging, filtering, and segmenting: Console logs col-
lected from routers R2, R3, and Target are merged then filtered.

Similar to the Login Block feature, only the log from router Target
is relevant for our attack scenario, as no activity were observed
on routers R2 and R3. The console log collected and filtered from
router Target is shown in Fig. 7. Next, the filtered log has been
segmented into five phases. The first two user actions are grouped
as phase 1. The network events caused by the user configuration
are grouped as phase 2. The log entry showing the denial of ICMP
packets represents phase 3, which is labeled as “Sec”.

UCM Scenario visualization: Figure 8 illustrates the resulting
UCM of the segmented log of Fig. 7. Responsibility “List 100 de-
nied icmp 1.1.1.1→ 4.4.4.4” implements both “DetectServiceDenial”
and “LimitAccess” tactics.

6 THREATS TO VALIDITY
EVSec and the two case studies are subject to limitations and threats
to validity, that we categorize here according to three types of
threats: internal, external, and construct.

In terms of internal validity, there is a risk related to how we
describe the security scenario trigger. In our approach, the security
exception path is triggered by the last responsibility before the
or-join. This choice is made to preserve the dynamic semantics of
the produced UCM. However, the trigger might be another respon-
sibility occuring before the or-Join. As a result, additional semantic
rules are required to obtain correct correlations and to filter out
superfluous events. Another possible risk may be related to the
filtering and tagging of the log entries. Indeed, in some cases it is
difficult to figure out what to search for in a log (using keywords to
distinguish between security and normal path operations), as there
is no well-defined mapping between log messages and observed
behavior.

In terms of external validity, the applicability of our approach
was demonstrated using two real-world security features. The pro-
duced scenarios covers six security tactics only, namely, Identify-
Actors, AuthenticateActors, AuthorizeActors, LockComputer, Detect-
ServiceDenial, and LimitAccess. Additional case studies that target
the remaining tactics are needed to generalize the applicability
of EVSec approach. Furthermore, the used security features are part
of routers running Cisco IOS software. The generalization to other
suppliers’ security features has to be explored.

As for the construct validity, scalability may hinder the readabil-
ity of the produced UCM. As the log size increases, the number

451

EVSec: An Approach to Extract and Visualize Security Scenarios from System Logs EASE 2022, June 13–15, 2022, Gothenburg, Sweden

Component Merged and filtered log
Execution

Phase
Execution

Label

Target

*Jun 10 08:43:40.015: %PARSER-5-CFGLOG_LOGGEDCMD: User:tty1 logged command:interface POS3/0
*Jun 10 08:43:41.939: %PARSER-5-CFGLOG_LOGGEDCMD: User:tty1 logged command:shutdown
*Jun 10 08:43:40.015: %PARSER-5-CFGLOG_LOGGEDCMD: User:tty1 logged command:interface POS3/0
*Jun 10 08:43:41.939: %PARSER-5-CFGLOG_LOGGEDCMD: User:tty1 logged command:shutdown

1 User

Target
*Jun 10 08:43:41.955: %OSPF-5-ADJCHG: Process 1, Nbr 3.3.3.3 on POS3/0 from FULL to DOWN, Neighbor Down: Interface down or detached
*Jun 10 08:43:43.927: %LINK-5-CHANGED: Interface POS3/0, changed state to administratively down
*Jun 10 08:43:44.927: %LINEPROTO-5-UPDOWN: Line protocol on Interface POS3/0, changed state to down

2 Network

Target *Jun 10 08:44:57.935: %SEC-6-IPACCESSLOGDP: list 100 denied icmp 1.1.1.1 -> 4.4.4.4 (0/0), 20 packets 3 Sec

Target *Jun 10 08:45:05.687: %PARSER-5-CFGLOG_LOGGEDCMD: User:tty1 logged command:no shutdown 4 User

Target
*Jun 10 08:45:07.675: %LINK-3-UPDOWN: Interface POS3/0, changed state to up
*Jun 10 08:45:08.683: %LINEPROTO-5-UPDOWN: Line protocol on Interface POS3/0, changed state to up
*Jun 10 08:45:13.135: %OSPF-5-ADJCHG: Process 1, Nbr 3.3.3.3 on POS3/0 from LOADING to FULL, Loading Done

5 Network

Figure 7: Log relative to the uRPF feature

Figure 8: uRPF scenario log visualization

of phases increases. Although the stub/plugin mechanism offers
an effective encapsulation technique, models may quickly get clut-
tered with overlapping paths. This problem can be alleviated by
narrowing the timestamp log window.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we have introduced EVSec approach in order to extract
and visualize security scenarios from logs collected from systems
running security features. Logs are first merged, filtered (based on
a user defined set of filtering keywords), tagged and segmented
(based on a user-defined dictionary) into execution phases, then
visualized as UCM security scenarios. The applicability of EVSec
has been shown by applying it to two real-world security features,
namely, Cisco IOS Login block and Cisco Unicast Reverse Path
Forwarding (uRPF).

As future work, we plan to validate empirically (through expert
surveys) our resulting UCM models with respect to their under-
standability and usefulness. In addition, we intend to examine the
design of semantic rules in order to better correlate the various
execution phases. This would allow for more precise UCM-based
security models.

REFERENCES
[1] Thoms Ball. 1999. The Concept of Dynamic Analysis. SIGSOFT Softw. Eng. Notes

24, 6 (Oct. 1999), 216–234. https://doi.org/10.1145/318774.318944
[2] Len Bass, Paul Clements, and Rick Kazman. 2012. Software Architecture in Practice

(3rd ed.). Addison-Wesley Professional.
[3] Cisco Systems. 2004. Internetworking Technologies Handbook. Cisco Press. http:

//books.google.com.sa/books?id=3Dn9KlIVM_EC
[4] Cisco Systems. 2011. Unicast Reverse Path Forwarding Concepts and Configura-

tion. https://www.ciscopress.com/articles/article.asp?p=1725270 Last accessed,
Feb 2022.

[5] GNS3 Technologies Inc. 2021. Graphical Network Simulator, GNS3. http:
//www.gns3.com/ Last accessed, December 2021.

[6] John Haggerty and Thomas Hughes-Roberts. 2014. Visualization of System Log
Files for Post-incident Analysis and Response. In Human Aspects of Information
Security, Privacy, and Trust (LNCS, Vol. 8533), Theo Tryfonas and Ioannis G.
Askoxylakis (Eds.). Springer, 23–32. https://doi.org/10.1007/978-3-319-07620-1_3

[7] Jameleddine Hassine. 2015. Describing and assessing availability requirements in
the early stages of system development. Softw. Syst. Model. 14, 4 (2015), 1455–1479.
https://doi.org/10.1007/s10270-013-0382-0

[8] Jameleddine Hassine and Abdelwahab Hamou-Lhadj. 2014. Toward a UCM-Based
Approach for Recovering System Availability Requirements from Execution
Traces. In System Analysis and Modeling: Models and Reusability - 8th International
Conference, SAM 2014, Valencia, Spain, September 29-30, 2014. Proceedings (Lecture
Notes in Computer Science, Vol. 8769). Springer, 48–63. https://doi.org/10.1007/978-
3-319-11743-0_4

[9] Jameleddine Hassine and Abdelwahab Hamou-Lhadj. 2015. Describing Early
Security Requirements Using Use Case Maps. In 17th International SDL Forum,
Berlin, Germany, October 12-14, 2015, Proceedings. Springer, 202–217. https:
//doi.org/10.1007/978-3-319-24912-4_15

[10] Jameleddine Hassine, Abdelwahab Hamou-Lhadj, and Luay Alawneh. 2018. A
framework for the recovery and visualization of system availability scenarios
from execution traces. Inf. Softw. Technol. 96 (2018), 78–93. https://doi.org/10.
1016/j.infsof.2017.11.007

[11] IBM Security. 2020. Cost of a Data Breach Report 2020. https:
//www.ibm.com/security/digital-assets/cost-data-breach-report/1Cost%
20of%20a%20Data%20Breach%20Report%202020.pdf Last accessed, Dec 2021.

[12] ITU-T. 2018. Recommendation Z.151 (10/18), User Requirements Notation (URN)
Language Definition, Geneva, Switzerland. http://www.itu.int/rec/T-REC-
Z.151/en

[13] jUCMNav v7.0.0. 2016. jUCMNav Project (tool, documentation, and meta-model).
http://softwareengineering.ca/jucmnav

[14] Steven P. Reiss. 2006. Visualizing Program Execution Using User Abstractions.
In Proceedings of the 2006 ACM Symposium on Software Visualization (Brighton,
United Kingdom) (SoftVis ’06). ACM, New York, NY, USA, 125–134. https:
//doi.org/10.1145/1148493.1148512

[15] Jan Svacina, Jackson Raffety, Connor Woodahl, Brooklynn Stone, Tomás Cerný,
Miroslav Bures, Dongwan Shin, Karel Frajták, and Pavel Tisnovsky. 2020. On
Vulnerability and Security Log analysis: A Systematic Literature Review on
Recent Trends. In RACS ’20: International Conference on Research in Adaptive
and Convergent Systems, Gwangju, Korea, October 13-16, 2020, Tomás Cerný and
Juw Won Park (Eds.). ACM, 175–180. https://doi.org/10.1145/3400286.3418261

[16] Sheldon Teelink and Robert F. Erbacher. 2006. Improving the Computer Forensic
Analysis Process Through Visualization. Commun. ACM 49, 2 (Feb. 2006), 71–75.
https://doi.org/10.1145/1113034.1113073

[17] Andy Zaidman. 2006. Scalability Solutions for Program Comprehension Through
Dynamic Analysis. In Proceedings of the Conference on Software Maintenance
and Reengineering (CSMR ’06). IEEE Computer Society, Washington, DC, USA,
327–330. http://dl.acm.org/citation.cfm?id=1116163.1116422

[18] Yanping Zhang, Yang Xiao, Min Chen, Jingyuan Zhang, and Hongmei Deng. 2012.
A survey of security visualization for computer network logs. Secur. Commun.
Networks 5, 4 (2012), 404–421. https://doi.org/10.1002/sec.324

452

https://doi.org/10.1145/318774.318944
http://books.google.com.sa/books?id=3Dn9KlIVM_EC
http://books.google.com.sa/books?id=3Dn9KlIVM_EC
https://www.ciscopress.com/articles/article.asp?p=1725270
http://www.gns3.com/
http://www.gns3.com/
https://doi.org/10.1007/978-3-319-07620-1_3
https://doi.org/10.1007/s10270-013-0382-0
https://doi.org/10.1007/978-3-319-11743-0_4
https://doi.org/10.1007/978-3-319-11743-0_4
https://doi.org/10.1007/978-3-319-24912-4_15
https://doi.org/10.1007/978-3-319-24912-4_15
https://doi.org/10.1016/j.infsof.2017.11.007
https://doi.org/10.1016/j.infsof.2017.11.007
https://www.ibm.com/security/digital-assets/cost-data-breach-report/1Cost%20of%20a%20Data%20Breach%20Report%202020.pdf
https://www.ibm.com/security/digital-assets/cost-data-breach-report/1Cost%20of%20a%20Data%20Breach%20Report%202020.pdf
https://www.ibm.com/security/digital-assets/cost-data-breach-report/1Cost%20of%20a%20Data%20Breach%20Report%202020.pdf
http://www.itu.int/rec/T-REC-Z.151/en
http://www.itu.int/rec/T-REC-Z.151/en
http://softwareengineering.ca/jucmnav
https://doi.org/10.1145/1148493.1148512
https://doi.org/10.1145/1148493.1148512
https://doi.org/10.1145/3400286.3418261
https://doi.org/10.1145/1113034.1113073
http://dl.acm.org/citation.cfm?id=1116163.1116422
https://doi.org/10.1002/sec.324

	Abstract
	1 Introduction
	2 Related work
	3 Research background
	3.1 Security tactics
	3.2 The Use Case Maps (UCM) Notation
	3.3 UCM Security annotations

	4 EVSec: Extraction and Visualization of Security Scenarios
	4.1 Log merging
	4.2 Log filtering
	4.3 Log tagging and segmenting
	4.4 Security scenario visualization

	5 Experimental evaluation
	5.1 Mapping Cisco IOS log entries to jUCMNav metadata attributes
	5.2 Experimental setup
	5.3 Case study 1: Cisco IOS Login Block
	5.4 Case study 2: Cisco Unicast Reverse Path Forwarding (uRPF)

	6 Threats to validity
	7 Conclusions and future work
	References

