
Vol.:(0123456789)1 3

Requirements Engineering
https://doi.org/10.1007/s00766-021-00362-4

ORIGINAL ARTICLE

A use case driven approach to game modeling

Aghyad Albaghajati1 · Jameleddine Hassine1

Received: 20 July 2020 / Accepted: 17 August 2021
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
With the increase in market needs, game development teams are facing a high demand of creating new games every year.
Although several methodologies and tools were introduced to support the game development life cycle, there is still a lack
of evidence that these techniques improve game requirements understandability among development teams. The use of
models in requirements engineering is considered a promising approach to support requirements elicitation, negotiation,
validation, and management. In the context of game development, game designers argue that models are hard to learn and
would restrict their creativity. In this paper, we introduce a novel use case-based game modeling approach that extends the
standard UML use case diagram. The proposed technique allows for better representation of game-related requirements and
promotes a common understanding of game requirements among game development teams. Our approach is implemented
in a tool, called game use case modeling, and its applicability is demonstrated using four well-known games, Super Mario
Bros, Tetris, Just Dance, and The Walking Dead. Moreover, in order to assess the perceived understandability, learnability,
and usefulness of the proposed approach, we have conducted a survey involving 29 participants from the game develop-
ment community. Results indicate a very satisfactory agreement regarding the added value of the proposed approach and a
willingness of adoption by the game development community.

Keywords Requirement engineering · UML use case diagram · Game development · Game requirements · Game use case
modeling

1 Introduction

According to a recent study by gamesindustry.biz [1], the
total revenue raised in the global game market of games
(published on computers, consoles, mobile phones, and the
web) in 2018 was about 134.9 billion US dollars. Moreover,
the game market is foreseen to grow tremendously in the
next few years to reach a market value of 175.9 billion US
dollars in 2025 [2]. Despite this continuous growth in sales
and revenues, the game development process is known to be
complex for many reasons [3]. One of the main reasons of
such complexity is due to the fact that game creation involves
several teams (supplying different game components) from

different backgrounds, making the communication between
teams difficult and unproductive [4–6]. In fact, game devel-
opment differs from enterprise software development in two
aspects. First, an enterprise software development process
starts with the elicitation of stakeholders’ goals and needs,
whereas most of game development projects start with a
story or a game concept established by the game develop-
ment team. Second, game development targets a mass mar-
ket of customers having, generally, different backgrounds
and interests [7].

According to Reyno and Cubel [8], many attempts have
been made to introduce software development methodolo-
gies in game development. For example, the adoption of the
waterfall development model in game development pushed
development teams to scale up their efforts to produce
extensive natural language documentation [9]. However,
maintaining such large specifications is a difficult and error
prone activity, which may cause potential communication
problems between development teams; hence leading to low
productivity [9].

 * Jameleddine Hassine
 jhassine@kfupm.edu.sa

 Aghyad Albaghajati
 g201703510@kfupm.edu.sa

1 Department of Information and Computer Science, King
Fahd University of Petroleum and Minerals, Dhahran 31261,
Kingdom of Saudi Arabia

http://orcid.org/0000-0001-8170-9860
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-021-00362-4&domain=pdf

 Requirements Engineering

1 3

Agile methodologies help cope with many of these
risks by promoting the communication and interaction
between team members [10]. In addition, agile method-
ologies enhance change management during game devel-
opment [11] by emphasizing the implementation of the
core mechanics of the game play1 as fast as possible [13].
However, although the iterative nature of an agile process
leads to shorter game development cycles and more frequent
releases, it may shift the focus of development teams from
the conceptual abstraction to programming details [14].
Consequently, development teams may lose insight and
not see the game’s “global picture.” Moreover, according
to a survey by McKenzie et al. [15], although many stu-
dios claimed that they are applying agile methodology in
their gaming projects, they are in reality not following the
key agile practices as intended. Godoy and Barbosa [16]
proposed a game development methodology, called Game-
Scrum, that is based on Scrum, an agile methodology that
utilizes short iterations, called sprints. Game-Scrum [16] has
three main stages, namely pre-production, production, and
post-production [17]. The goal of the pre-production stage is
to create and establish the game concepts and requirements
related to the game’s story, mechanics, and design. Moreo-
ver, game prototypes are created during this stage. The pro-
duction stage focuses on creating and validating game assets
such as visuals, animations, and software components. The
post-production stage manages the advertisement, feedback,
maintenance, and updates of the game after distribution
[17]. The applicability of Game-Scrum was shown using a
game for teaching software engineering. Although Game-
Scrum seems promising, Godoy and Barbosa [16] stated that
more studies and applications following this methodology
are required and that their methodology is still not mature
enough.

Moreover, a study by Folmer [18] has presented the use of
component-based development methodology in game devel-
opment in order to enhance the reusability of system’s func-
tionalities. However, the study has shown many limitations,
such as the high amount of time and effort required to under-
stand and integrate the developed components. Thus, there
is no tangible guarantee that this methodology will speed
up the development or enhance the reuse of functionalities.

Model-based development (MBD) [19] is a development
methodology that relies on the use of models as primary
development artifacts [7, 20]. Applying model-based devel-
opment methodology to game development helps enhance
the level of abstraction within the development life cycle
which allows the teams to cope with the increasing complex-
ity of game development process. Moreover, it improves the

teams’ productivity by conceptualizing game specifications
before the implementation phase [8]. Furthermore, applying
MBD techniques to game development would enhance the
overall flexibility and efficiency of the development process
and allows for a better fluidity during the game construction
[21]. Thus, it would help enhance the communication and
resolve the lack of documentation, considered as two of the
top 10 most occurring problems in a game development pro-
ject [22]. However, some game designers are often reluctant
to adopt models in their work. They assert that these mod-
els are not suitable for designing games and would restrict
creativity [21, 23].

Requirements engineering (RE) is widely considered as
a critical activity in game development life cycle [4, 5, 22,
24, 25]. Callele et al. [4] have emphasized the importance
of requirements engineering activities in supporting the
creative process of game development. Later, in a survey by
Petrillo et al. [22], the authors stated that the unrealistic esti-
mation of scope is one of the main problems faced in game
development process. This issue is mainly caused by a lack
of extensive requirements analysis [22]. Software require-
ments engineering process consists of several tasks, such as
requirements elicitation, modeling, analysis, and validation.
Requirements models, expressed in various modeling nota-
tions, play a central role in the requirements elicitation phase
[25]. Different requirements models are used to describe
different aspects of the system, e.g., contextual, behavioral,
non-functional, data management, etc. [25].

Recognizing the need for game-centric requirements
engineering approach, we make the following contributions:

1. We introduce a novel game-oriented use case modeling
technique, as an extension of the UML use case diagram
[26]. The goal of this extension is to provide a simple,
general, and practical game-related requirements mod-
eling technique that may be used for modeling different
game genres [27]. Furthermore, the proposed technique
aims to streamline use case-based modeling for game
development communities, which makes such tech-
niques more accessible and usable.

2. As a proof of concept, we have developed a tool, called
game use case modeling (GUCM), that implements our
proposed use case-based game modeling technique.

3. We demonstrate the applicability of our approach and
tool by applying it to four well-known commercial
games, namely Super Mario Bros [28], Tetris [29], Just
Dance [30], and The Walking Dead [31].

4. We have evaluated the perceived learnability, under-
standability, and usefulness of our proposed approach,
by conducting a survey involving 29 participants from
the game development community. Results indicate the
added value of the approach.1 Djaouti et al. [12] defined game play as a central element within a

video game defining its quality in the mind of the players.

Requirements Engineering

1 3

It is worth noting that the proposed use case-based technique
is mainly designed to be used during the game requirements
elicitation stage. However, it can be adapted and integrated
within a game based MBD process (using model transfor-
mations and code generation), a waterfall process, or even
within an agile modeling (AM) methodology [32, 33].
Indeed, in agile modeling (AM), requirements can be mod-
eled using use case diagrams for better understanding of
the system to be [33] and to aid communicate requirements
effectively [32].

The remainder of this paper is organized as follows. Sec-
tion 2 provides the necessary background of this research.
Related work is presented in Sect. 3. Section 4 describes
our proposed use case-based game modeling approach. Our
GUCM prototype tool is presented in Sect. 5. The applicabil-
ity of the proposed approach and tool is shown using four
illustrative examples in Sect. 6. The empirical validation of
our approach is presented and discussed in Sect. 7. Threats
to validity are discussed in Sect. 8. Finally, Sect. 9 concludes
and refers to future research directions.

2 Background

In this section, we first provide a brief introduction to UML
use case model [26] main components, and then we discuss
the roles of team members involved in game development.

2.1 UML use case diagrams (UCD)

The Unified Modeling Language (UML) [26] is a graphi-
cal modeling language used to specify and document the
artifacts of a software system [26]. UML provides a wide
variety of sublanguages, each of which provides different
description capabilities and conveys different information,
e.g., structural, behavioral, etc. One of the most commonly
used UML diagrams is the use case diagram (UCD) [34–36].
A use case diagram is a graphical depiction of a use case
model in UML [37]. It is used to capture functional system
requirements and is composed of four types of components:
(1) actor (represented graphically as a “stick man”) specifies
a role played by a user, an organization, or an external sys-
tem that interacts with the system, (2) use case (represented
graphically as an oval) specifies a unit of useful functionality
that the subject provides to its users [26], (3) subject (also
called system boundary, depicted as a rectangle) represents
the system under consideration [26]. Use cases are located
within the subject, and (4) relationship (represented graphi-
cally as a directed or undirected link) that can be of four
types: (1) association used between actors and use cases to
capture that an actor participates in the use case (2) include
used between use cases to extract common behavior of two
or more use cases or to reduce the complexity of a use case,

(3) extend used between use cases to specify an optional or
exceptional behavior that can be introduced according to
some predefined extension points/constraints, (4) generali-
zation is used between actors to specify that an actor (called
concrete actor) can inherit the role of another actor (called
abstract actor), and between use cases to state that a use case
is defined as a specialized form (i.e., concrete use case) of
an existing use case (abstract use case).

The graphical representation of a use case diagram may
be complemented by a structured textual specification. A
structured textual use case provides a detailed description
of the use case [38]. A use case template may include the
use case name, number, goal, description, primary actors,
secondary actors, offstage actors, special requirements, pre-
conditions, post-conditions, priority, frequency, main flow,
sub-flows, alternative flows, extension points, exceptions,
super use case, sub use case, due date, and open issues [38].

UML provides two techniques for extending its base
meta-model to support domain specific modeling: (1)
A UML profile is a predefined set of stereotypes, tagged
values, and constraints. A stereotype defines how an exist-
ing meta-class may be extended. A stereotype is specified
between double angle brackets, i.e., ≪stereotype≫ , (2)
adding new meta-classes along with metadata and meta-
associations. Such extensions can be implemented using the
Meta-Object Facility (MOF) [39], OMG meta-modeling and
metadata repository standard.

2.2 Game development teams

In order for a game project to succeed, game development
teams must work together in a very coordinated and con-
sistent process. Game development requires a very skilled
team that consists of many members where each member
has his own role and a specific task to accomplish. Effective
communication between game development team members
is considered as one of the most essential project success
factors [40].

There are four main roles that support the game develop-
ment process which can be described as follows:

• Game designer Game Designer is responsible for the
creation of game play, game rules, and game structure.
The game design team may participate in designing the
user experiences, user interfaces, game documentation,
narration, and content. Moreover, the creation of game
characters, their graphics, their roles, their voices, and
their visuals could be performed by the game designer.
The game design team may be organized around several
members, each working on a specific game design aspect
[41].

• Artist Game art plays an important role in game devel-
opment. A game art, created by an artist, includes creat-

 Requirements Engineering

1 3

ing game environments, game models, characters, game
visual effects, and game animations for both characters
and environmental objects, and for both two- and three-
dimensional games [41].

• Level designer Game levels are designed by a “level
designer” who is responsible for creating level chal-
lenges, difficulties, and stages in a game. A level designer
helps create the game play components and write game
stories that are related to the game’s mission and objec-
tives [41].

• Game programmer Game programmer creates the
mechanics of a game. He is generally involved in the
creation of game engine, databases, graphics, audio, and
any game development tools that support other team
members during the game production process [41].

In addition to these four main roles, there are other roles that
can help manage and produce high quality games, such as
the roles of managers, game producers, quality assurance,
and testing teams.

3 Related work

In this section, we survey related work from two perspec-
tives: (1) studies that use models during the various phases
of the game development life cycle and (2) studies related to
extending UML use cases diagrams (UCD) to serve specific
domains and contexts.

3.1 Use of models in game development

Tang et al. [42] presented a conceptual modeling framework
that utilizes UML class diagrams, in addition to the use of a
modified state transition diagrams to represent game compo-
nents, screens, and the flow of game interactions and events.
The authors [42] stated that their framework aims to define
a high-level abstraction of serious game applications and
would support the separation between low-level activities,
such as coding and game assets, from design tasks. However,
their approach presents technical details that require soft-
ware development background, making it less suitable for
non-software engineering teams, hence affecting the com-
munication between game development software and non-
software teams. Our proposed technique is mainly designed
to be used during the requirements elicitation stage and uses
use case diagrams to enhance game requirements under-
standability among stakeholders. Other design aspects, such
as entity attributes and actions (usually described using class
diagrams), may be addressed in later development stages.

Game technology model (GTM), introduced in [43],
is a game modeling technique for serious games (i.e.,
games that are based on role-playing and simulation game

genres). GTM is based on a data-driven architecture and is
independent of any hardware or operating platform. The
authors [43] presented a web-based modeling tool called
SeGMEnt that was developed to allow non-technical
domain experts to document serious games. The modeling
tool supports various design viewpoints, namely object,
simulation, structure, presentation, player, and environ-
ment. One of the limitations of their approach is its lack
of details about game objects and their associated events,
their roles, and their artistic representations, like anima-
tions and visuals. Indeed, the presented modeling approach
focuses on the data flow between game states, which may
limit the understanding of the game context and may hin-
der the communication between team members, especially
between developers and artists. Moreover, GTM fails to
include information about preconditions or post-conditions
of states and events.

Sauer and Engels [36] introduced a modeling language
for multimedia applications called Object-oriented Mod-
eling of MultiMedia Applications (OMMMA). OMMMA is
based on extending various UML diagrams (i.e., objects,
sequence, and state charts diagrams) to model temporal
(i.e., time point or time interval relations) requirements of
multimedia applications. The authors [36] claimed that their
technique supports the transition from traditional application
models to multimedia application models without the need
to learn new modeling paradigms or incurring the hassles
of language shifts. However, the proposed extensions (to
several UML sublanguages) might be daunting and complex
especially for team members who do not have a software
engineering background [44]. In our approach, we focus
only on describing game requirements at the use case level.
Aspects like temporal dependencies are left to the design
stage, where designers are free to choose any method they
think suitable.

In another study, Hernandez and Ortega [45] introduced a
graphical domain-specific language for modeling 2D video
games, called Eberos GML2D. The authors [45] claim that
the use of their language would reduce considerably the
complexity of game development life cycle. The proposed
language consists of several constructs, representing various
game components. These constructs are used to describe: (1)
the sprites containing graphical elements and animations,
(2) the entities representing player or non-player characters,
(3) the logic of the game entities, (4) the controllers that
allow the modeling of game managers, and (5) the detection
of collisions. Despite the variety of constructs exhibited by
the modeling approach, no textual description was consid-
ered, which may limit the ability of team members to add
extra details. In our proposed approach, we extend the UC
diagram with game-related stereotypes and we consider both
graphical and textual representations, allowing for more flex-
ibility of game requirements descriptions.

Requirements Engineering

1 3

Herzig et al. [46] introduced a formal language for mod-
eling gamification concepts, called Gamification Modeling
Language (GaML). GaML is designed to help decouple
specification and design phases from the implementation
phase, allowing for the validation of game mechanics and
gamification concepts. GaML focuses mainly on depicting
the flow of events in a game. Moreover, it supports object
constraint language (OCL) to add constraints and conditions
to the events. The authors [46] claim that the models pro-
duced using GaML can be read by both technical and non-
technical development team members. However, GaML does
not capture details about some basic game building blocks
like game objects, animations, or scenes. Furthermore,
GaML does not support the textual description of game
events, a feature that may be required to achieve a better
understandability. Our game UC-based approach provides a
textual representation of the modeled use cases and covers
all game-related aspects, e.g., load scene, play animation,
play audio, create objects, and functions.

Reyno and Cubel [47] proposed a game modeling
approach that is based on three main diagrams: (1) a struc-
tural diagram represented by a UML class diagram with
stereotypes to capture the structure of the modeled game,
(2) a behavioral diagram represented by a UML state dia-
gram that describes the behavior of the defined entities, and
(3) a control diagram represented by an object diagram that
maps actions to controls. The authors [47] stated that their
modeling approach helped in increasing the team produc-
tivity while reducing the development time. Our proposed
approach focuses on game requirements modeling using use
cases rather than the detailed game design using structural
and refined behavioral models. However, our approach may
be considered as a good fit to fill the requirements elicitation
gap in the work of Reyno and Cubel [47].

Pleuss and Hussmann [48] presented a model-driven
development approach which integrates software design,
user interfaces, and media into a single consistent mod-
eling language. The models serve as a contract between
the different teams working on the project. The modeling
language discussed in the study [48], called Multimedia
Modeling Language (MML), supports advanced multime-
dia integration modeling. Models created by this language
include: (1) task model that reflects the user tasks sup-
ported by the application, (2) structure model that rep-
resents domain classes of the application logic such as
media classes (video, audio, or animation) which act as
traditional UML class diagrams, (3) scene model which
shows the state of the application and its association with
the user interfaces which is modeled using UML state
chart diagram, (4) presentation model which specifies
each scene’s user interface and contains the relationships
between scenes, instances of domain classes from struc-
ture model and presentations, and (5) interaction model

which is represented by UML activity diagrams and shows
interactions of the user with the game scene; in addition, it
depicts relationships between presentations, scenes, tasks,
and instances of the domain classes. However, although
the authors [48] claimed that their modeling approach will
serve as contract between different teams, having multi-
ple graphical representations may cause understanding and
communication issues between the stakeholders. Moreo-
ver, most of the used models require software engineering
development background. We believe that our proposed
game use case diagram may be integrated within MML
[48]. However, this is out of the scope of this paper and
will be addressed in future work.

Lope et al. [49] proposed the use of UML diagrams to
model educational games. The authors [49] suggested that
class diagrams can be used to model game structure, state
diagrams to model scenes, acts, and scenarios, activity dia-
grams to model actions, and sequence diagrams to model
challenges and details of actions. However, focusing mainly
on actions and scenes might prevent the models from cap-
turing other game details, such as audio, animation, game
objects, and characters. On the other hand, the use of dif-
ferent types of models would increase the complexity of the
project, limiting the understandability and communication,
especially when a team includes members with limited back-
ground in UML modeling. Our proposed approach focuses
mainly on game-oriented use case modeling (describing
characters and events/functions), in addition to its ability to
capture details related to scenes, game objects, animation,
and audio.

Considering the surveyed studies, we can conclude that
there is a research gap with respect to the use of modeling
techniques to support game-related requirements under-
standability and establishing a common context of com-
munication within heterogeneous game development teams
(composed of technical and non-technical members). Indeed,
most of the surveyed studies focused on describing the flow
of events, game architectural design, and code generation
aspects and little attention was devoted to the creation of
models to facilitate the involvement of non-technical team
members in the game development life cycle. Moreover,
several studies were found to propose modeling approaches
that depend on different types of models, which might not
help improve requirements understandability between devel-
opment teams. Furthermore, most of the surveyed studies
targeted specific types of games such as serious and edu-
cational games, which limits the generality of the proposed
techniques. In order to fill this gap, we propose a general and
simple modeling technique based on UML use case diagram
that can be used to describe game requirements of differ-
ent game genres [27]. Furthermore, our proposed approach
would help establish a common understanding ground about
the game requirements among the development teams.

 Requirements Engineering

1 3

3.2 UML use case extensions

Several UML use case extensions have been proposed in
the literature in order to adopt use case modeling to differ-
ent situations and contexts [50–54]. Yu et al. [53] presented
a UML use case extension, called AspectRUCM, inspired
from the Aspect-Oriented Requirements Engineering. It has
been developed to support the needs of the industry when
dealing with specific crosscutting concerns. Their technique
[53] uses stereotypes in both actors and use cases to specify
context specific types. Moreover, their proposed approach
introduced new relationships, such as “trigger” which indi-
cates the interaction with a use case. Hog et al. [50] have
proposed a modeling solution for adaptive web services,
based on the UML use case diagram. The authors [50] have
used stereotypes to categorize and classify use cases. Fur-
thermore, various types of actors were introduced to repre-
sent entities interacting with the web service, where each
actor is identified by a name and specific icon, e.g., provider,
human consumer, application consumer, and composite
web service. Murali et al. [51] introduced a safety-oriented
requirements engineering modeling technique. The authors
[51] have illustrated several extensions such as safety spe-
cific use cases (e.g., accident scenarios) and safety-specific
relationships like “mitigate” and “disrupt.”

Al-Alshuhai and Siewe [52] have proposed an extension
to UML use case diagrams to model context-aware applica-
tions, called context-aware use case Diagram, where both
context and behavioral aspects have been addressed using
new graphical elements. Moreover, a new relationship,
called “utilize,” was introduced between a use case and a
context use case, a newly defined use cases type.

In Mai et al. [54], the authors have presented a use case
technique that extends UML use cases to model security
requirements. Misuse cases were defined in the study as a
sequence of events performed by a malicious actor to cause
harm. Misuse cases were drawn in gray to distinguish them
from normal use cases. The authors used the ≪security≫
stereotype for security use cases that describe counter-
measures against misuse cases. The textual description of
the use cases was extended with a template and restriction
rules that allow for precise description of the misuse case.
In addition, the misuse case post-condition field specifies
which assets are potentially impacted. Moreover, the authors
[54] extended the basic and alternative flows to create Basic
Threat Flow, Specific/Bounded/Global Alternative Flow
and Specific/Bounded/Global Alternative Threat Flow.
These extensions have brought two new use case relation-
ships, other than includes and extends, namely “mitigate”
and “threaten.” In addition to the use case extensions, actors
were also extended to describe malicious actors/external sys-
tems [54]. Malicious actors were labeled as “malicious.”
Their approach [54] is implemented in a tool that checks

the consistency between the specification and the misuse
case diagram.

Cooper and Longstreet [55] presented a modeling
approach for serious educational games using an extended
UML use case diagram. This approach is based on two com-
ponents, the use cases and a tabular specification. The use
case extension presented in the study can be distinguished
from regular ones using stereotypes, e.g., Game, Act, Scene,
Screen, and Challenge. The associations used between the
elements are “uses” and “includes.” The tabular specifica-
tion defines each stereotype used in the use cases, providing
more details about the game play. Their proposed approach
focuses on modeling scene-based educational games; hence,
its applicability cannot be generalized. Moreover, the intro-
duced stereotypes are limited to scene-based educational
games, where there are no details about animations, game
objects, or audio. In addition, the approach does not sup-
port ≪extends≫) relationships nor extension points. Fur-
thermore, there is no (subject/system boundary) present in
the resulted models.

4 A use case‑driven approach to game
modeling

In traditional UML use case diagrams, actors, use cases,
and the relationships between them are used to represent
the functionalities of a software system (as described in
Sect. 2.1). UML use case diagrams have been proven to be
very useful, in enterprise and traditional software develop-
ment processes [56], due to their abstract aspect, allowing
for a better understanding of system’s context and function-
alities among stakeholders, domain experts, and other pro-
fessionals with diverse backgrounds. However, in the game
development field, there is still a lack of support of use case
models, due to the fact that (1) not all game development
teams have a software engineering background, and (2) use
case diagrams do not capture precisely the game context and
its internal behaviors (in the language used by game devel-
opment teams), which might affect the communication and
understanding of the project.

In order to help cope with these issues in the game
development context, we propose a use case-based game
modeling approach that aims to provide a general use case
language that captures game context and behavior and that
can be applied to many game genres [27], e.g., Action, Fight-
ing, Adventure, etc. Moreover, the proposed technique is
designed to be used mainly during the game requirements
elicitation stage. However, given the iterative nature of game
development processes [40, 57], where game features are
built iteratively, leading to regular and frequent updates, the
game-oriented use case models may be updated during the
post-production phase. Furthermore, we aim to make the

Requirements Engineering

1 3

adoption of use case-based modeling within game develop-
ment communities, more accessible and more usable.

In what follows, we first present our proposed use case
meta-model extensions along with the corresponding textual
descriptions. Next, we present our game-related syntactic
rules that aim to produce well-formed use cases.

4.1 Extending UML use case meta‑model for game
requirements

Figure 1 illustrates the UML use case meta-model abstract
syntax augmented with our game-related extensions. The
standard UML use case meta-classes are shown in black,
while the four meta-classes in red boxes represent the newly
proposed meta-class extensions:

1. GameUseCase to represent the new game use cases.
2. GameUseCaseType that is an enumeration type enclos-

ing the following types Function, PlayAnimation,
PlayAudio, LoadScene, or CreateObject.

3. GameActor to allow for the description of different types
of actors.

4. GameActorType is an enumeration that can have one of
the following three values User, PlayerCharacter, and
NonPlayerCharacter.

In the following subsections, we describe in details our
proposed UC extensions.

4.1.1 Game actors

Actors in traditional UML use case diagrams are used to
model the roles played by entities (external to the system)
that interact (e.g., through data exchange) with the system.
In our proposed technique, we extend the notion of actors to
represent game characters, game objects that are controlled
by the player, and any other game entity that has a stand-
alone behavior. Each actor is identified by a name and a
graphical representation.

We consider the following three types of actors:

• User Used to represent users of the game, i.e., players.
We adopt the standard UML use case stick-man repre-
sentation to represent game users.

• PlayerCharacter Used to represent game characters and
game objects that are controlled by players. For exam-
ple, Mario in Super Mario Bros [28], Sonic in Sonic the
Hedgehog [58], Tetris Pieces game objects in Tetris game
[29], etc. The graphical representation of a PlayerCharac-
ter actor is stick-man and a joystick icon next to it, which
denotes a game object being controlled by the player.

• NonPlayerCharacter Used to represent characters con-
trolled by the game system, e.g., enemies, characters, or
any other game object that behaves and makes decisions
on its own. The graphical element of NonPlayerCharac-
ter actor is a stick-man and a computer icon next to it,
which denotes a non-player character.

Fig. 1 Metamodel of the game use case diagram—extended from UML 2.5.1 use case diagram [26]

 Requirements Engineering

1 3

Table 1 describes actor types, descriptions, and their graphi-
cal representation.

In addition to the graphical representation, we provide a
textual description of the game actor. This would allow for a
better understanding and documentation of the game actors
composing the model. The textual representation is imple-
mented in our prototype GUCM tool, described in Sect. 5.
An actor has the following attributes:

• Game actor name denotes the actor name.
• Game actor types denote the actor type, e.g., User,

PlayerCharacter, or NonPlayerCharacter, as described
in the metamodel of Fig. 1.

• Game actor description provides a brief description of
the actor.

• Game actor use cases lists all game use cases associated
with the game actor.

4.1.2 Game use cases

A use case in traditional UML use case diagrams is used to
represent a functionality or a behavior of the system. In our
proposed technique, we extend the notion of use cases to
represent a variety of game-related behavioral aspects, such
as loading a game scene (described using LoadScene use
case), playing an animation (described using PlayAnimation
use case), etc.

We propose five new game-related stereotypes to distin-
guish game use cases:

• Function Used to describe functions or behaviors that
are invoked by any type of the game use case’s actors.
An example of a function could be, start game, jump,
attack, win, die, or other functions that the actor can
perform depending on the game specification.

• LoadScene Used to describe the loading of scenes
within the game. These scenes could be game lev-

els, game main scene that contains the main menu, or
other levels and scenes part of the game. The Load-
Scene game use case assumes that the scene compo-
nents, e.g., graphics and environment components, have
been already defined. Furthermore, it emphasizes that
loading a specific scene/level is invoked after a cer-
tain behavior/event took place, or when a condition/
constraint is satisfied. For example, the loading of the
next level cannot take place unless the player wins the
current level.

• PlayAnimation Used to describe animations played by
game characters (either PlayerCharacter or NonPlayer-
Character). Animations are often played after certain
events or may be included within some functions and
behaviors. Moreover, in order to create the motion effect,
animations are defined as a successive drawing of sprites
or as changes of positioning of 2D/3D models of a game
object. For example, the jump animation is triggered
when a jump function is being executed.

• PlayAudio Used to describe audio playing. PlayAudio
may be as general as playing a background music or it
can be specific, i.e., a sound effect being played after a
certain behavior, such as a jump sound effect.

• CreateObject Used to describe the instantiation of objects
within the game. Objects may be enemies, projectiles,
particles, 3D objects, or any other game entity that can
be created. For example, gun bullets are created and fired
to a specific direction, following the triggering of a firing
function.

To distinguish game-related use cases from standard use
cases, we use the stereotype feature, i.e., ≪Function≫ , ≪
PlayAudio≫ , ≪PlayAnimation≫ , ≪LoadScene≫ , and ≪
CreateObject≫.

Table 2 shows the different types (described using special
graphical icons located on the top left of the use case oval)
of game use cases.

Table 1 Types and graphical representation of game-related actors

Actor type Description Graphical
representa-
tion

User Represents the users of the game, e.g., players, maintainers, developers, designers, artists, etc.

PlayerCharacter Represents game characters or game objects that are controlled by the players

NonPlayerCharacter Represents the characters or game objects controlled by the game system, e.g., enemies.

Requirements Engineering

1 3

In addition, the textual representation of the proposed
game use cases includes the following attributes:

• Game use case name denotes the game use case name.
• Game use case description provides a brief description

of the game use case.
• Game use case type denotes the game use case type.
• Game actors denote game actors associated with this

game use case.
• Priority This attribute was proposed by Cockburn [59],

which represents how critical a use case is to the system
and organization. In our proposed technique, we adopt a
numerical value to measure this item, that ranges from 1
to 5, 1 being not critical, 5 being very critical.

• Game use case sketch A brief artistic representation or
sketch, which describes the game use case visually.

• Preconditions denote preconditions that must be satisfied
to execute the game use case.

• Post-conditions denote post-conditions that must be satis-
fied after the execution of the game use case.

• Extension use cases The use cases that extend the current
game use case.

• Included use cases The use cases that the current use case
includes.

• Flow of events describes the events flow of the game use
case.

It is worth noting that preconditions and post-conditions can
be expressed either as logical expressions or as natural lan-
guage. We do not impose the use of a specific formalism,
such as OCL, to minimize the learning curve for non-soft-
ware engineering team members and to promote the adop-
tion of the proposed technique.

4.1.3 Subject

The subject represents the game under development. It is
depicted as a rectangle with its name in the corner ().
Actors of type “User” have to be located outside the sub-
ject boundary, while game use cases are located within the
subject. Furthermore, we adopt the approaches presented in
[60, 61] for representing software agents within UML 2.0
use case diagrams. Software agents, being part of the system
under consideration, are placed within the system boundary
[60, 61]. In our context, since actors PlayerCharacter and
NonPlayerCharacter are part of the game, we place them
inside the subject boundary.

4.1.4 Relationships

In our proposed technique, we do not propose any new
relationships between game-related use cases. However,
game-related use cases can still use standard UML use
cases relationships, i.e., includes and extends, as described
in Sect. 2.1. Extension points (represented as notes) are
used to show conditions/triggering events, when extending
use cases.

4.2 Game‑oriented use case well‑formedness rules

In order to ensure the validity and well-formedness of the
produced game-oriented use case models, we propose two
sets of rules, namely strict and soft rules.

4.2.1 Strict rules

Strict rules are enforced by our GUCM prototype tool to
make sure that the resulting model is valid. Breaking such
rules would invalidate the game use case model. We have
defined eleven rules:

• Strict rule 1 An actor should be linked to at least one use
case.

• Strict rule 2 A use case should be connected to at least
one actor or one use case.

• Strict rule 3 An actor/use case must have a name. The
name is used to identify the actor/use case; hence it
should be unique.

• Strict rule 4 A use case shall not be allowed to both
include and extend the same use case.

• Strict rule 5 A use case cannot include or extend itself.
• Strict rule 6 Only one single extension point element is

allowed per an extends relationship.
• Strict rule 7 An extension point can only be associated

with an extends relationship. It cannot be associated with
an “actor-use case” or “includes” relationships.

• Strict rule 8 An extension point shall not be shared
among different extends relationships.

• Strict rule 9 Game use cases should be placed within the
subject boundary.

• Strict rule 10 Actors of type “PlayerCharacter” and “non-
PlayerCharacter” should be placed within the subject
boundary.

• Strict rule 11 Actors of type “User” should be placed
outside the subject boundary.

Table 2 Types and graphical
representations of game-related
use cases

Function LoadScene PlayAnimation PlayAudio CreateObject

 Requirements Engineering

1 3

4.2.2 Soft rules

Soft rules are recommended guidelines that modelers are
encouraged to follow. They are designed mainly to avoid
inconsistencies related to the different types of model rela-
tionships, although breaking these rules does not invali-
date the produced models. Soft rules are classified into
two categories: actor—use case and use case—use case
relationships:

1. Actor—use case relationships
• Soft rule 1 A User actor can only be associated with

a non-game use case, such as, start game, load level,
save game, etc., since these use cases are not part of
the game play.

2. Use case—use case relationships

• Soft rule 2 Function, PlayAudio and CreateOb-
ject game-related use cases can include (i.e., ≪
includes≫) any type of game-related use cases
except LoadScene. Indeed, the behavior of loading
a scene is known to extend the flow of control of the
game, which is triggered by another game-related
behavior [62]. Thus, LoadScene shall not be included
in other game use cases.

• Soft rule 3 PlayAnimation and LoadScene game-
related use cases cannot include (i.e., ≪includes≫)
any type of game use cases. Indeed, game use cases
PlayAnimation and LoadScene represent standalone
behaviors and they are independent from other game
uses cases. However, they support extensions to
allow dynamic and flexible flow of control. On one
hand, playing an animation involves changing sprites
or objects’ transformations (i.e., position, scale, or
rotation) over time. However, this behavior can be
extended to add audio, create objects, execute a func-
tion, or load a scene. On the other hand, the behavior
corresponding to loading a scene is, in its basic form,
a loading of game levels. In order to not disturb the
loading, we shall not include other game use cases.
However, it can be extended with animation or audio
playing.

• SoftRule 4 LoadScene game use case can extend (i.e.,
≪extends≫) Function and PlayAnimation use cases
only. On one hand, Function use cases can trigger the
behavior of loading a scene, e.g., collecting a key, or
entering through a door which can trigger loading a
level. On the other hand, PlayAnimation game use
cases can be extended by LoadScene, where a scene
loading behavior gets triggered after certain anima-
tion is played. There are several types of animations
in games [63], and one of these types is cut-scene
animation, which is a cinematic sequence of anima-

tions. One such extension example is when a cut-
scene animation is played at the end of a level to
introduce the next one, which can be thought of as
extending an animation with LoadScene behavior.

• SoftRule 5 PlayAudio, CreateObject and LoadScene
game use cases can be extended (i.e., ≪extends≫)
by any type of game use cases except LoadScene.
Loading a scene cannot be triggered by another
LoadScene behavior, where there must be a Func-
tion use case that triggers the next LoadScene, or
perhaps a PlayAnimation that triggers the next
LoadScene. Moreover, LoadScene can be extended
by other game use cases such as Function, where
some levels might trigger the functionality of plac-
ing game objects in the level, or the functionality
of saving player’s progress while loading [64]. On
the other hand, PlayAudio cannot be extended by a
LoadScene game use case, because loading a scene
means changing the flow of the game, and playing an
audio does not necessarily support that action of flow
changing. Moreover, we shall not extend a Create-
Object use case with a LoadScene use case, because
this would impact the game play. Indeed, loading a
new scene while instantiating an object, may place
the created object in the wrong scene, which would
ruin the player’s overall experience. Thus, to prevent
such problems, one can only load scenes after certain
function or animation.

5 Game use case modeling (GUCM) tool

Game use case modeling (GUCM) is a web-based mod-
eling tool2 that was developed to meet the use case-driven
approach to game modeling and its objectives. The tool was
built using Unity engine [65] and C# language. Unity uses a
component-based approach to software development, where
components are classes that inherit from MonoBehaviour, a
Unity predefined base class. The GUCM tool is composed of
74 classes with a total of 9152 lines of code. Several of these
classes inherit from Unity’s MonoBehaviour class.

GUCM provides the following features:

1. Graphical creation of the game use case model GUCM
uses a click and place technique to populate the game
use case model with game actors, game use cases, exten-
sion points, and subjects (provided as part of a palette).
Figure 2 shows GUCM’s graphical elements creation
palette. These graphical elements can be connected
using unidirectional and bidirectional links. Figure 3

2 Publicly available via https:// mragh yad. github. io/ GUCM/.

https://mraghyad.github.io/GUCM/

Requirements Engineering

1 3

shows an excerpt of a game use case modeled using
GUCM tool, illustrating elements linkage and connec-
tion.

2. Elements of the textual description Each model can
be described textually. For example, Fig. 4 shows the
textual descriptions for Mario PlayerCharacter actor
(Fig. 4a) and Get Power Up Function Game Use Case
(Fig. 4b). The game use case’s textual description GUI
shows the extension use cases along with their associ-
ated extension points (see Fig. 4b). An extension point
is characterized by its name and its triggering condition.
Figure 5 illustrates the extension point textual descrip-
tion GUI showing the extension point name, its trig-

gering condition/event and source/destination game use
cases. In addition, game use case sketches can be added
and removed through the GUI interface of the use case
textual description.

3. Managing game use case sketches GUCM allows the
modeler to upload, update, and remove game use case
sketches (within the textual description of a game use
case). In addition, it supports zooming and scrolling
through the game use case sketch. Figure 6 shows a
sketch preview in GUCM of Walk Animation Game Use
Case.

4. Flexible connectors of elements The links between
model elements can be extended through line points

Fig. 2 GUCM tool’s graphical element creation palette

Fig. 3 Excerpt of a game use case model created using GUCM tool

 Requirements Engineering

1 3

(green dots in Fig. 3), allowing for a flexible and better
user experience. Line points can be moved by dragging
them along the model element. They can also be deleted.

5. Error notification system GUCM notifies the user when
a strict rule is being violated and prevents him from vio-
lating that rule by rejecting the user’s action. Figure 7
shows an example of an error message triggered when
the user tries to connect an actor to the same use case
twice. In addition, GUCM notifies the user about viola-

tions of soft rules and displays a textual warning. For
example, Fig. 8a shows the number of existing warn-
ings (displayed next to the notification button (on the
top right of the window)). Figure 8b depicts the warn-
ing textual descriptions and recommendations to resolve
these inconsistencies. These notifications are listed once
the user clicks the notification button.

6. Game use case model management GUCM allows users
to save () their models for later retrieval by loading

Fig. 4 Example of game actor/
use case textual descriptions
using GUCM tool

Fig. 5 Example of extension
point textual description using
GUCM tool

Requirements Engineering

1 3

the models from device (). Models are saved using
json representation (.json file) in any location the users
chooses using browse directory ability.

7. Exporting game use case models GUCM allows users to
export their models to .png file format using the screen-
shot button ().

6 Applying our proposed use case‑based
game modeling approach

In this section, we demonstrate the applicability of our
approach using four well-known games, Super Mario Bros
[28], Tetris [29], Just Dance [30], and The Walking Dead
[31]. We illustrate the usage of different types of actors and
game use cases. However, our proposed technique is not
limited to these four games and can be applied to many gen-
res of games. It is worth noting that the presented diagrams
are for illustration only and they do neither cover fully all
aspects nor all components of the Super Mario Bros, Tetris,
Just Dance, and The Walking Dead games.

6.1 Illustrative example 1: Super Mario Bros

Super Mario Bros is a 2D platform game (a.k.a. platformer)
having Mario as its main character. Mario, controlled by the
player, must jump and climb between suspended platforms
while avoiding obstacles. Its objective is to reach the end
of each level, survive the main antagonist Bowser’s forces
(killing the enemies), and save Princess Peach.

Figure 9 illustrates the game use case model of Mario
character in Super Mario Bros game. Mario is represented
as a PlayerCharacter actor (a joystick is shown next to the
actor stick). Mario’s functionalities/behaviors are expressed
using eight use cases of type ≪Function≫ , namely Jump,

Fig. 6 Example of game use case sketch preview using GUCM tool

Fig. 7 An example of an error message in GUCM tool

 Requirements Engineering

1 3

Walk, Run, Throw fire ball, Get power up, Go into pipe,
Win, and Collide with Goomba.

Each Function use case either includes or is extended
by other game use cases supplied by different devel-
opment teams, e.g., animation team. For example,
the “Jump” use case (of type ≪Function≫) is used to
describe how jumping, falling, and landing (the three
main states of a jump) occur. The jump should be coor-
dinated with jump animation described using use case
“Play jump animation” (of type ≪PlayAnimation≫).
This use case is included (using ≪includes≫ relation-
ship) within the “Jump” use case. Figure 10 shows the
textual descriptions of “Jump,” while Fig. 11 illustrates
the “Jump Animation” game use case of Mario character
as presented in Fig. 9. Furthermore, “change appearance”
(of type ≪Function≫) extends “Get power up” function.
It is executed when the event (expressed as an extension
point) “mario collides with flower” takes place.

One of the important concepts to understand when devel-
oping a game use case model is the ≪CreateObject≫ use
case type. To use this type, we assume that the definition
of the object to be created is already available. Thus, in the
model depicted in Fig. 9, we can see that fireball is rep-
resented by a NonPlayerCharacter and it has its own use
cases. In addition, the fireball actor has undirected link

with “Create fire ball” game use case (of type ≪CreateOb-
ject≫), which creates an instance of the fireball and which
is included by “Throw fire ball” function game use case that
is invoked by Mario PlayerCharacter.

Furthermore, Mario character triggers a use case of type
≪LoadScene≫ in the following four situations: (1) Mario
is winning the current level and moving to the next one,
i.e., “Load next level,” (2) Mario is going into a pipe which
loads a secret scene, “Load secret scene,” (3) Mario dies and
no more health score is left, causing the main menu scene
to load, i.e., “Load main scene,” and (4) Mario dies and
his health score is greater than the lower boundary which
reloads the current level, i.e., “Load current level.” Figure 12
shows the textual description of “Die” Function game use
case along with their corresponding use case extensions,
i.e., “Load current level” and “Load main scene.” Figure 13
shows the details of “has health” extension point.

Furthermore, Fig. 9 describes the use cases associated
with Goomba mushroom enemy character in Super Mario
Bros. Goomba character is represented as a “NonPlayer-
Character” actor and has two main ≪Function≫ game use
cases, namely “Walk goomba” and “Destroy goomba.” Each
one of them includes a ≪PlayAnimation≫ game use case.
In addition, the “Destroy goomba” Function game use case

Fig. 8 An example of a model violating three soft rules

Requirements Engineering

1 3

Fig. 9 Game Use Case Model of Super Mario Bros produced using GUCM tool

 Requirements Engineering

1 3

extends “Apply Damage” game use case which is triggered
if fireball collides with an enemy of type goomba.

Figure 9 illustrates an actor of type “User” along with two
≪Function≫ game use cases, i.e., “Start game” and “Quit

Fig. 10 Use case textual
description of Mario’s “Jump”
game use case

Fig. 11 Use Case textual
description of “Play Jump ani-
mation” game use case

Requirements Engineering

1 3

game.” The “Start game” use case is extended by a ≪Load-
Scene≫ game use case that loads the first level of the game.

The model represented in this example does not only
cover aspects of game’s functions, but it also captures game
play and game design aspects, where the model shows
PlayerCharacter’s abilities, rules of winning, rules of loos-
ing, rules of getting power ups, and rules of taking damage.
In addition, the model shows some perspectives related to
game’s secrets. Moreover, more details can be added to the
model by utilizing the game use case textual description
GUI.

6.2 Illustrative example 2: Tetris

Tetris [29] is an arcade puzzle game. The goal of the game
is to match tiles and create lines to achieve high scores
and win levels. Figure 14 shows a game use case model
representation of Tetris. A Tetris piece is modeled as a

“PlayerCharacter” actor, where a piece is a game object
controlled by the player.

The tetris piece can perform two use cases of type ≪
Function≫ : (1) Move (for moving the piece in the game
board, and (2) Rotate (to rotate the piece). The Place game
use case of type ≪Function≫ extends Move and places the
piece in the board. Place use case includes Stop control use
case of type ≪Function≫ and Play placement audio use
case of type ≪PlayAudio≫ . The game ends when the use
case Lose of type ≪Function≫ is executed, which is trig-
gered once the placed piece’s position exceeds the upper
board bar.

The player wins if the score is greater than or equal to the
level’s score. If the placed piece did not exceed the upper bar
and the state is not a wining state, then a new Tetris piece
is created with the Create next piece use case of type ≪
CreateObject≫ , which takes control from the lastly placed

Fig. 12 Use case textual
description of Mario’s “Die”
game use case

Fig. 13 Extension point textual
description “has health”

 Requirements Engineering

1 3

piece. Figure 15 depicts the textual description for Rotate
game use case.

6.3 Illustrative example 3: just dance

Just Dance [30] is a music, rhythm, and dance game, where
player’s follow dance moves based on a playing song, and
they compete based on scores given to the most matching
dancer. Figure 16 shows a conceptual game use case model
representation of Just Dance that represents the game play
aspects of the game. In this game, a “PlayerCharacter” actor
that represents the tracked player was modeled to be control-
ling the game by physically copying dance moves through
applying Copy dance move ≪Function≫ game use case.
The dance moves to be copied are provided by “NonPlayer-
Character” actor (Just dance system), which plays animation
of dance moves that extend playing the music. Moreover, it
evaluates the moves performed by the player through Detect
player’s dance move ≪Function≫ game use case that in-turn
includes Calculate dance move score ≪Function≫ game

use case. When the music stops, the “NonPlayerCharacter”
actor (Just dance system) evaluates and rates player’s over-
all dance moves through two ≪Function≫ game use cases,
Rate player’s performance and Calculate player’s score.

Game play aspects can be modeled using our game use
case modeling approach through combining different types
of game use cases as shown in Just Dance and Mario exam-
ples. In addition, the modeler can utilize extension points
to express game rules and can also use the game use case
textual description to elaborate more on the game play using
preconditions, post-conditions, and flow of events.

6.4 Illustrative example 4: the walking dead

The Walking Dead [31] is an episodic adventure interactive
drama game that has a flavor of role-playing (RPG), where
the player can take choices that could affect the flow of story
and events. The game consists of several scenes and a vari-
ety of characters. However, in this example, and similar to
the other illustrative examples, we have just modeled some

Fig. 14 Game use case model of Tetris game

Requirements Engineering

1 3

Fig. 15 Textual description of
Tetris Rotate Function use case

Fig. 16 Game use case model of Just Dance game

 Requirements Engineering

1 3

aspects of the game. In this example, we model players’
interactions, dialogues, and choice selection.

Figure 17 illustrates the interaction between a “Player-
Character” actor Lee and a “NonPlayerCharacter” actor
Kenny, where a dialogue and choices of actions/replies could
be taken by the player which might affect the flow of the
game. For example, when the player interacts with Kenny,
one of three choices can be taken by the player, either to Ask
if Kenny needs any help, Ask Kenny about his son, or Ask
Kenny about his plans ≪Function≫ game use cases.

It is worth noting that our modeling approach does not
model or represent menu items. However, it models the
functions behind the menu items; thus, in this example each
choice is modeled as a ≪Function≫ game use case. If the
modeler needs to add details related to how the dialogue and
choices appear in the game, a sketch of that game use case
can be added through its textual description.

As shown in Fig. 17, after a selection is made, a sequence
of game use cases take place. For example, if the player
chooses Ask if Kenny needs any help ≪Function≫ game use
case, a sequence of animations is played, and is followed by
another set of choices that lead to remembering the conver-
sation by the “NonPlayerCharacter” actor Kenny through
Learn about Lee’s choice ≪Function≫ game use case.

It is worth noting that some use cases are linked to more
than one use case, e.g., Play animation “I am Ok” game
use case is linked, through an include relationship, to Say “I
am Ok” and through an extend relationship to Learn about
Lee’s choice. Managing complexity is an inherent problem
in use case modeling. Modelers have to carefully decom-
pose complex behavior (using UC relationships) taking into
account all possible execution scenarios (e.g., covering all
possible values of the extension points’ conditions). In addi-
tion, a special care is needed in order to maintain an accept-
able level of granularity and minimize the impact of future
changes. Indeed, in presence of many interconnected use
cases, a change in one use case may require changes to the
linked use cases.

7 Empirical validation

In this section, we validate empirically our proposed use
case-based game modeling approach. In particular, we
aim to assess the perceived learnability, understandability,
and usefulness of our proposed modeling approach using
an online questionnaire-based survey [66]. We report our

Fig. 17 Game use case model of The Walking Dead game

Requirements Engineering

1 3

empirical validation using the templates and recommenda-
tions presented in Wohlin et al. [67].

7.1 Experiment goals

Our proposed use case-based modeling approach enrich the
standard UML use case diagram notation with many game-
related constructs, in order to support the requirements mod-
eling of games. The main goal of the conducted question-
naire-based survey is to evaluate the perceived learnability,
understandability, and usefulness of our proposed modeling
approach within the game development community.

The ISO 9126 [68] standard defines learnability and
understandability as two sub-characteristics of usability.
Learnability emphasizes that “the system should be easy
to learn by the class of users for whom it is intended” [69].
Understandability is defined as the capability of the software
product to enable the user to understand whether the soft-
ware is suitable, and how it can be used for particular tasks
and conditions of use [68]. Usefulness is defined as “the
degree to which a person believes that using a particular
system would enhance his or her job performance” [70].

7.2 Experimental design

Figure 18 illustrates the main steps of our experimental plan.

7.2.1 Subjects

Since our use case-based modeling approach focuses mainly
on enhancing requirements modeling for game development
project and supporting the communication between team
members, our survey aims to target participants from the
game development industry. Game development profession-
als tend to have a better and deeper understanding of the
development life cycle of video game projects, thus enabling
them to provide better insights and analysis of the proposed
approach.

Twitter is very popular within the gaming communities.
In 2019, more than 1.2 billion tweets on the Twitter platform
were related to video games [71]. The game development
community on Twitter is composed of a wide variety of
experienced game developers, artists, designers, etc., and is
known for its active social communication. Hence, we have
targeted participants from this active community to take part
in the evaluation of our proposed game-oriented use case
modeling approach. To ensure a good response rate, the first
author of this paper tweeted and utilized active community
hashtags on Twitter (#gamedev and #indiedev). In addition,
we have invited participants and developers from the com-
munity to share and retweet the survey with their friends.
The survey was available online for three weeks (from 8 to

27, April 2019), and we have succeeded to collect responses
from a total of 29 participants.

7.2.2 Material

The material, provided online using Google Forms, consists
of two parts (see Fig. 18):

1. Study intent and introduction to the game-oriented use
case notation This part starts with a paragraph that states
briefly the goal of the study, followed by a brief intro-
duction of the main constructs (i.e., actors, use cases,
relationships) of the game-oriented use case notation.
Both graphical (i.e., symbols of actors and use cases)
and textual (i.e., elements of the textual templates, e.g.,
description, priority, precondition, post-conditions, etc.)
constructs were presented. The introductory material is
very similar to the descriptions of game actors provided
in Sect. 4.1.1 and in Table 1, and of game use cases
provided in Sect. 4.1.2 and in Table 2. In addition, we
have provided the participants with the use case diagram
and the textual description of the Super Mario Bros [28]
example, as a concrete example of the application of our
approach. It is worth noting that the model given to the
participants is slightly different from the one presented
in Fig. 9 and that no additional descriptions of the Super
Mario UC model were provided to the participants, since
Super Mario Bros [28] is a well-known game within the
gaming community. Participants did not use our proto-
type tool.

2. Questionnaire-based survey By following the guidelines
provided by Kitchenham and Pfleeger [66], an online
survey was created using Google Forms. The survey is
composed 15 questions (summarized in Table 3), which
are divided into five categories as follows:

• Respondents’ characterization Five out of the 15
questions (from question CQ1 to CQ5) are used to
characterize the respondents in terms of (1) their
role in the game development life cycle, e.g., game
programmer, artist, game level designer, game
producer, etc. (CQ1), (2) their number of years of
experience (CQ2), (3) whether they have previ-
ous experience with models/diagrams in develop-
ing games (CQ3), (4) whether they have previous
experience with UML modeling (CQ4), and (5)
whether they have faced issues in communicating
game requirements to project teammates (CQ5).
CQ5 is measured using a 5 point Likert scale.

• Perceived understandability Three questions
(UndQ1, UndQ2, UndQ3) were devoted to assess
the perceived understandability of both the graphi-
cal game-oriented use case diagram and its textual

 Requirements Engineering

1 3

representation. These questions are closed-ended
and measured using a 5 point Likert scale.

• Perceived learnability One question (LQ1) is
devoted to assess the perceived learnability of the
technique. This question is closed-ended and meas-
ured using a 5-point Likert scale.

• Perceived usefulness Five questions (UQ1, UQ2,
UQ3, UQ4, UQ5) were formulated in order to cap-
ture how participants perceive usefulness of the
proposed technique. These questions are closed-
ended and measured using a 5 point Likert scale.

• Potential improvements Finally, we added an open-
ended question (IQ1) to collect potential improve-
ments of the proposed technique.

7.2.3 Variables

The independent variables for our experiment are: (1) the
familiarity of the respondent with diagrams/models in game
development, (2) the familiarity of the respondent with use
case modeling.

We assess the perceived learnability, understandability,
and usefulness by the means of the dependent variables

Table 3 Survey questions

Question
ID

Part 1: Respondents’ characterization

CQ1 Which role describes you the best? Note: the respondent was asked to choose from the following options: game programmer, artist,
game level designer, game play designer, game producer, other (to be specified by the respondent)

CQ2 How many years of experience do you have in the field of game development/design?
CQ3 Have you used diagrams/models in game development/design?
CQ4 Have you ever used UML use case modeling in game development/design?
CQ5 I have faced problems to communicate game requirements to teammates, e.g., misunderstanding, vagueness, conflict, etc. To what

extent do you agree with this statement?
Part 2: Perceived Understandability

UndQ1 The use case diagram is easy to understand. To what extent do you agree with this statement?
UndQ2 The graphical elements of the game use case diagram are self-descriptive. To what extent do you agree with this statement?
UndQ3 The game textual description helps improve the understandability of the game use case diagram. To what extent do you agree with

this statement?
Part 3: Perceived Learnability

LQ1 I believe that I can learn this technique quickly. To what extent do you agree with this statement?
Part 4: Perceived Usefulness

UQ1 The diagram would help the team to become more effective. To what extent do you agree with this statement?
UQ2 The game use case textual description is informative. To what extent do you agree with this statement?
UQ3 In your opinion, which team role(s) would benefit the most from this technique? Note: the respondent was asked to choose from

the following options: game programmer, artist, game level designer, game play designer, game producer, other (to be specified
by the respondent)

UQ4 The technique would improve the communication of game requirements between team members. To what extent do you agree with
this statement?

UQ5 The technique would help the team to become more productive. To what extent do you agree with this statement?
Part 5: Potential improvements

IQ1 Please provide your suggestions to improve the proposed technique?

Fig. 18 Experimental design

Requirements Engineering

1 3

representing the opinions of the respondents to the corre-
sponding questions.

7.2.4 Hypotheses

In addition to the analysis of the descriptive statistics of all
dependent variables, the experiment was planned with the
purpose of testing the following hypothesis:

1. Perceived understandability

• Perceived Understandability Hypothesis 1

• H0-perceived-understandability-1 (Null hypothe-
sis): There is no difference in the perceived under-
standability between participants having previous
experience with diagrams/models in game devel-
opment/design and participants who haven’t.

• H1-perceived-understandability-1 (Alternative
hypothesis): There is a significant difference in the
perceived understandability between participants
having previous experience with diagrams/models
in game development/design and participants who
haven’t.

• Independent variables: Boolean variable capturing
whether the participant has used diagrams/models
in game development (collected from responses to
question CQ3).

• Dependent variables Three variables: (1)
vUndQ1: measures the perceived understandabil-
ity of use case diagram (collected from responses
to question UndQ1), (2) vUndQ2: measures the
perception of the self-descriptiveness of the dia-
gram graphical elements (collected from responses
to question UndQ2), and (3) vUndQ3: measures
the perceived improvement brought by the textual
description (collected from responses to question
UndQ3).

• Perceived understandability Hypothesis 2

• H0-perceived-understandability-2 (Null hypoth-
esis) There is no difference in the perceived under-
standability between participants having previous
experience with UML use case modeling in game
development/design and participants who have
used diagrams other than UML use case diagrams.

• H1-perceived-understandability-2 (Alternative
hypothesis) There is a significant difference in the
perceived understandability between participants
having previous experience with UML use case
modeling in game development/design and par-

ticipants who have used diagrams other than UML
use case diagrams.

• Independent variables Boolean variable captur-
ing whether the participant has used UML use
cases models or used other types of diagrams. It
is retrieved from the intersection of responses to
questions CQ3 and CQ4.

• Dependent variables Three variables: (1)
vUndQ1: measures the perceived understandabil-
ity of use case diagram (collected from responses
to question UndQ1), (2) vUndQ2: measures the
perception of the self-descriptiveness of the dia-
gram graphical elements (collected from responses
to question UndQ2), and (3) vUndQ3: measures
the perceived improvement brought by the textual
description (collected from responses to question
UndQ3).

2. Perceived learnability

• Perceived learnability Hypothesis 1

• H0-perceived-learnability-1 (Null hypothesis)
There is no difference in the perceived learnabil-
ity between participants having previous experi-
ence with diagrams/models in game development/
design and participants who haven’t.

• H1-perceived-learnability-1 (Alternative hypoth-
esis) There is a significant difference in the per-
ceived learnability between participants having
previous experience with diagrams/models in
game development/design and participants who
haven’t.

• Independent variables Boolean variable capturing
whether the participant has used diagrams/models
in game development (collected from responses to
question CQ3).

• Dependent variables Variable vLQ1 used to meas-
ure the perceived learnability of the technique
(collected from responses to question LQ1).

• Perceived learnability Hypothesis 2

• H0-perceived-learnability-2 (Null hypothesis)
There is no difference in the perceived learn-
ability between participants having previous
experience with UML use case modeling in
game development/design and participants who
have used diagrams other than UML use case
diagrams.

• H1-perceived-learnability-2 (Alternative
hypothesis) There is a significant difference in
the perceived learnability between participants

 Requirements Engineering

1 3

having previous experience with UML use case
modeling in game development/design and par-
ticipants who have used diagrams other than
UML use case diagrams.

• Independent variables Boolean variable captur-
ing whether the participant has used UML use
cases models or used other types of diagrams. It
is retrieved from the intersection of responses to
questions CQ3 and CQ4.

• Dependent variables Variable vLQ1 used to meas-
ure the perceived learnability of the technique
(collected from responses to question LQ1).

3. Perceived usefulness

• Perceived usefulness Hypothesis 1

• H0-perceived-usefulness-1 (Null hypothesis)
There is no difference in the perceived useful-
ness between participants having previous expe-
rience with diagrams/models in game develop-
ment/design and participants who haven’t.

• H1-perceived-usefulness-1 (Alternative hypoth-
esis) There is a significant difference in the per-
ceived usefulness between participants having pre-
vious experience with diagrams/models in game
development/design and participants who haven’t.

• Independent variables Boolean variable captur-
ing whether the participant has used diagrams/
models in game development (collected from
responses to question CQ3).

• Dependent variables Four variables: (1) vUQ1:
measures the perceived usefulness of the use
case diagram in making the team more effec-
tive (collected from responses to question UQ1),
(2) vUQ2: measures the perceived usefulness of
the textual description in providing informative
content about the game use case (collected from
responses to question UQ2), (3) vUQ4: meas-
ures the perceived usefulness of the technique in
improving the communication of game require-
ments between team members (collected from
responses to question UQ4), and (4) vUQ5: meas-
ures the perceived usefulness of the technique in
helping the team to become more productive (col-
lected from responses to question UQ5).

• Perceived usefulness Hypothesis 2

• H0-perceived-usefulness-2 (Null hypothesis)
There is no difference in the perceived usefulness
between participants having previous experience
with UML use case modeling in game develop-

ment/design and participants who have used dia-
grams other than UML use case diagrams.

• H1-perceived-usefulness-2 (Alternative hypoth-
esis) There is a significant difference in the per-
ceived usefulness between participants having
previous experience with UML use case modeling
in game development/design and participants who
have used diagrams other than UML use case dia-
grams.

• Independent variables Boolean variable captur-
ing whether the participant has used UML use
cases models or used other types of diagrams. It
is retrieved from the intersection of responses to
questions CQ3 and CQ4.

• Dependent variables Four variables: (1) vUQ1:
measures the perceived usefulness of the use
case diagram in making the team more effec-
tive (collected from responses to question UQ1),
(2) vUQ2: measures the perceived usefulness of
the textual description in providing informative
content about the game use case (collected from
responses to question UQ2), (3) vUQ4: meas-
ures the perceived usefulness of the technique in
improving the communication of game require-
ments between team members (collected from
responses to question UQ4), and (4) vUQ5: meas-
ures the perceived usefulness of the technique in
helping the team to become more productive (col-
lected from responses to question UQ5).

7.3 Experiment execution and data collection

The survey material was presented (online using Google
Forms) to the participants in the same order defined in
Sect. 7.2.2, i.e., starting with the intent of the study, then a
brief introduction to the game-oriented graphical and textual
use case notation, followed by the Super Mario use case
model, and finally the survey questions (in the same order
presented in Table 3). Participants can navigate back and
forth through the material and no time limit was imposed on
respondents. The data were collected from 29 participants.

7.4 Results analysis

In this section, we analyze and discuss the collected data. In
addition to the analysis of the data collected for each ques-
tion, we test the hypotheses presented in Sect. 7.2.4. We use
the nonparametric Mann–Whitney U test [72] to compare
differences in medians between two independent categorical
group, e.g., (1) using diagrams/models vs. not using dia-
grams/models, and (2) using UML UCD vs. using diagrams
other than UML UCD. We have chosen a nonparametric
method since our questions are measured on an ordinal scale

Requirements Engineering

1 3

(5-points Likert scale), and it is mandatory to have normally
distributed data.

7.4.1 Analysis of participants’ characterization questions

The first question (CQ1) is created to study the background
of each participant. As shown in Fig. 19, the majority of
participants were Game programmers (16 participants rep-
resenting 55.2%), followed by game level designers repre-
senting 13.8%. In addition to the proposed roles, participants
added three additional roles: Game programmer and artist,
Game director, and Solo developer.

Assessing respondents game-related experience is
addressed by question CQ2. As shown in Fig. 20, respond-
ents with various levels of experience participated in the
study, ranging from junior game developers (with less than
a year of experience) to well-experienced (with more than
10 years of experience).

Question CQ3 aims to find out whether the respondents
have used models and diagrams in game development and
design. Results indicate that 20 respondents (representing
69% of total participants) have used diagrams/models within

the game development life cycle, while 9 respondents have
not.

Question CQ4 aims to find out whether the respondents
have used UML use case modeling in game development
and design. Results indicate that only 9 respondents (repre-
senting 31% of total participants) have used UML use case
models within the game development life cycle, while 20
respondents have not. Table 8 (in “Appendix”) confirms
that participants who answered affirmatively question CQ4
have also answered affirmatively question CQ3 and that
participants are classified into three groups: (1) no prior
use of diagrams (9 respondents), (2) use of diagrams other
than UML UCD (11 respondents), (3) use of UML UCD (9
respondents).

Question CQ5 aims to find out whether the respondents
have faced problems to communicate game requirements
to teammates (e.g., misunderstanding, vagueness, con-
flict, etc.). Results show that more than half of respondents
(13.8% strongly agree and 41.6% agree) admitted that they
have faced communication issues with respect to game
requirements between team mates. Only 2 respondents
disagreed (7%) while 11 respondents were neutral (38%).
This supports our claim that there is an urgent need for for-
mal (or semi-formal) techniques to describe game-related
requirements.

In the following subsections, i.e., Sects. 7.4.2, 7.4.3 and
7.4.2, we present and analyze the collected data. Table 8 in
“Appendix” shows the full breakdown of answers, where
participants who have not used models/diagrams are coded
as "0," while those who have used models/diagrams are
coded as "1." Among the participants who have used dia-
grams/models, the ones who haven’t used UML UCD are
coded as "0," while those who have used UML UCD are
coded as "1."

Fig. 19 Analysis of CQ1 data

Fig. 20 Analysis of CQ2 data

 Requirements Engineering

1 3

7.4.2 Analysis of the perceived understandability data

The first question UndQ1 aims to assess whether the new
game use case diagram is easy to understand in general (as
perceived by the respondents). As shown in Fig. 21, 72.4%
of the participants agreed (31% strongly agreed, 41.4%
agreed) with the statement, while 13.7% disagreed.

Question UndQ2 aims to assess the self-descriptiveness
of the game use case graphical elements (as perceived by
the respondents). Results show that the majority of partici-
pants found them self-descriptive since 82.8% responded
with either "agree" or "strongly agree," while only 17.2%
were neutral.

The third question UndQ3 aims to assess whether the new
game use case textual description is easy to understand in
general (as perceived by the respondents). Results show that
79.3% found it easy to understand, while 20.7% were neutral.
Hence, we can conclude that the textual description is of
good support of the graphical representation.

In addition, in order to test hypotheses “Perceived Under-
standability 1” and “Perceived Understandability 2,” we
have conducted Mann–Whitney U test [72] on responses to
questions UndQ1, UndQ2, and UndQ3. Table 4 illustrates
the rank table with respect to the independent variable “use
of diagrams.” The group of participants with no prior use
of diagrams is coded as "0," while the group of participants
who have used diagram is coded as "1."

Table 5 depicts the results of Mann–Whitney U test for
“Perceived Understandability 1” hypothesis. The signifi-
cance values (i.e., Asym. Sig. (2-tailed)) for these three ques-
tions (i.e., 0.046, 0.04, and 0.035 are all less than � = 0.05)
show that there is a significant difference between the group
of participants using diagrams/models and the group of par-
ticipants not using diagrams/models, with respect to the per-
ceived understandability. Thus, we reject the null hypothesis
“H0-perceived-understandability-1” and accept the alterna-
tive hypothesis “H1-perceived-understandability-1.”

Table 6 illustrates the rank table with respect to the inde-
pendent variable “use of UML UCD.” The group of partici-
pants with prior use of diagrams other than UML UCD is

coded as "1," while the group of participants who have used
UML UCD is coded as "2."

Fig. 21 Analysis of the perceived understandability data

Table 4 Mann–Whitney U test: Rank table with respect to the inde-
pendent variable “use of diagrams”

Use diagrams N Mean rank Sum of ranks

UndQ1
 0 9 19.44 175.00
 1 20 13.00 260.00
 Total 29

UndQ2
 0 9 19.44 175.00
 1 20 13.00 260.00
 Total 29

UndQ3
 0 9 19.61 176.50
 1 20 12.92 258.50
 Total 29

LQ1
 0 9 19.22 173.00
 1 20 13.10 262.00
 Total 29

UQ1
 0 9 19.83 178.50
 1 20 12.82 256.50
 Total 29

UQ2
 0 9 21.39 192.50
 1 20 12.12 242.50
 Total 29

UQ4
 0 9 19.39 174.50
 1 20 13.02 260.50
 Total 29

UQ5
 0 9 21.11 190.00
 1 20 12.25 245.00
 Total 29

Requirements Engineering

1 3

Table 7 depicts the results of Mann–Whitney U test for
“Perceived Understandability 2” hypothesis. The signifi-
cance values for these three questions (i.e., 0.659, 1.0, and
0.1 are all greater than � = 0.05) show that there is no sig-
nificant difference between the group of participants who
used UML UCD models and the group of participants who
used different types of diagrams/models, with respect to
the perceived understandability. Thus, we accept the null
hypothesis “H0-perceived-understandability-2.”

7.4.3 Analysis of the perceived learnability data

Question LQ1 aims to assess the perceived learnability of
the technique. Most of the respondents believe that they
can learn the new technique quickly (79.3% responded with
either ’agree’ (51.72%) or ’strongly agree’ (27.59%)), while
only 20.7% were neutral.

In addition, in order to test hypotheses “Perceived Learn-
ability 1” and “Perceived Learnability 2,” we have con-
ducted Mann–Whitney U test [72] on responses to question
LQ1. Table 5 depicts the results of Mann–Whitney U test
for “Perceived Learnability 1” hypothesis. The significance
value (i.e., Asym. Sig. (2-tailed)) for LQ1 (i.e., 0.05 is equal
to � = 0.05) shows that there is a significant difference
between the group of participants using diagrams/models
and the group of participants not using diagrams/models,
with respect to the perceived learnability. Thus, we reject the
null hypothesis “H0-perceived-learnability-1” and accept the
alternative hypothesis “H1-perceived-learnability-1.”

Table 7 depicts the results of Mann–Whitney U test for
“Perceived Learnability 2” hypothesis. The significance
values for LQ1 (i.e., 0.179 is greater than � = 0.05) shows
that there is no significant difference between the group of
participants who used UML UCD models and the group of
participants who used different types of diagrams/models,
with respect to the perceived learnability. Thus, we accept
the null hypothesis “H0-perceived-learnability-2.”

Table 5 Mann–Whitney U
test results with respect to the
independent variable “use of
diagrams”

UndQ1 UndQ2 UndQ3 LQ1 UQ1 UQ2 UQ4 UQ5

Mann–Whitney U 50.000 50.000 48.500 52.000 46.500 32.500 50.500 35.000
Wilcoxon W 260.000 260.000 258.500 262.000 256.500 242.500 260.500 245.000
Z − 1.991 − 2.054 − 2.108 − 1.963 − 2.181 − 2.934 − 2.010 − 2.829
Asymp. Sig. (2-tailed) .046 .040 .035 .050 .029 .003 .044 .005

Table 6 Mann–Whitney U test: rank table with respect to the inde-
pendent variable “use of UML UCD”

UML vs Other
Diagrams

N Mean Rank Sum of Ranks

UndQ1
 1 11 10.00 110.00
 2 9 11.11 100.00
 Total 20

UndQ2
 1 11 10.50 115.50
 2 9 10.50 94.50
 Total 20

UndQ3
 1 11 8.73 96.00
 2 9 12.67 114.00
 Total 20

LQ1
 1 11 9.09 100.00
 2 9 12.22 110.00
 Total 20

UQ1
 1 11 10.36 114.00
 2 9 10.67 96.00
 Total 20

UQ2
 1 11 9.68 106.50
 2 9 11.50 103.50
 Total 20

UQ4
 1 11 9.55 105.00
 2 9 11.67 105.00
 Total 20

UQ5
 1 11 10.18 112.00
 2 9 10.89 98.00
 Total 20

Table 7 Mann–Whitney U
test results with respect to the
independent variable “use of
UML UCD”

UndQ1 UndQ2 UndQ3 LQ1 UQ1 UQ2 UQ4 UQ5

Mann–Whitney U 44.000 49.500 30.000 34.000 48.000 40.500 39.000 46.000
Wilcoxon W 110.000 94.500 96.000 100.000 114.000 106.500 105.000 112.000
Z − .441 .000 − 1.644 − 1.345 − .122 − .807 − .852 − .296
Asymp. Sig. (2-tailed) .659 1.000 .100 .179 .903 .420 .394 .767

 Requirements Engineering

1 3

7.4.4 Analysis of the perceived usefulness

Question UQ1 aims to assess the perceived usefulness of
the graphical notation in helping game development teams
to be more effective. Results (see Fig. 22) show that 75.9%
of the participants agreed (41.4% strongly agreed and 34.5%
agreed) with the statement. Only 6.9% of participants disa-
greed with the statement, while 17.2% have chosen the neu-
tral option.

Question UQ2 aims to assess whether the use case textual
description is informative. Results show that almost 80% of
the participants found that the textual description is informa-
tive (48.3% agreed and 31% strongly agreed). Only one par-
ticipant disagreed.

Question UQ4 aims to assess whether the proposed tech-
nique enhances the communication of game requirements
with the development team. Results show that 75.9% agreed
(27.6% ’strongly agree’ and 48.3% ’agree’) with the state-
ment, while 20.7% were neutral. Only one disagreed with
the statement.

Question UQ5 aims to assess the potential impact of the
technique on team productivity. Results show that 75.8%
agreed (24.1% ’strongly agree’ and 51.7% ’agree’) with the

statement, while 20.7% were neutral. Only one participant
disagreed with the statement.

The proposed approach can be useful for many roles
within the game development team. Question UQ3 aims to
know which roles would benefit the most from this tech-
nique. Responses collected from this question are captured
using vUQ3 variable. Figure 23 shows that the top roles
are game programmer (selected by 26 participants) and
game play designer (selected by 24 participants), followed
by game level designer (selected by 15 participants), artists
(selected by 14 participants), and game producer (selected
by 10 participants). Only one participant thought that this
technique would be useful for testers and maintenance
teams.

In addition, in order to test hypotheses “Perceived Use-
fulness 1” and “Perceived Usefulness 2,” we have con-
ducted Mann–Whitney U test [72] on responses to ques-
tions UQ1, UQ2, UQ4, and UQ5. Table 5 depicts the
results of Mann–Whitney U test for “Perceived Useful-
ness 1” hypothesis. The significance values (i.e., Asym.
Sig. (2-tailed)) for these four questions (i.e., 0.029, 0.003,
0.044, and 0.005 are all less than � = 0.05) show that there
is a significant difference between the group of participants

Fig. 22 Analysis of perceived usefulness data

Fig. 23 Analysis of UQ3 data

Requirements Engineering

1 3

using diagrams/models and the group of participants not
using diagrams/models, with respect to the perceived
usefulness. Thus, we reject the null hypothesis “H0-per-
ceived-usefulness-1” and accept the alternative hypothesis
“H1-perceived-usefulness-1.”

Table 7 depicts the results of Mann–Whitney U test for
“Perceived Usefulness 2” hypothesis. The significance val-
ues for these four questions (i.e., 0.903, 0.42, 0.394, and
0.767 are all greater than � = 0.05) show that there is no
significant difference between the group of participants who
used UML UCD models and the group of participants who
used different types of diagrams/models, with respect to the
perceived usefulness. Thus, we accept the null hypothesis
“H0-perceived-usefulness-2.”

7.4.5 Analysis of the suggested improvements

This question is optional, thus not all participants provided
their opinions. In what follows, we summarize the significant
suggestions, and we provide our feedback for each:

• Suggestion 1 Support functional game use cases with test
scenarios to improve the model understanding. Response
1 Each game textual use case representation can be con-
verted to a test scenario. For interdependent use case
(i.e., interconnected through includes/extends relation-
ships), their textual flows can be merged to create a more
inclusive test scenario. In addition, these test scenarios
may help validate the model correctness and complete-
ness (covering all alternative paths).

• Suggestion 2 Extend the technique by adding mecha-
nisms to support iterative development. Response 2 An
iterative development approach aims to address certain
types of risks sooner by implementing and integrating
risky functionalities (e.g., poorly understood functionali-
ties) earlier in the process. In the context of game devel-
opment, some aspects are more important than others,
e.g., such as the functions and behaviors of a game [73],
represented as Function game use case in our approach.
Starting with these crucial game aspects would allow for
early analysis. Hence, they can be queried using a wizard
in the first steps of the creation of the UCD.

• Suggestion 3 Add more details on how certain mechanics
and functionalities work. Response 3 The user may add
such details to the textual description of use cases.

• Suggestion 4 Create some models for the most impor-
tant game mechanics that can be used in future projects.
Response 4 This suggestion can be addressed by adding
some predefined game mechanics (as stored templates)
that game designer can reuse.

• Suggestion 5 Extend the technique to allow for task dis-
tribution between team members. Response 5 Task dis-

tribution is relevant to how the project is being managed.
However, it may be addressed by adding some fields to
the textural description of each use case, e.g., a text field
specifying the owner of the use case.

• Suggestion 6 Supporting more visuals in the diagram
will help improve the understandability, such as adding
colors for each depth level in the diagram, or colors for
each type of game use cases. Response 6 Visual vari-
ables, such as size, color, and location of symbols, have
properties that make them suitable for encoding different
types of information [74]. In addition, color is one of the
most cognitively effective of all visual variables [74].
However, augmenting the notation with more visuals and
colors may increase the graphic complexity, which we
aim to keep cognitively manageable. Hence, a study of
the impact of such additions from syntactic, semantic,
and cognitive aspects is required.

All listed suggestions are interesting and represent a good
pool of features to select from for our future GUCM releases.

7.5 Discussion

In what follows, we discuss the findings presented in
Sect. 7.4. The results of our first question CQ1 show that
most of our survey participants are game programmers (16
out of 29). While this may seem biased to some readers, it
is not surprising that game programmers account for a huge
proportion of employees at any given game studio. Although
there is a strong evidence from the literature [5, 8] that the
use of requirements models has a positive impact on game
development processes by solving the communication issues
between stakeholders with technical and art backgrounds
[4], they are not widely used in the game industry. In our
study, this fact was observed when analyzing responses to
question CQ4, where only 31% of respondents have used
UML use case diagrams in their work. Hence, there is a need
to investigate and address the problems that are preventing
the adoption of such techniques within the game industry.

Responses to question CQ5 confirm the findings of Cal-
lele et al. [4] and Dormans [21] with respect to the exist-
ence of communication and understandability issues of game
requirements among stakeholders. Our proposed technique
aims to help solve such obstacles by endorsing the use of
UC diagrams in eliciting game requirements. Furthermore,
practitioners using modeling notations are primarily inter-
ested in its low learning curve [75]. Hence, we took this
aspect into consideration by keeping our proposed approach
as simple as possible in order to make it more accessible
to non-technical personals and facilitate its adoption. The
analysis of the perceived understandability and learnability
data (i.e., responses to question UndQ1, UndQ2, UndQ3 for

 Requirements Engineering

1 3

the perceived understandability and LQ1 for the perceived
learnability) confirms this fact.

In addition, even though all participants provided a posi-
tive assessment of the perceived understandability, learnabil-
ity, and usefulness of the proposed approach (as discussed
in Sects. 7.4.2, 7.4.3, and 7.4.4), results of Mann–Whitney
U test indicate that there is a significant difference in the
results between the group of participants having prior expe-
rience with diagrams/models and the group of participants
who are not familiar with diagrams/models. More specifi-
cally, the approach appears to be more appealing (may be
compared to the commonly used natural language require-
ments) for participants who are not familiar with diagrams.
Although unexpected, this finding may be due to the fact that
we have provided participants with a very short and simple
presentation of our approach. A more formal training on the
proposed approach and more complex examples may have
unveiled some modeling difficulties (that the participants
who are familiar with models are aware of) and may have
led to different results.

Furthermore, we notice that there is a no significant
difference between the group of participants having prior
knowledge of UML use case diagrams and the group of par-
ticipants who used other types of diagrams/models, with
respect to the perceived understandability, learnability,
and usefulness of the proposed approach. This finding was
expected, as use case diagrams are in general simple (e.g.,
limited number of constructs) compared to other modeling
notations. Hence, this is a positive indication towards the
acceptance and potential adoption of our approach by game
practitioners who are familiar with requirements modeling.

Furthermore, the results analysis of the perceived useful-
ness of the proposed approach is very promising, with game
programmers, game play designers, and game level design-
ers, being the top three roles that would benefit the most
from the proposed technique. These roles represent a very
large proportion of game development industry.

8 Threats to validity

The proposed approach, the GUCM prototype tool, the illus-
trative examples, and the empirical evaluation are subject to
several limitations and threats to validity, categorized here
according to three important types identified by Wright
et al. [76].

In terms of construct validity, a potential threat may
be related to the fact that the survey participants might
have had a different understanding of the questions than
what we had intended. To mitigate that threat, we tried
to make the questions as simple as possible, using con-
cise terms. To assess the perceived understandability,
learnability, and usefulness, we have used closed-ended
questions (preempting a particular answer) to collect par-
ticipants’ self-assessment about our proposed technique,
which may be subjective and biased. In order to better
assess understandability, learnability, and usefulness, we
plan to conduct a controlled experiment involving design
tasks, observations, and measurements. Moreover, another
potential threat is that the material given to the respond-
ents (description of the main constructs of the approach
and one illustrative example) might not be enough to
ensure that participants fully understand the approach. In
addition, participants were not able to ask questions, since
the experiment was conducted online. To reduce this risk,
we have selected Super Mario Bros, a well-known game
within the gaming community, as an illustrative example.
However, using not well-known game examples may lead
to different responses. Another possible threat is related
to the scalability of the proposed technique. Our technique
adds new game-related kinds of actors and use cases to the
UML use case diagram notation, which already suffers
from the lack of scalability [77]. To mitigate this threat,
modelers can manage the complexity of the produced
use case models via modularization [78]. Modularization
involves the partitioning of the use case model into use
case packages. A use case package is used to structure the
use case model by dividing it into small chunks. However,
applying modularization is out of the scope of this study.

Regarding internal validity, a possible threat is that the
proposed UML use case meta-model extensions might have
missed some game-related aspects. To mitigate this threat,
we opted for a high level abstraction when defining the addi-
tional types, which would hide many details related to actual
implementations. For example, security functions and mul-
tiplayer management may be described using ≪Function≫
use cases, whereas playing music, playing sound effects may
be described using ≪PlayAudio≫ use cases. Moreover, we
wanted to keep the meta-model as simple as possible to pro-
mote adoption and to help future extensions without the need
for major meta-model restructuring. Another potential threat
may be related to the usefulness and potential adoption of

Requirements Engineering

1 3

the proposed use case-based game modeling technique in
real game development life cycle. To reduce this risk, we
have explored the acceptability of the approach by conduct-
ing a survey among game developers. Results have shown
that most participants found the approach useful. Another
possible threat is that the survey participants may be work-
ing for one or two companies, which would have an impact
on our results. To mitigate this risk, the link to our survey
was published within the game communities on Twitter,
known for their diversity, i.e., different background, loca-
tions, companies, etc.

In terms of external validity, there is a concern with
respect to the applicability of the proposed game-oriented
use case modeling approach and the GUCM tool, to multi-
ple game genres. To mitigate this threat, we have applied
the approach to four games of different genres. Indeed,
Super Mario Bros (see Sect. 6.1) is a platformer, Tetris (see
Sect. 6.2) is of arcade/puzzle type, Just Dance (see Sect. 6.3)
is a motion-based rhythm game, and The Walking Dead (see
Sect. 6.3) is an episodic adventure interactive drama game.
As future work, we are planning to apply our approach to
other game genres. Another threat is related to ensuring
that the results drawn from the survey can be generalized
to the entire population of game development community.
To maximize the external validity, we did our best to reach
as many different profiles of the gaming population as pos-
sible, by utilizing Twitter’s popular active hashtags used by
people from the game development industry on the platform.
Indeed, Twitter is considered as the best social media plat-
form for game developers when it comes to building com-
munities and communications.3,4 In addition, #gamedev
and #indiedev hashtags are often ranked in the top 10 most
active game development hashtags5, hence they were used
to target game developers. Another potential threat is related
to the relatively small number of participants in our study
and the limited information we have collected about their
demographics (e.g., age, country of origin, etc.), which may
affect our ability to generalize our findings.

9 Conclusions and future work

We have introduced a novel use case-based game modeling
approach. The proposed technique extends the standard
UML use case Model, to allow for better description of
game-related requirements and for promoting a common
understanding of game requirements among game devel-
opment teams. As a proof of concept, we have developed
a web based prototype tool called GUCM (game use case
modeling). The proposed approach and tool were validated
using four well-known games, Super Mario Bros, Tetris,
Just Dance, and The Walking Dead. Furthermore, to assess
the understandability and the usefulness of the proposed
approach, we have conducted a survey within the game
development community on Twitter. Results indicated an
agreement about the added value of the proposed approach
and a willingness of adoption by the game development
community.

As future work, we plan to improve the visuals of the
use case diagram by introducing coloring schema. Further-
more, we plan to conduct a controlled experiment in order
to measure the usability and learnability of the proposed
approach and tool.

Appendix

See Table 8.

Acknowledgements The authors would like to acknowledge the sup-
port provided by the Deanship of Scientific Research at King Fahd
University of Petroleum & Minerals for funding this work through
Project No. SB191011.

3 https:// indie boost. com/ blog/ how- to- effec tively- use- social- media- as-
an- indie- game- devel oper/.
4 https:// www. gamem arket ingge nie. com/ blog/ social- media- platf
orms- for- gamers.
5 https:// ritet ag. com/ best- hasht ags- for/ gamed ev.

https://indieboost.com/blog/how-to-effectively-use-social-media-as-an-indie-game-developer/
https://indieboost.com/blog/how-to-effectively-use-social-media-as-an-indie-game-developer/
https://www.gamemarketinggenie.com/blog/social-media-platforms-for-gamers
https://www.gamemarketinggenie.com/blog/social-media-platforms-for-gamers
https://ritetag.com/best-hashtags-for/gamedev

 Requirements Engineering

1 3

References

 1. GamesIndustry.biz. Global games market value rising to
$134.9bn in 2018. https:// www. games indus try. biz/ artic les/ 2018-
12- 18- global- games- market- value- rose- to- usd134- 9bn- in- 2018.
Accessed Feb 2020

 2. Planet Market Reports. Global games market value rising to
$175.9bn in 2025. https:// www. redne wswire. com/ global- games-
market- value- rising- to- 175- 9bn- in- 2025/. Accessed Feb 2020

 3. Blow J (2004) Game development: harder than you think. Queue
1(10):28–37

 4. Callele D, Neufeld E, Schneider KA (2005) Requirements engi-
neering and the creative process in the video game industry. In:
13th IEEE international conference on requirements engineering
(RE 2005), 29 August-2 September 2005. France. IEEE Computer
Society, Paris, pp 240–252

 5. Kasurinen J, Maglyas A, Smolander K (2014) Is requirements
engineering useless in game development? In: Salinesi C, van de

Weerd I (eds) Requirements engineering: foundation for software
quality—20th international working conference, REFSQ 2014,
Essen, Germany, April 7–10, 2014. Proceedings, volume 8396 of
lecture notes in computer science. Springer, pp 1–16

 6. Washburn Jr. M, Sathiyanarayanan P, Nagappan M, Zimmermann
T, Bird C (2016) What went right and what went wrong: an analy-
sis of 155 postmortems from game development. In: Dillon LK,
Visser W, Williams LA (eds) Proceedings of the 38th international
conference on software engineering, ICSE 2016, Austin, TX,
USA, May 14–22, 2016—companion volume. ACM, pp 280–289

 7. Hussain A, Asadi O, Richardson DJ (2018) A holistic look at
requirements engineering practices in the gaming industry. CoRR,
arXiv: 1811. 03482

 8. Reyno EM, Cubel JÁC (2008) Model driven game development:
2d platform game prototyping. In: Botti VJ, Barella A, Carrascosa
C (eds) GAMEON’2008, (covers game methodology, game graph-
ics, AI behaviour, game AI analysis, AI programming, neural net-
works and agent based simulation, team building, education and

Table 8 Summary of the perceived understandability/learnability/usefulness responses

Survey Questions

UndQ1 UndQ2 UndQ3 LQ1 UQ1 UQ2 UQ4 UQ5

Respondents who have not used diagrams
 1 Strongly agree Strongly agree Strongly agree Strongly agree Strongly agree Strongly agree Strongly agree Strongly agree
 2 Strongly agree Strongly agree Strongly agree Agree Agree Strongly agree Agree Agree
 3 Agree Agree Strongly agree Neutral Disagree Strongly agree Agree Agree
 4 Agree Agree Agree Agree Strongly agree Agree Agree Strongly agree
 5 Strongly agree Strongly agree Strongly agree Strongly agree Strongly agree Strongly agree Strongly agree Strongly agree
 6 Strongly agree Strongly agree Agree Strongly agree Strongly agree Strongly agree Strongly agree Strongly agree
 7 Strongly agree Strongly agree Strongly agree Strongly agree Strongly agree Strongly agree Agree Agree
 8 Neutral Strongly agree Strongly agree Strongly agree Strongly agree Strongly agree Strongly agree Strongly agree
 9 Agree Neutral Neutral Agree Strongly agree Neutral Agree Agree

Respondents who have used diagrams other than UML
 1 Disagree Agree Strongly agree Neutral Strongly agree Agree Agree Agree
 2 Agree Strongly agree Agree Agree Agree Agree Agree Agree
 3 Agree Agree Neutral Strongly agree Strongly agree Agree Strongly agree Strongly agree
 4 Agree Agree Neutral Agree Agree Agree Neutral Agree
 5 Strongly agree Agree Agree Agree Strongly agree Agree Agree Agree
 6 Neutral Neutral Neutral Neutral Neutral Neutral Agree Neutral
 7 Strongly Disagree Neutral Agree Agree Strongly agree Neutral Agree Agree
 8 Disagree Agree Strongly agree Neutral Neutral Agree Disagree Disagree
 9 Agree Agree Neutral Neutral Neutral Neutral Neutral Neutral
 10 Strongly agree Strongly agree Neutral Agree Neutral Agree Agree Agree
 11 Agree Agree Agree Agree Neutral Agree Neutral Neutral

Respondents who have used UML
 1 Neutral Neutral Agree Agree Agree Disagree Agree Agree
 2 Disagree Neutral Agree Neutral Agree Agree Strongly agree Agree
 3 Strongly agree Agree Agree Agree Agree Agree Agree Agree
 4 Agree Agree Agree Agree Agree Agree Agree Neutral
 5 Agree Strongly agree Strongly agree Strongly agree Agree Strongly agree Strongly agree Strongly agree
 6 Strongly agree Agree Agree Agree Disagree Neutral Neutral Neutral
 7 Agree Agree Agree Agree Agree Agree Neutral Agree
 8 Agree Strongly agree Strongly agree Strongly agree Strongly agree Strongly agree Strongly agree Agree
 9 Neutral Agree Agree Agree Agree Agree Neutral Neutral

https://www.gamesindustry.biz/articles/2018-12-18-global-games-market-value-rose-to-usd134-9bn-in-2018
https://www.gamesindustry.biz/articles/2018-12-18-global-games-market-value-rose-to-usd134-9bn-in-2018
https://www.rednewswire.com/global-games-market-value-rising-to-175-9bn-in-2025/
https://www.rednewswire.com/global-games-market-value-rising-to-175-9bn-in-2025/
http://arxiv.org/abs/1811.03482

Requirements Engineering

1 3

social networks), November 17–19, 2008. UPV, Valencia, Spain,
EUROSIS, pp 5–7

 9. Flood K (2003) Game unified process. https:// www. gamed ev. net/
artic les/ progr amming/ gener al- and- gamep lay- progr amming/ game-
unifi ed- proce ss- r1940/

 10. Koutonen J, Leppänen M (2013) How are agile methods and prac-
tices deployed in video game development? A survey into finnish
game studios. In: Baumeister H, Weber B (eds) Agile processes
in software engineering and extreme programming—14th inter-
national conference, XP 2013, Vienna, Austria, June 3–7, 2013.
Proceedings, volume 149 of lecture notes in business information
processing. Springer, pp 135–149

 11. Petrillo F, Pimenta MS (2010) Is agility out there? Agile practices
in game development. In: Anacleto JC, de Mattos Fortes RP, Costa
CJ (eds) Proceedings of the 28th annual international conference
on design of communication, SIGDOC 2010, São Carlos, São
Paulo state, Brazil, September 26–29, 2010. ACM, pp 9–15

 12. Djaouti D, Alvarez J, Jessel J-P, Methel G (2008) A gameplay
definition through videogame classification. Int J Comput Games
Technol 2008:70350:1-470350:7

 13. Ollila EMI, Suomela R, Holopainen J (2008) Using proto-
types in early pervasive game development. Comput Entertain
6(2):17:1-17:17

 14. Coram M, Bohner SA (2005) The impact of agile methods on
software project management. In: 12th IEEE international confer-
ence on the engineering of computer-based systems (ECBS 2005),
4–7 April 2005, Greenbelt, MD, USA. IEEE Computer Society,
pp 363–370

 15. McKenzie T, Trujillo MM, Hoermann S (2019) Software engi-
neering practices and methods in the game development industry.
In: Extended abstracts of the annual symposium on computer-
human interaction in play companion extended abstracts, CHI
PLAY—19 extended abstracts. Association for Computing
Machinery, New York, pp 181–193

 16. Godoy A, Barbosa EF (2010) Game-scrum: an approach to agile
game development. In: Proceedings of SBGames. pp 292–295

 17. Gonzalez-Salazar M, Mitre-Hernandez H, Lara-Alvarez C (2017)
Method for game development driven by user-experience: a study
of rework, productivity and complexity of use. Int J Adv Comput
Sci Appl 8(2):394–402

 18. Folmer E (2007) Component based game development–a solution
to escalating costs and expanding deadlines? In: Schmidt HW,
Crnkovic I, Heineman GT, Stafford JA (eds) Component-based
software engineering, 10th international symposium, CBSE 2007,
Medford, MA, USA, July 9–11, 2007, proceedings, volume of
4608 lecture notes in computer science. Springer, pp 66–73

 19. Brambilla M, Cabot J, Wimmer M (2017) Model-driven software
engineering in practice. Synthesis lectures on software engineer-
ing, 2nd edn. Morgan & Claypool Publishers, New England

 20. Loniewski G, Insfran E, Abrahão S (2010) A systematic review of
the use of requirements engineering techniques in model-driven
development. In: International conference on model driven engi-
neering languages and systems. Springer, pp 213–227

 21. Dormans J (2012) The effectiveness and efficiency of model
driven game design. In Herrlich M, Malaka R, Masuch M (eds)
Entertainment computing—ICEC 2012—11th international con-
ference, ICEC 2012, Bremen, Germany, September 26–29, 2012.
Proceedings, volume 7522 of lecture notes in computer science.
Springer, pp 542–548

 22. Petrillo F, Pimenta M, Trindade F, Dietrich C (2009) What went
wrong? A survey of problems in game development. Comput
Entertain 7(1):13

 23. Callele D, Neufeld E, Schneider KA (2006) Emotional require-
ments in video games. In: 14th IEEE international conference
on requirements engineering (RE 2006), 11–15 September 2006,

Minneapolis/St.Paul, Minnesota, USA. IEEE Computer Society,
pp 292–295

 24. Paschali ME, Ampatzoglou A, Chatzigeorgiou A, Stamelos I
(2014) Non-functional requirements that influence gaming expe-
rience: a survey on gamers satisfaction factors. In: Proceedings
of the 18th international academic MindTrek conference: media
business, management, content & services. ACM, pp 208–215

 25. Cheng BHC, Atlee JM (2007) Research directions in requirements
engineering. In Briand LC, Wolf AL (eds) International confer-
ence on software engineering, ISCE 2007, workshop on the future
of software engineering, FOSE 2007, May 23–25, 2007, Minne-
apolis, MN, USA. IEEE Computer Society, pp 285–303

 26. OMG (2017) OMG Unified Modeling Language—version 2.5.1.
https:// www. omg. org/ spec/ UML/2. 5.1. Accessed Dec 2020

 27. Wolf MJP (2001) Genre and the video game. The medium of the
video game. pp 113–134

 28. Wikipedia. Super Mario Bros. https:// en. wikip edia. org/ wiki/
Super_ Mario_ Bros. Accessed Dec 2020

 29. Wikipedia. Tetris. https:// en. wikip edia. org/ wiki/ Tetris. Accessed
Dec 2020

 30. Wikipedia. Just dance. https:// en. wikip edia. org/ wiki/ Just_ Dance_
(video_ game). Accessed Dec 2020

 31. Wikipedia. The walking dead. https:// en. wikip edia. org/ wiki/ The_
Walki ng_ Dead_ (video_ game). Accessed Dec 2020

 32. Ambler SW (2001) Agile modeling: a brief overview. In: Evans
A, France RB, Moreira AMD, Rumpe B (eds) Practical UML-
based rigorous development methods—countering or integrating
the eXtremists, workshop of the pUML-group held together with
the “UML” 2001, October 1st, 2001 in Toronto, Canada, volume
P-7 of LNI. GI, pp 7–11

 33. Ambler SW (2002) Agile modeling: effective practices for extreme
programming and the unified process. Wiley, New Jersey

 34. Chaudron MRV, Werner H, Ariadi N (2012) How effective is
UML modeling? Softw Syst Model 11(4):571–580

 35. Misbhauddin M, Alshayeb M (2015) Extending the UML use case
metamodel with behavioral information to facilitate model analy-
sis and interchange. Softw Syst Model 14(2):813–838

 36. Sauer S, Engels G (2001) Uml-based behavior specification of
interactive multimedia applications. In: 2002 IEEE CS interna-
tional symposium on human-centric computing languages and
environments (HCC 2001), September 5–7, 2001 Stresa, Italy.
IEEE Computer Society, pp 248–255

 37. Fowler M, Scott K (2000) UML distilled—a brief guide to the
Standard Object Modeling Language. notThenot Addison-Wesley
object technology series, 2nd edn. Addison-Wesley-Longman,
Boston

 38. Cockburn A (2000) Writing effective use cases, 1st edn. Addison-
Wesley Longman Publishing Co., Inc., Boston

 39. OMG (2013) OMG Meta Object Facility (MOF) Core Specifica-
tion. Version 2.4.1

 40. Zhu M, Wang AI (2019) Model-driven game development: a lit-
erature review. ACM Comput Surv 52(6):123

 41. Novak J (2011) Game development essentials: an introduction.
Cengage Learning, Boston

 42. Tang S, Hanneghan M, Hughes T, Dennett C, Cooper S, Ariff
Sabri M et al. (2008) Towards a domain specific modelling lan-
guage for serious game design. In: 6th international game design
and technology workshop, Liverpool, UK

 43. Tang S, Hanneghan M, Carter C (2013) A platform independent
game technology model for model driven serious games develop-
ment. Electron J e-Learn 11(1):61–79

 44. Erickson J, Siau K (2007) Can uml be simplified? practitioner use
of uml in separate domains. In: Proceedings EMMSAD, vol 7. pp
87–96. Citeseer

 45. Hernandez FE, Ortega FR (2010) Eberos gml2d: a graphical
domain-specific language for modeling 2d video games. In:

https://www.gamedev.net/articles/programming/general-and-gameplay-programming/game-unified-process-r1940/
https://www.gamedev.net/articles/programming/general-and-gameplay-programming/game-unified-process-r1940/
https://www.gamedev.net/articles/programming/general-and-gameplay-programming/game-unified-process-r1940/
https://www.omg.org/spec/UML/2.5.1
https://en.wikipedia.org/wiki/Super_Mario_Bros
https://en.wikipedia.org/wiki/Super_Mario_Bros
https://en.wikipedia.org/wiki/Tetris
https://en.wikipedia.org/wiki/Just_Dance_%28video_game)
https://en.wikipedia.org/wiki/Just_Dance_%28video_game)
https://en.wikipedia.org/wiki/The_Walking_Dead_%28video_game)
https://en.wikipedia.org/wiki/The_Walking_Dead_%28video_game)

 Requirements Engineering

1 3

Proceedings of the 10th workshop on domain-specific modeling.
pp 1. Citeseer

 46. Herzig P, Jugel K, Momm C, Ameling M, Schill A (2013) Gaml-
a modeling language for gamification. In: 2013 IEEE/ACM 6th
international conference on utility and cloud computing (UCC).
IEEE, pp 494–499

 47. Reyno EM, Cubel JÁC (2009) Automatic prototyping in model-
driven game development. Comput Entertain 7(2):29

 48. Pleuss A, Hussmann H (2011) Model-driven development of
interactive multimedia applications with MML. In: Hussmann
H, Meixner G, Zuehlke D (eds) Model-driven development of
advanced user interfaces. Springer, pp 199–218

 49. de Lope RP, Medina-Medina N (2016) Using UML to model edu-
cational games. In: 8th international conference on games and vir-
tual worlds for serious applications, VS-GAMES 2016, Barcelona,
Spain, September 7–9, 2016. IEEE Computer Society, pp 1–4

 50. Hog CE, Djemaa RB, Amous I (2011) Towards an UML based
modeling language to design adaptive web services. In: Proceed-
ings of the international conference on semantic web and web
services. pp 38–44

 51. Murali R, Ireland A, Grov G (2015) A rigorous approach to com-
bining use case modelling and accident scenarios. In: Havelund K,
Holzmann GJ, Joshi R (eds) NASA formal methods–7th interna-
tional symposium, NFM 2015, Pasadena, CA, USA, April 27–29,
2015, proceedings, volume 9058 of lecture notes in computer sci-
ence. Springer, pp 263–278

 52. Al-alshuhai A, Siewe F (2015) An extension of the use case dia-
gram to model context-aware applications. In: 2015 SAI intel-
ligent systems conference (IntelliSys). IEEE, pp 884–888

 53. Yue T, Zhang H, Ali S, Liu C (2016) A practical use case mod-
eling approach to specify crosscutting concerns. In: Kapitsaki
GM, de Almeida ES (eds) Software reuse: bridging with social-
awareness–15th international conference, ICSR 2016, Limassol,
Cyprus, June 5–7, 2016, proceedings, volume 9679 of lecture
notes in computer science. Springer, pp 89–105

 54. Mai PX, Goknil A, Shar LK, Pastore F, Briand LC, Shaame S
(2018) Modeling security and privacy requirements: a use case-
driven approach. Inf Softw Technol 100:165–182

 55. Cooper KML, Longstreet CS (2012) Towards model-driven game
engineering for serious educational games: tailored use cases for
game requirements. In: Mehdi QH, Elmaghraby A, Marshall I,
Moreton R, Ragade RK, Zapirain BG, Chariker J, El-Said MM,
Yampolskiy RV, Zhigiang NL (eds) 17th international conference
on computer games, CGAMES 2012, Louisville, KY, USA, July
30–Aug. 1, 2012. IEEE Computer Society, pp 208–212

 56. Jacobson I (2016) Use-case 2.0. Commun ACM 59(5):61–69
 57. Aleem S, Capretz LF, Ahmed F (2016) Game development soft-

ware engineering process life cycle: a systematic review. J Softw
Eng Res Dev 4(1):6

 58. Sonic the hedgehog, Sep 2019
 59. Cockburn A (2000) Writing effective use cases. Addison-Wesley

Professional, Boston
 60. Bauer B, Odell J (2005) UML 2.0 and agents: how to build agent-

based systems with the new UML standard. Eng Appl Artif Intell
18(2):141–157

 61. Araujo Guedes GT, Vicari RM (2009) Applying AUML and UML
2 in the multi-agent systems project. In: Heuser CA, Pernul G
(eds) Advances in conceptual modeling—challenging perspec-
tives, ER 2009 workshops CoMoL, ETheCoM, FP-UML, MOST-
ONISW, QoIS, RIGiM, SeCoGIS, Gramado, Brazil, November
9–12, 2009. Proceedings, volume 5833 of lecture notes in com-
puter science. Springer, pp 106–115

 62. Johnson D, Wiles J (2003) Effective affective user interface design
in games. Ergonomics 46(13–14):1332–1345

 63. Cooper J (2019) Game anim: video game animation explained: a
complete guide to video game animation. CRC Press, Boca Raton

 64. Fassone R (2017) Every game is an Island: endings and extremi-
ties in video games. Bloomsbury Publishing USA, Boston

 65. Unity Technologies. 2020. Unity. https:// unity. com
 66. Kitchenham BA, Pfleeger SL (2002) Principles of survey research:

part 3: constructing a survey instrument. SIGSOFT Softw Eng
Notes 27(2):20–24

 67. Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B (2012)
Experimentation in software engineering. Springer, Berlin

 68. International Standard Organization (ISO) (2001) International
standard iso/iec 9126, information technology—product quality—
part1: quality model

 69. Michelsen CD, Dominick WD, Urban JE (1980) A methodology
for the objective evaluation of the user/system interfaces of the
MADAM system using software engineering principles. In Miles
Jr. EP (ed) Proceedings of the 18th annual southeast regional con-
ference, 1980, Tallahassee, Florida, USA, March 24–26, 1980.
ACM, pp 103–109

 70. Davis FD (1989) Perceived usefulness, perceived ease of use, and
user acceptance of information technology. MIS Q 13(3):319–340

 71. Chadha Rishi (2019) gaming on twitter
 72. Mann HB, Whitney DR (1947) On a test of whether one of two

random variables is stochastically larger than the other. Ann Math
Stat 18(1):50–60

 73. Klemm C, Pieters W (2017) Game mechanics and technological
mediation: an ethical perspective on the effects of mmorpg’s. Eth-
ics Inf Technol 19(2):81–93

 74. Moody DL (2009) The “physics” of notations: Toward a scientific
basis for constructing visual notations in software engineering.
IEEE Trans Softw Eng 35(6):756–779

 75. Ozkaya M (2018) Do the informal & formal software modeling
notations satisfy practitioners for software architecture modeling?
Inf Softw Technol 95:15–33

 76. Wright HK, Kim M, Perry DE (2010) Validity concerns in soft-
ware engineering research. In: FoSER. pp 411–414

 77. El-Attar M (2019) Evaluating and empirically improving the
visual syntax of use case diagrams. J Syst Softw 156:136–163

 78. Baldwin CY, Clark KB (1999) Design rules: the power of modu-
larity, vol 1. MIT Press, Cambridge

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://unity.com

	A use case driven approach to game modeling
	Abstract
	1 Introduction
	2 Background
	2.1 UML use case diagrams (UCD)
	2.2 Game development teams

	3 Related work
	3.1 Use of models in game development
	3.2 UML use case extensions

	4 A use case-driven approach to game modeling
	4.1 Extending UML use case meta-model for game requirements
	4.1.1 Game actors
	4.1.2 Game use cases
	4.1.3 Subject
	4.1.4 Relationships

	4.2 Game-oriented use case well-formedness rules
	4.2.1 Strict rules
	4.2.2 Soft rules

	5 Game use case modeling (GUCM) tool
	6 Applying our proposed use case-based game modeling approach
	6.1 Illustrative example 1: Super Mario Bros
	6.2 Illustrative example 2: Tetris
	6.3 Illustrative example 3: just dance
	6.4 Illustrative example 4: the walking dead

	7 Empirical validation
	7.1 Experiment goals
	7.2 Experimental design
	7.2.1 Subjects
	7.2.2 Material
	7.2.3 Variables
	7.2.4 Hypotheses

	7.3 Experiment execution and data collection
	7.4 Results analysis
	7.4.1 Analysis of participants’ characterization questions
	7.4.2 Analysis of the perceived understandability data
	7.4.3 Analysis of the perceived learnability data
	7.4.4 Analysis of the perceived usefulness
	7.4.5 Analysis of the suggested improvements

	7.5 Discussion

	8 Threats to validity
	9 Conclusions and future work
	Acknowledgements
	References

