
Software and Systems Modeling
https://doi.org/10.1007/s10270-021-00965-z

REGULAR PAPER

A search-based approach for detecting circular dependency bad smell
in goal-oriented models

Mawal A. Mohammed1 ·Mohammad Alshayeb1 · Jameleddine Hassine1

Received: 16 October 2020 / Revised: 13 November 2021 / Accepted: 2 December 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Goal-oriented models are gaining significant attention from researchers and practitioners in various domains, especially in
software requirements engineering. Similar to other software engineering models, goal models are subject to bad practices
(i.e., bad smells). Detecting and rectifying these bad smells would improve the quality of these models. In this paper, we
formally define the circular dependency bad smell and then develop an approach based on the simulated annealing (SA)
search-based algorithm to detect its instances. Furthermore, we propose two mechanisms (namely, pruning and pairing)
to improve the effectiveness of the proposed approach. We empirically evaluate three algorithm combinations, i.e., (1) the
base SA search algorithm, (2) the base SA search algorithm augmented with pruning mechanism, and (3) the base SA
search algorithm augmented with pruning and pairing mechanisms, using several case studies. Results show that simulated
annealing augmented with pruning and pairing is the most effective approach, while the simulated annealing augmented with
pruning mechanism is more effective than the base SA search algorithm. We also found that the proposed pruning and pairing
mechanisms provide a significant improvement in the detection of circular dependency bad smell, in terms of computation
time and accuracy.

Keywords Circular dependency · Model-driven engineering · Requirements · Simulated annealing · GRL

1 Introduction

Goal-oriented requirements engineering (GORE) is con-
cerned with assisting stakeholders to explore, elaborate,
structure, analyze, negotiate, and document their require-
ments usinggoals [1].Goalmodelinghas becomean effective
approach for capturing and describing various stakeholders’
intentions and business goals and how these can be refined
in terms of functional and non-functional requirements.
Goals can be stated at different levels of abstraction ranging

Communicated by Silvia Abrahao.

B Mohammad Alshayeb
alshayeb@kfupm.edu.sa

Mawal A. Mohammed
g201102570@kfupm.edu.sa

Jameleddine Hassine
jhassine@kfupm.edu.sa

1 Interdisciplinary Research Center for Intelligent Secure
Systems, Information and Computer Science Department,
King Fahd University of Petroleum and Minerals, Dhahran
31261, Saudi Arabia

from high-level coarse-grained strategic mission statements
to lower-level fine-grained operational responsibilities. In
recent years, the popularity of goal-oriented approaches has
increased, leading to the development of many goal-oriented
modeling languages and frameworks [2]. These frameworks
can be divided into two categories: (1) goal-oriented mod-
eling frameworks such as Non-Functional Requirements
(NFR) [3, 4] and Keep All Objects Satisfied (KOAS) [5,
6], and (2) agent-oriented goal modeling frameworks such
as i* [7] and Goal-oriented Requirement Language (GRL),
part of ITU-T’s User Requirements Notation (URN) stan-
dard [8]. These frameworks share many common concepts,
such as goal refinement and operationalization, and offer
many features, such as evaluation of goal satisfaction levels,
the exploration of available alternatives, etc. In addition to
requirements engineering, goal-based approaches have been
successfully applied to, among others, business intelligence,
adaptation and variability, compliance policies, privacy,
security, and trust modeling [9].

Our focus in this paper is onmodels developed using GRL
[10], which provides several features that can be used to
assist requirements elicitation, documentation, and analysis.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00965-z&domain=pdf
http://orcid.org/0000-0001-7950-0099

M. A. Mohammed et al.

One of the most important and useful features of GRL is the
qualitative/quantitative evaluation of satisfaction levels of the
GRL actors and intentional elements (e.g., softgoals, goals,
tasks, and resources). Satisfaction analysis starts by setting
initial evaluation values (qualitative or quantitative) for some
intentional elements (usually low-level tasks, representing
the considered solutions). These initial evaluation values,
forming a GRL strategy, are propagated to the other inten-
tional elements of the model through the various links that
connect them, reaching the high-level intentional elements
(representing the actual stakeholders’ goals). The outcome
of the satisfaction analysis would allow for selecting the best
strategy to satisfy stakeholders’ goals. Hence, the require-
ments engineer can make an insightful decision on what
requirements to be considered,what scenarios to be explored,
and which set of features to be included in the system to be
developed [11, 12]. Satisfaction analysis and its underlying
propagation algorithms are sensitive to dependency cycles
which can influence satisfaction analysis negatively through
disturbing the propagation algorithms [8, 11]. These algo-
rithms are implemented in the open-source jUCMNav tool
[12], the most comprehensive GRL tool available to date.

We formulated the circular dependency as a bad smell.
By definition, bad smells are not errors. They are indicators
of bad quality [13]. Bad smells are found to have negative
impacts on maintainability [14, 15], and software quality in
general [16, 17], and they are prevalent in code [13] and soft-
ware models [18]. The presence of circular dependencies in
GRL models does not mean that the modeled requirements
are wrong. GRL models are susceptible, by design, to cycles
that we refer to as circular dependencies (In Sect. 0, we for-
malize the notion of circular dependency and formulate it as
a bad smell), where the propagation path of evaluation values
in the context of satisfaction analysis forms a cycle. These
cycles do not invalidate the model when the model is used
as a communication medium to document or convey require-
ments. However, such cycles may present several problems
in the later stages of the requirements engineering process.
Indeed, a GRL model that contains dependency cycles may
present one or many of the following issues:

• The presence of dependency cycles hinders the applica-
tion of satisfaction analysis by disturbing the propagation
algorithms [8, 11, 19]. This would make the evaluation of
available strategies, part of trade-off analysis, fluctuating.
To conduct satisfaction analysis, the analyst defines a GRL
strategy, which gives initial satisfaction values to some
GRL intentional elements (usually to leaf elements). These
values are then propagated to the rest of the model (a.k.a.
forward propagation). As stated in the URN standard [8], a
cycle is not evaluated unless one of its elements ismanually
overridden. Hence, manually setting a satisfaction value is
similar to breaking the cycle because manual evaluations

cannot be overridden by the propagation algorithm. If none
of the elements forming a cycle has a user-assigned ini-
tial satisfaction value, the propagation algorithm will not
converge and will terminate without assigning satisfac-
tion values to the elements forming the cycle, as well as
all elements depending (directly or indirectly) on them.
Therefore, automatic detection of these cycles facilitates
resolving them. In the motivational example presented in
Sect. 0, we provide a detailed illustration of this issue.

• Goal models are rarely used in isolation [20]. They are
usually complemented with other models, e.g., workflow
and feature models that impose additional constraints on
goal model elements, more specifically on tasks (describ-
ing goals’ operationalization). For example, GRL models
are usually complemented with a set of scenario mod-
els expressed using the Use Case Maps (UCM) language,
part of the ITU-T URN language [8]. The results of the
propagation algorithm might influence the corresponding
UCM scenario variables, and the results of the scenario
traversal algorithmmight influence the evaluation of inten-
tional elements in the corresponding GRL model [11].
Moreover, whenGRL circular dependencies exist between
tasks, these circular dependencies will most likely appear
in feature models [20], if any, creating a potential circular
dependency between the corresponding features.

• Reuse of software artifacts at any level of abstraction is a
highly recommended practice because of its potential ben-
efits of increased productivity, quality, and reduced cost
and time [21]. Goal models may be reused in their entirety
[22], therefore, the existing cycles persist in future uses
of these models unless resolved. Different from other soft-
ware artifacts that are used in parts. In these artifacts, cycles
can be broken unintentionally as a result of reusing parts
of the artifact (e.g., code).

Given the potential concerns that may be caused by the
circular dependencies, the main objective of this paper is
to define and detect circular dependencies in GRL models.
More specifically, we make the following contributions:

• Introduce and formally define the circular dependency bad
smell in the context of the GRL language [10].

• Formulate the GRL-based circular dependency detection
as a search-based problem and propose a fully automated
simulated annealing search-based detection approach.
Manual detection of circular dependencies, even in small
models, may not be easy due to the use of different types
of links and due to the use of intentional element’ refer-
ences. Hence, some cycles may not be easily visualized.
The problem becomes even harder when goalmodels grow
in size and complexity.

• To improve the efficiency of the proposed detection
approach, we augmented the base simulating annealing

123

A search-based approach for detecting circular dependency bad smell in goal-oriented models

search algorithm with two mechanisms, namely pruning
and pairing.

• Conduct an empirical study to show the applicability of
three proposedvariants of the adopted algorithmandassess
their efficiency using several GRL case studies.

• Develop a set of guidelines that would help practitioners
deploy the proposed approach more efficiently in order to
detect all circular dependencies in a given GRL model.

The rest of this paper is organized as follows. The state of
the art is described in Sect. 2. A motivational example of a
meeting scheduler is presented in Sect. 3. Section 4 presents
the problem definition where the circular dependency bad
smell is defined and formulated as a search-based problem. In
Sect. 5,wedescribe the proposed simulated annealing search-
based detection approaches. The experimental evaluation is
presented in Sect. 6. The results are provided in Sect. 7. In
Sect. 8, we present the discussion and potential threats to
validity. Finally, conclusions are drawn in Sect. 9.

2 State of the art

There is a large body of research on bad smell detection
approaches. These approaches focus mainly on code-based
and UML-based bad smells [23, 24] and use various tech-
niques such as machine learning techniques [25] and search-
based algorithms [26]. In this section, an overview of some
of these techniques is presented.

2.1 Bad smell detection techniques

In the following subsections, an overview of the major tech-
niques that have been used to detect bad smells in the
source code and the software engineering models is dis-
cussed. Regardless of the software artifacts (i.e., code, UML
model, goal model, etc.), detection of the instances of bad
smells depends on the representation of these artifacts and the
definition of the addressed bad smell. Different techniques
might apply to the different artifactswith the right adaptations
depending on the addressed bad smell. A comprehensive list
of the detection techniques used in the literature can be found
in [27].

2.2 Metric-based bad smell detection

Metrics were employed to detect bad smells by establish-
ing an association between the subject bad smell and one or
more metrics. These metrics include size, coupling, cohe-
sion, inheritance, etc. After establishing the association, a
threshold is used to mark the existence of the associated bad
smell. Several studies employed metrics to detect different
bad smells in different ways for different artifacts. Some of

these studies employed existing metrics, others created new
metrics, and the rest used a combination of both. Bertran [28]
proposed the use of metrics to detect 8 code smells related to
the software architecture using direct association rules that
are composed of combinations of 7 metrics. Dexun et al.
[29] proposed the use of distance metrics to detect design
and code bad smells. These metrics are used to quantify
multiple invocation relationships between every two enti-
ties in the subject artifact. They applied their technique to
detect the feature envy bad smell. Nongpong [30] proposed
a new metric based on internal and external calls to detect
the feature envy bad smell as well. Based on those calls, a
call set is defined. This set is the basis for creating a fea-
ture envy factor which is a quantitative value between 0 and
1 that can be used to detect feature envy instances based
on predefined thresholds. Fourati et al. [31] introduced an
approach for detecting bad smells at the design level. They
addressed 5 bad smells. New and existing class and sequence
diagram metrics are used in their approach to characterize
the addressed bad smells. Singh and Kahlon [32] developed
two models to predict smelly classes based on metrics. The
first model is binary, and the second is a categorical model.
These models employed several existing metrics and two
new metrics. The binary model is deemed more useful com-
pared to the categorical model. Tahvildari and Kontogiannis
[33] developed a metric-based framework for identifying
improvement opportunities. They addressed structural and
architectural design flaws. In their diagnosis for these flaws,
two heuristics are used: key classes and single concept class.
Chen et al. [34] proposed a metric-based approach to detect
ten bad smells in Python code to explore their impact on
the maintainability of software projects. In their work, three
different approaches are used to specify metric thresholds:
experience-based, statistical-based, and tuning-based. They
evaluated their work on 106 python software projects. Veli-
oglu and Selçuk [35] proposed an approach to detect smells
using a combination of metrics. Their detection method used
tenmetrics andwas applied to detect two bad smells. Thresh-
olds used in their work were determined by a training set.

2.2.1 Rule-based bad smell detection

Rules are also employed to detect bad smells. A rule in the
area of bad smell detection is a descriptive query mech-
anism that describes a symptom (i.e., bad smell). In this
approach, rules are used to identify bad smells by employing
either direct associations or through a proxy such as metrics.
Rules are then applied to the subject model to retrieve the
corresponding smells. Czibula et al. [36] proposed a rule-
based approach for detecting defective entities in software
designs. Their approach is based on the mining of relational
association rules in software designs. These rules describe a
numerical ordering between attributes that repeatedly appear

123

M. A. Mohammed et al.

in some datasets. Association rules mining is also exploited,
but at the code level [37]. The authors used association rules
mining with regression analysis to predict co-changes in
the code associated with the divergent changes and shotgun
surgery bad smells. Kessentini and Sahraoui [38] proposed
the use of a music metaphor [39] as a harmonizing mecha-
nism for the automatic generation of detection rules. These
rules are generated based on examples and metrics from a
training set to detect three bad smells. Maddeh and Ayouni
[40] proposed the use of gradual rules to detect smells at the
design level. These rules are mined with the GRITE algo-
rithm [41] based on associations to 32metrics. Palomba et al.
[42] proposed a rule-based system for detecting Android-
specific bad smells. Their approach is based on traversing
the abstract syntax tree of the subject code to find instances
of the addressed bad smells based on a rule-based descrip-
tion. Based on that, they developed a tool called aDoctor to
detect 15 bad smells of the smells introduced in [42].

2.2.2 Machine learning-based bad smell detection

Several machine learning techniques have been applied to
detect bad smells, mainly as a classification problem. In
these techniques, a classification model is built by identify-
ing features that can differentiate infected from non-infected
artifacts with instances of the addressed bad smells. The clas-
sification model is trained with training examples to learn
how to identify infected artifacts. Most studies in this area
follow a similar procedure to detect bad smells. Fontana et al.
[43] applied several machine learning techniques to detect
bad smells. They employed 16 different machine learning
techniques to detect five bad smells in 74 software projects.
In similar efforts, Hozano et al. [44] conducted a study to
evaluate the performance of six machine learning algorithms
to detect four bad smells. They only used a single project
in evaluating their approach. Maneerat andMuenchaisri [45]
proposed the use of machine learning techniques and metrics
to detect bad smells. They used sevenmachine learning algo-
rithms to predict seven bad smells. The classification model
is built by establishing an association between 27metrics and
the addressed smells. Maiga et al. [46, 47] proposed the use
of a support vector machine classifier to detect bad smells.
They evaluated their technique in detecting four bad smells
in three software projects. Hassaine et al. [48] proposed a
newmachine learning technique inspired by the human body
immune system to detect bad smells in software projects.
They used that technique to detect three bad smells in two
software projects.

2.2.3 Search-based bad smell detection

Recently, combinatorial optimization search algorithms have
been getting significant attention in software engineering

research and application. Several combinatorial optimization
search algorithms have been proposed in the literature [49].
These algorithms differ in the way they approach the optimal
solution. However, these techniques share several common
concepts. In order to use these algorithms, the problemshould
be formulated as a search problem. There also should be a
way to tell if the optimal solution is reached or not [49]. In the
area of bad smell detection, the solution structure is a direct
description of the addressed bad smell. These search algo-
rithms can be used solely or together. Kessentini et al. [50]
developed a parallel cooperative approach to detect code bad
smells. They used a genetic algorithm and genetic program-
ming in parallel. Genetic programming is used to generate
detection rules, and the genetic algorithm is used to generate
detection examples. The same approach with the appropriate
adaptations is used to detect bad smells in web service archi-
tectures [51]. The cooperation paradigm was not the only
paradigm to use different techniques together. A competitive
approach rather than the cooperative approach is used by
Boussaa et al. [52]. In this approach, two competitive pop-
ulations co-evolve based on the genetic algorithm. The first
population represents the rules used to detect instances of
bad smells, and the second population represents examples
used to learn the developed rules. A single algorithm can
be used as well. Ghannem et al. [53] proposed the use of a
genetic programming algorithm to detect model bad smells.
The developed genetic programming algorithm is used to
create metric-based rules that characterize the addressed bad
smells.

2.3 Goal-oriented bad smell detection

In the previous subsections, several studies on bad smell
detectionwere presented. In those studies, several techniques
to detect instances of bad smells are presented. However,
those studies addressed software artifacts other than goal
models.Only a few studies in the literature attempted to intro-
duce and detect bad smells in goal models. Asano et al. [54]
introduced four bad smells (called symptoms in their paper)
and proposed techniques to detect them. The first bad smell
is “low semantic relations between a parent and its children.”
This smell addresses the irrelevancy of a child to its parent. If
the semantic similarity between a parent and its child is low,
it is considered as an instance of this smell. For detecting
low semantic relations, the authors employed a lightweight
natural language processing technique called case-frames in
which goal descriptions are represented as case frames. A
case frame consists of a verb and thewords that co-occurwith
it. These words are called concepts, and these concepts are
used to locate the differentmeanings of a verb. The associated
concepts with a verb are then mapped into a hierarchical dic-
tionary to calculate the similarities between a goal and each
of its children. The calculated similarities are used to identify

123

A search-based approach for detecting circular dependency bad smell in goal-oriented models

low semantic relations bad smell by comparing these similar-
ities to a certain threshold. The second and third bad smells
are “too many siblings” and “too few siblings.” These two
smells are concerned with whether the number of children
is adequate and enough to achieve the parent goal. To detect
these smells, the authors used the number of children metric
along with upper and lower thresholds. The upper thresh-
old specifies the maximum number of children that can be
associated with a parent, after which this number of children
is considered as an instance of the too many siblings’ bad
smell. The lower threshold specifies the minimum number
of children that can be associated with a parent before which
this number of children is considered as an instance of the
toomany siblings bad smell. The fourth bad smell is “course-
grained leaf goal.” This smell addresses leaf goals that are not
concrete enough. It investigates whether a leaf goal is con-
crete enough to be operationalized. This smell is detected
by measuring the depth of refinement of each branch in the
model. If the depth of a branch is insufficient, the associ-
ated leaf with this branch is highlighted as an instance of this
smell. The major issue with this study is that the thresholds
in all these smells are not defined and left to the developer to
specify.

Several guidelines have been developed in the literature
to improve the development of GRL models [55]. Some of
these guidelines are related to the consistency and complete-
ness attributes of GRL models. One of these guidelines, as
an example, says that each actor should have at least one ele-
ment with a nonzero importance value. In other words, if all
elements in an actor have an importance value of zero, this
actor violates this guideline. The second category of these
guidelines is related to the correctness of profiling i* lan-
guage using GRL language. An extended version of these
rules can be found in the iStarGuide.1 Some of these guide-
lines can be taken as guidelines to build GRL models. One
of these guidelines, as an example, says that all the depen-
dencies between the actors should have a dependum. GRL
standard presents the various configurations of dependencies
between actors [56]. Based on the standard, it is optional
to have a dependum, but the standard also indicates that
having a dependum leads to a more complete dependency
relationship. The third category includes guidelines related
to unused elements. Violations to these guidelines can be
considered as bad smells. For example, one of the guide-
lines in this category says that the model should not contain
empty actors. Empty actors are an undesirable situation and,
therefore, it is better to be eradicated. Besides, some other
shortcomings come from the nature of the GRL language
[57]. These shortcomings are not relevant to modeling prac-
tices or methodologies.

1 http://istarwiki.org/tiki-index.php?page=iStarGuide.

2.4 Comparison with the related work

This work is different from the other work in the litera-
ture in several aspects. First, in this work, a new GRL goal
model bad smell (i.e., circular dependency) is introduced
and formally defined. Although several code and model bad
smells are introduced and defined in the literature [13, 18],
to the best of our knowledge, only a few studies have investi-
gated goal models bad smells [54, 55]. Particularly, circular
dependencies in goal models have never been investigated
in the literature. Secondly, to detect the instances of circular
dependency bad smell, we applied the simulated annealing
search algorithm. In addition, a careful study of the struc-
tural properties of GRL goal models led to the development
of two mechanisms, namely pruning and pairing, to improve
the search algorithm. As a result, the running time of the
developed algorithm is found to be feasible. In the litera-
ture, the most efficient algorithm, to find cycles in directed
graphs, is Johnson’s algorithm [58]. However, this algorithm
grows exponentiallywith the increase in the number of cycles
(more information is provided in Sect. 0). Thirdly, the devel-
oped heuristics (i.e., pruning and pairing) have never been
considered in the literature. These heuristics with the right
adaptations can also be used with the other search tech-
niques such as genetic algorithms because they stem from
the nature of these models. Fourthly, there might exist a
resemblance between the pruning and forward satisfaction
analysis algorithms [59] as both of them move in a forward
direction (i.e., leaf to root) and stop on cycles. However,
pruning is concerned with the path only, while satisfaction
analysis is concerned with the path and values generated by
the path. In satisfaction analysis, the degree of contributions
(Help, Make, Break, etc.), the type of links (contribution,
decomposition, dependency), the nature of satisfaction anal-
ysis (quantitative or qualitative) are among the concerns of
the satisfaction analysis [59]. Fifthly, we successfully set the
parameters of the developed techniquemethodologically and
validated them empirically. For instance, the temperature is
set to 1000 and analytically shown to be suitable based on the
adopted fitness value configuration. Furthermore, the stop-
ping condition is set and validated based on the developed
pruning mechanism to confirm the absence of the instances
of dependency cycles in themodel and, consequently, specify
the needed number of iterations precisely.

3 Motivational example: meeting Scheduler

In this section, we introduce the main constructs of GRL
using a slightly modified version of a meeting scheduler
model introduced by Eric Yu [60] (see Fig. 1). This model is
widely used for different purposes in the literature [61–64].
illustrates the basic GRL constructs along with their graphi-

123

http://istarwiki.org/tiki-index.php?page=iStarGuide.

M. A. Mohammed et al.

Fig. 1 A modified version of the Meeting scheduler model presented in [60]

cal notations. For a complete description of GRL, readers are
referred to the ITU-T standard [10]. Next, we illustrate, using
a motivational scenario, how circular dependencies hinder
satisfaction analysis of GRL models. We start with a GRL
model that contains three cycles. These cycles present several
configurations of cycles. Two of these cycles reside between
actors, and the third one resides within an actor. In addition,
the first cycle consists of two different types of links (i.e.,
dependency and decomposition), the second cycle consists
of contribution links only, and the third cycle consists of
dependency links only. Then, we progressively resolve each
cycle to see its impact on the satisfaction analysis of GRL
models.

Figure 1 (producedusing the jUCMNav tool [12]) presents
a GRL model that models the domain of a meeting schedu-
lar. Firstly, to model active entities in the domain, actors are
used (seeTable 1). For example, themeeting schedularmodel
in Fig. 1 consists of three actors, i.e., “Meeting initiator,”
“Meeting participant,” and “Meeting scheduler.” Secondly,
to model the objectives of these actors, goals (a.k.a., hard
goals) and softgoals are used. The meeting initiator actor, for
example, wants to achieve the “Organize Meeting” goal. In
addition, the meeting initiator seeks a quick and low effort
meeting scheduling service, modeled using the “Quick” and
“Low Effort” softgoals. Unlike goals, softgoals do not have

clear-cut criteria with respect to their satisfaction. Thirdly,
to model a course of action or a process, the task element
is used, and to model the needed resources, the resource
element is used. Task and resource elements are used to
model mechanisms to achieve goals and softgoals. Fourthly,
tomodel the relationship between elements, contribution and
decomposition links are used. For example, “Let Scheduler
Schedule Meeting” contributes positively to the achieve-
ment of its parent softgoals, i.e., help contribution toward
“LowEffort” and somePositive contribution toward “Quick.”
On the other hand, the task “Schedule Meeting” contributes
negatively to both softgoals, i.e., someNegative contribution
toward “Quick” and hurt contribution toward “Low Effort.”
Moreover, elements can be decomposed into other elements.
For example, the meeting scheduler actor seeks to schedule
a meeting, modeled using the “Schedule A Meeting” goal.
This goal is refined, using an AND-decomposition link into
three tasks. In order to achieve this goal, the meeting sched-
uler actor is required to obtain the available dates (modeled
as “Obtain AvailDates” task), to get the agreement (mod-
eled as “Obtain Agreement” task) and find agreeable slots
(modeled as “Find Agreeable slots” task). Fifthly, to model
dependencies between actors, dependency links are used. For
example, the meeting initiator actor depends on the meeting
scheduler actor to schedule ameeting; and themeeting sched-

123

A search-based approach for detecting circular dependency bad smell in goal-oriented models

Table 1 The basic constructs of
the GRL language

uler depends on the meeting initiator to specify a date range.
These dependencies are important to show the interactions
among actors.

Aswementioned earlier, a circular dependency is an unde-
sirable situation in GRL models. We are going to emphasize
this issue further using a motivational scenario to show the
impact of the presence of circular dependencies on the sat-
isfaction evaluation of the elements within the cycles and,
consequently, on the rest of the model. Before starting to
analyze the impact of circular dependencies on satisfaction
analysis, it is worth noting that the types of elements or types
of links do not affect the way the propagation algorithm han-
dles cycles. Indeed, propagation algorithms treat hard goals,
softgoals, and tasks similarly. They compute the satisfaction
values of the model elements, and it is the responsibility of
the modeler/analyst to interpret the obtained satisfaction lev-
els. For example, in Fig. 5, we can see the calculated values
on top of each element. The difference between soft and hard
goals is not in the way these values are calculated. The dif-
ference will be in their interpretation. The same thing applies
to the different types of links in the context of satisfaction
analysis. The types of links do not affect the way the propa-
gation algorithm handles cycles. Only the order of evaluation
of different link types matters. In GRL, links are evaluated in
the following order: decomposition, contribution, and finally,
dependency links. For example, the goal “Schedule A Meet-
ing” in the meeting schedular actor is part of cycle 3 and its
evaluation, systematically, depends on several elements that
are connected to it using several types of links as shown in
Fig. 1. However, regardless of the value that is supposed to,
systematically be assigned to this goal, it will not be evalu-
ated because it is a part of a cycle unless the cycle is broken
by overriding evaluation values of one of the elements of

cycle 3 or by changing the model’s structure to resolve cycle
3.

The original model introduced in [60] has three cycles.
We kept the same number of cycles in the modified version.
However, we slightly modified the model by removing and
adding some links to avoid shared elements among cycles and
to show the different configurations of cycles. In the original
model, to show the impact of the cycles on satisfaction anal-
ysis, and since all cycles are interconnected through a shared
element, all cycles should be resolved at the same time. In
such a case, the reader might not be able to see the gradual
changes of resolving cycles on satisfaction analysis. There-
fore, we modified the model such that breaking one cycle
does not lead to breaking the other cycles. However, in the
developed tool and technique, we take this case (i.e., shared
elements among cycles) into consideration. The developed
technique can detect cycles that share elements (see model 3
in Sect. 0). In addition, we also modified the original model
by removing one of the original cycles and adding a new
cycle (i.e., Cycle 2 in Fig. 1) to show the different configu-
rations of cycles. As a result, the model shown in Fig. 1 has
three dependency cycles:

(1) The first cycle consists of dependency links and one
AND-decomposition link. It is located between the
“Meeting Scheduler” actor and the “Meeting Partici-
pant” actor and is composed of the following sequence:
“Agree to Date” “Proposed Date” “Obtain AvailDates”
“Enter AvailDates” “FindAgreeable Date Using Sched-
uler” “Agree to Date.”

(2) The second cycle consists of contribution links only. It
is located within the “Meeting Participant” actor and
is composed of the following sequence: “Richer Medi-

123

M. A. Mohammed et al.

Fig. 2 Applying initial evaluation values to some elements in the model

um” “Quality of Proposed Date” “Convenient Meeting”
“Richer Medium.”

(3) The third cycle consists of dependency links only. It
is located between the “Meeting Scheduler” actor and
the “Meeting Initiator” actor and is composed of the
following sequence: “Schedule AMeeting” “Enter Date
Range” “Let Scheduler Schedule Meeting” “Meeting is
Scheduled” “Schedule A Meeting.”

The rest of this section is dedicated to showing how the
presence of a cycle impacts the evaluation of its elements (i.e.,
forming the cycle) and, consequently, the rest of the GRL
model. To this end, we use our running example of Fig. 1,
and we consider an evaluation strategy that fully denies (i.e.,
satisfaction value of -100 shown in red color in Fig. 2) tasks
“Merge AvailDates” and “Obtain Agreement,” part of the
actor “Meeting scheduler.” To perform satisfaction analysis,
forward propagation algorithms (those suggested in the stan-
dard and implemented in the jUCMNav tool) are usually used
to propagate (in a bottom-up fashion) the initial evaluation
values assigned by the strategy to the rest of the model. For
example, in Fig. 2 the “Schedule AMeeting” goal is refined,
using an AND-decomposition link, into three tasks: “Obtain
AvailDates,” “Obtain Agreement,” “Find Agreeable slots.”
In an acyclic model, the “Schedule A Meeting” goal would

have been evaluated to the minimum of the evaluation values
of its children (for a complete description of the propagation
of the other types of links, please refer to the ITU-T standard
[10]). However, due to the presence of cycle 1, the propa-
gation algorithm was not able to propagate the evaluation of
the “Merge AvailDates” task to evaluate the satisfaction of
the “Obtain AvailDates” task. Furthermore, the evaluation
of the satisfaction of the goal “Schedule A Meeting” also
failed due to the presence of cycle 3. Therefore, the prop-
agation algorithm terminates without assigning satisfaction
values to the elements forming the cycle, as well as to those
elements depending (directly or indirectly) on them.

To unblock the propagation, we can break the first cycle,
as shown in Fig. 3, by removing the dependency link between
“Obtain AvailDates” task and “Enter AvailDates” task. As a
result, the evaluation values are now propagated throughout
the “Meeting Participant” actor. However, not all elements
in the “Meeting Participant” actor were evaluated due to the
presence of a second cycle (denoted as Cycle 2 in Fig. 1.)
within this actor. Once the second cycle is broken (by remov-
ing the contribution link between “Convenient Meeting”
softgoal and “Richer Medium” softgoal), the values prop-
agate through the elements of this cycle, as shown in Fig. 4.
Furthermore, the evaluation values failed again to propagate
to the “Meeting Initiator” actor due to the presence of a third

123

A search-based approach for detecting circular dependency bad smell in goal-oriented models

Fig. 3 The propagation of evaluation values when the first cycle is broken

cycle (denoted as Cycle 3 in Fig. 1) between the “Meeting
Scheduler” actor and “Meeting Initiator” actor.

The propagation algorithms suggested in the standard do
not allow for overriding initial values assigned as part of a
strategy, even if they cause conflicts. Therefore, this property
can be used to unblock the propagation through cycles. For
example, contrary to cycles 1 and 2 (where we have removed
a link to break the cycle), we have unblocked the propaga-
tion of the satisfaction values in Cycle 3 by overriding the
satisfaction value of “Enter Date Range” task to make it fully
satisfied (i.e., 100 shown in green color in Fig. 5) and add it to
the strategy, as shown in Fig. 5. Although the initial satisfac-
tion value given to the “Enter Date Range” task (i.e., 100),
conflicts with the value that should have been assigned by
the propagation algorithm (i.e., -100), this assignment was
not overridden by the propagation algorithm. If the prop-
agation algorithm allows for overriding initial satisfaction
values defined as part of the strategy, this resolution will not
be applicable.

4 Problem definition and formulation

As described earlier, in this work, we define a new bad smell,
i.e., circular dependency in GRL goal models. Cycles can be

a problematic issue in several settings in computer science
[65–68]. They are also an issue that should be taken into
consideration in the context of the satisfaction analysis of
GRL models as we explained earlier in Sect. 0 & Sect. 0. In
this section, we formally define the problem and formulate
it as a search problem.

4.1 Circular dependency in GRLmodels

In the context of satisfaction analysis, a GRL model can
be viewed as a network of propagation paths of evaluation
values among the elements of the model. In this network,
evaluation values propagate from source elements to desti-
nation elements creating evaluation dependencies. In these
evaluation dependencies, the destination element depends in
its evaluation on the source element. The direction of prop-
agation depends on the propagation algorithm. In forward
propagation algorithms, evaluation values are propagated in
a bottom-up fashion.Hence, evaluation dependencies are cre-
ated among the elements of the model in a bottom-up fashion
as well.

To differentiate evaluation dependencies created by
dependency links and evaluation dependencies created by the
other types of links, two types of evaluation dependencies
can be distinguished, (1) explicit evaluation dependencies

123

M. A. Mohammed et al.

Fig. 4 The propagation of evaluation values when the second cycle is broken

expressed using the dependency links, and (2) implicit
evaluation dependencies expressed using contributions, cor-
relations, and decomposition links [69]. In contribution links,
for example, in Fig. 1, the “Low Effort” softgoal is the des-
tination of the propagation and the “Let Scheduler Schedule
Meeting” task is the source of this propagation. Therefore, the
“Low Effort” softgoal, partially, depends, in its evaluation,
on the “Let Scheduler Schedule Meeting” task. In decompo-
sition links, for example, in Fig. 1, the “Organize Meeting”
goal is the destination of the propagation and the “Quick”
softgoal is the source of this propagation. Therefore, the “Or-
ganizeMeeting” goal, partially, depends, in its evaluation, on
the “Quick” softgoal. In dependency links, for example, in
Fig. 1, the “Let Scheduler Schedule Meeting” task is the des-
tination of the propagation and the “Meeting is scheduled” is
the source of this propagation. Therefore, the “Let Scheduler
Schedule Meeting” task, partially, depends, in its evaluation,
on the “Meeting is scheduled” goal.

We define the circular dependency bad smell as follows:

Let: G denotes a GRL model,
L denotes the set of links in G,
E denotes the set of elements in G, and.
C denotes the set of cycles in G.

Let: k be a positive integer,

n be the number of links in G, i.e., n �| L |,
s stands for the dependency Source,
d stands for the dependency Destination, thus,
li.s stands for the source element of link i, and simi-

larly,
li.d stands for the destination element of link i,

In addition, in the GRL standard, two distinct elements
cannot be directly linked to each other using more than one
link; hence, k should be greater than 2. Given all of that, then,
we can say:

∀ k ∈ [3, n], n ≥ 3

∀ l ∈ L,

∀ ls, ld ∈ E,

∀ l1, l2, . . . , lk ⊆ L ∈ C ⇔

∀ li ∈ C ∃ lj, lk ∈ C : li.s � lj.d ∧ li.d � lk.s

This definition states that for a set of links of size k, where
k is a positive integer in the range 3 ≤ k ≤ n, and n is the
number of links in the model, then, this set of links is said to

123

A search-based approach for detecting circular dependency bad smell in goal-oriented models

Fig. 5 The propagation of evaluation values when the third cycle is broken

Fig. 6 A model of two graphs
and a cycle

be a dependency cycle if and only if the source element of
each link in this set is the destination element of another link
in the same set and the destination element of each link in
the set is the source element of another link in the same set.

4.2 Problem formulation

Theproblemof detecting cycles can be formulated as a search
problem and solved using a search technique. Before decid-
ing on the technique to be used in detecting the instances of

circular dependency bad smell, we analyzed the complexity
of the problem’s search space. We found that the complexity
comes from three sources. The first source of complexity is
the length (i.e., the number of links in a cycle) of cycles. The
smallest cycle in a GRL model consists of three links, but
this length may grow, in some cases, to include all the links
in the addressed model. The second source of complexity is
the number of cycles in the addressed model. The number of
cycles can grow exponentially (more in Sect. 0). The third
source of complexity is the huge number of permutations

123

M. A. Mohammed et al.

Fig. 7 The model shown in
Fig. 6 after breaking the cycle

(i.e., a list of distinct links) associated with each possible
length of cycles. For example, if the length of a cycle is 3,
the maximum number of permutations is n(n − 1)(n − 2)
which is O

(
n3

)
,where n is the number of links in the model.

Hence, the maximum number of permutations for all cycles
can be computed as follows:

n(n − 1)(n − 2) + n(n − 1)(n − 2)(n − 3) + . . .

+ n(n − 1)(n − 2) . . . (3)(2)(1)

n∑

k�3

n(n − 1) . . . (n − k + 1), k being the length of the cycle

O
(
n3

)
+ O

(
n4

)
+ . . . + O

(
nn

) ≈ O
(
nn

)

Although, in GRL models, the average number of links
connected to each element is usually lower than themaximum
possible number, in our analysis, we build on the maximum
number to consider the worst-case scenario.

4.3 Solution identification

Aswe described earlier, the objective of this work is to detect
dependency cycles that can hinder the application of satis-
faction analysis. Manual detection of these cycles, even for
small models, can be difficult, if not impossible, due to the
nature of propagation among model elements and due to the
use of elements’ references. First, the source and destination
of the propagation might not be easily recognized visually
for a link. This is because the different types of links (depen-
dency links, decomposition links, and contribution links)
do not always provide visual guidance in the direction of
the propagation, especially for dependency links. Therefore,
cyclesmay not be easily recognized visually, especiallywhen
cycles include links of different types. For example, if a cycle
consists of two contribution links and one dependency link.

When the contribution links are pointing in one direction,
the dependency link will be pointing in the opposite direc-
tion. Second, the standard of the language introduced the
concept of elements’ references which enables modelers to
reuse elements in different graphs within the same model
[8]. However, for detecting cycles, this feature complicates
the problem. To illustrate the impact of elements’ references
on detecting dependency cycles, consider the GRL model in
Fig. 6 which is composed of two graphs – GRL_Graph1 and
GRL_Graph2.

Each graph resides in a different tab. Two of the ele-
ments inGRL_Graph1 have references inGRL_Graph2 (i.e.,
Goal_Y and Goal_X). In GRL_Graph1, these two elements
are not directly linked, but their references in GRL_graph2
are directly linked using a contribution link. We can also
see that Task_B in GRL_Graph2 is evaluated to “satisfied”
(100, green color).However, the propagation algorithm failed
to propagate the evaluation values to the other elements in
the same graph (i.e., GRL_Graph2) despite that the graph
does not visually seem to have cycles. In fact, this model
contains a cycle involving three elements: Goal_X Goal_Z
Goal_Y Goal_X, but it is distributed over both graphs.
We can see that elements Goal_X and Goal_Z and ele-
ments Goal_Z and Goal_Y are connected in a clockwise
direction in GRL_Graph1. The rest of the cycle is located
in GRL_Graph2. We can see that elements Goal_Y and
Goal_X are connected in a clockwise direction, as well, in
GRL_Graph2. Although these fragments are distributed and
do not visuallymanifest as a cycle, they constitute a cycle that
prevents the propagation of evaluation values, as shown in
Fig. 6. Therefore, when the link betweenGoal_Z andGoal_Y
is removed (to break the cycle), the values propagate through
all elements of the cycle in the two graphs, as shown in Fig. 7

As we described earlier, manual detection of dependency
cycles is not easy. Besides, scalability is the most widely
known problem associatedwith i*-based frameworks includ-

123

A search-based approach for detecting circular dependency bad smell in goal-oriented models

ing GRL [70, 71]. Therefore, the problem becomes even
harder as models grow in size and complexity. Hence, to
proceed with automatic detection, we will start by looking at
the available algorithms for detecting all elementary cycles
in a directed graph. The problem of detecting such cycles
is an NP-hard problem, and its complexity has been proven
to be exponential [58]. The most well-known and efficient
algorithm to solve this problem is Johnson’s algorithm [58].
This algorithm is based on depth-first search and its time
complexity is O((n +e)(c+1)), where n is the number of ver-
tices, e is the number of edges, and c is the number of cycles.
However, this algorithm grows exponentially with the num-
ber of cycles as the number of cycles grows faster with n than
the exponential of 2n [58]. Therefore, to provide a scalable
technique, we turn our attention to metaheuristic techniques.

Metaheuristic techniques [73] can be classified into local
and global search algorithms [49]. Local search algorithms,
such as hill-climbing, are susceptible to sticking into local
optima [49] which makes them less effective in non-gradient
search spaces. In our case, paths, for example, can be consid-
ered as local optima as each path constitutes a configuration
of links that is very close to a cycle. In such a case, a
hill-climbing algorithm is expected to stick into those paths
unable to proceed further. Therefore, to avoid sticking to
local optima,we need to employ a global search algorithm. In
the literature, several global search algorithms are proposed
such as genetic algorithms, tabu search, simulated annealing.
Most of these algorithms perform similarly if the problem
formulation (i.e., fitness function, solution representation,
tweakingmechanism, etc.) is similar [74]. Sincewe designed
the developed tool to retrieve a single cycle each time, we
selected a single solution metaheuristic technique (i.e., sim-
ulated annealing). Simulated annealing has been successfully
used to solve many computer science problems. To the best
of our knowledge, it has not been used to detect cycles in
GRL goal models.

After defining the circular dependency bad smell and
deciding on the technique to be used in detecting its instances,
we present the details of the problem formulation in the fol-
lowing subsections.

4.3.1 Model representation

To prepare a GRL model for detecting cycles, we need to
represent the model in an easy to process representation.
According to the definition of circular dependency in Sect. 0,
a dependency cycle can be defined as a sequence of links in
which the destination element of a link is the source element
of the next link, and the destination element of the last link
is the source element of the first link. Based on this defi-
nition, we need three pieces of information to represent a
GRL model. These pieces of information include the list of
links in the model, the destination element of each link, and

Table 2 Model representation—(nx3) matrix

Link ID Destination element ID Source element ID

11 1 3

12 2 3

13 4 3

14 3 5

15 6 4

16 5 6

17 6 7

18 6 8

19 6 9

the source element of each link. To this end, we represent
a GRL model as an (nx3) matrix, where n is the number of
rows, and it equals the number of links in the model. For
columns, the first column is used to store links, the second
column is used to store the destination element of the cor-
responding link, and the third column is used to store the
source element of the corresponding link. These pieces of
information are stored using their IDs and used to construct
candidate solutions (using link IDs) and track sequences to
identify cycles (using destination element IDs and source
element IDs). Table 2 illustrates the matrix corresponding to
the GRL model in Fig. 8(a) stored as element and link IDs
as shown in Fig. 8(b).

4.3.2 Candidate solutions specification

In the context of this work and to describe the components of
the developed technique, “candidate solution” is used to refer
to a potential cycle in a GRL model. It represents a list of
links thatmight ormight not turn to be a complete cycle. Each
list of links is a permutation of some or all the links in the
addressed model. Hence, the structure of candidate solutions
is specified as a list of integers of size n,where n is the number
of links in the model. Each cell in the list contains zero (i.e.,
no link is selected) or a positive integer (i.e., a link ID). Zero
cells are used to allow for scalable candidate solutions using
the array data type (in C-like languages), i.e., its length grows
and shrinks as needed. For example, the permutation “13 14
15” or the permutation “14 19 13 15” can be constructed
without any change to the structure of candidate solutions.

To constitute a cycle, the links in a candidate solution
should be consecutive, and the last link should be consecu-
tive to the first link as well. To determine whether a list of
links is consecutive, we need to use the destination element
and the source element of each link in the list. Therefore, we
have to refer to the representation of the model as shown in
Table 2. For example, link 16 is consecutive to link 15, as the
destination element (i.e., 6) of link 15 is the source element

123

M. A. Mohammed et al.

Fig. 8 A snippet of the running example in Fig. 1 and its encoded format

12 0 15 0 0 11 0 13 14
(a)

0 13 0 14 0 16 15 0 0
(b)

Fig. 9 Examples of candidate solutions

of link 16 (i.e., 6). Figure 9 shows two examples of two can-
didate solutions. By referencing the model representation as
shown in Table 2, we can see that the first candidate solu-
tion (Fig. 9a)) does not represent a cycle, while the second
candidate solution (Fig. 9b) represents a cycle.

5 Circular dependency detection approach

After articulating and formalizing circular dependency as
a bad smell, we developed a detection technique to detect
its instances in GRL goal models. The proposed detection
approach is constructed in two phases. In the first phase, the
simulated annealing search algorithm is adopted as a search-
ingmechanism. In the second phase, the structural properties
of GRLmodels are investigated to develop heuristics that can
help improve the performance of the base SA search algo-
rithm.

5.1 Simulated annealing

Simulated annealing is inspired by physics and physical laws
in the process of annealing in metallurgy. This algorithm is
used to solve optimization problems by optimizing random
search [75]. The algorithm relies on a controlled random
process for finding global—upper or lower—optimum. The
annealing process starts from high temperatures and, slowly,
cools down. The internal thermal energy follows the decrease
in the applied temperature, but it increases from time to time
according to the Boltzmann law. These random increases
cause the molecules to randomly change their positions and
velocity each time. The same principle is applied in the SA
algorithm. Starting from a high temperature, the algorithm is
given enough time to explore the search space. With slight
and repeated decrease in the temperature, the algorithm grad-
ually moves from exploring the search space to exploiting
parts of the search space that were found in the exploring
phase to bemore feasible. In some cases, the algorithm sticks
to a local optimum. In this case, the random increases in the
temperature allow the SA algorithm to escape this local opti-
mum by accepting random solutions from time to time at a
high rate at the beginning and a very low rate at the end.

In general, this algorithm looks for the best possible can-
didate solution by generating an initial random candidate
solution and then exploring the adjacent areas to the cur-

123

A search-based approach for detecting circular dependency bad smell in goal-oriented models

rent candidate solution for a new candidate solution. If the
new candidate solution is better than the current one, the
new candidate solution is adopted. Otherwise, the algorithm
keeps the current candidate solution. However, there might
be times when the algorithm sticks to a local sub-optimal
solution—local optimum. To be able to overcome this situa-
tion, the SAalgorithm is designed to accept aworse candidate
solution with an acceptance probability. This probability is
a function of the difference between the fitness of the new
candidate solution and the fitness of the current candidate
solution divided by the temperature. The main flow of the
algorithm is shown in Algorithm 1. The details of the main
steps are presented in the following subsections.

5.1.1 Steps of the search algorithm

Algorithm 1 provides a coarse-grain overview of the main
steps of the simulated annealing algorithm. It starts by gen-
erating an initial random candidate solution and adopting it
as the current candidate solution. After that, a new random
candidate solution is generated from the current candidate

solution by employing a tweaking mechanism. Then, the fit-
ness values of the current and the new candidate solutions
are calculated. Based on the resulting fitness values, two dif-
ferent cases can be distinguished. First, if the fitness of the
new candidate solution is better than the fitness of the current
one, the new candidate solution is adopted. Otherwise, the
new candidate solution “may” be adopted with a probability
(i.e., acceptance probability). This probability is brought to
help the search algorithm escape local optima. At the end of
each iteration, if the resulting candidate solution (i.e., “Best”)
represents a cycle (has a fitness of 100%, see Sect. 0) that has
not been discovered before, it will be considered. Otherwise,
the resulting solution will be discarded, and the algorithm
will start the next iteration. In other words, only valid cycles
are kept and reported.

The number of iterations needed to run this algorithm can
be set using a trial-and-error method since this approach is
acceptable in the area of search-based software engineering
[76, 77] or it can be set based on some heuristics related
to the problem being solved (more later in Sect. 3). In the
experimental validation of our work and in order to compare
the developed approaches, we set the number of iterations
to 1,000,000. After comparing the different approaches, an
application procedure is developed to support the developed
detection technique in setting its parameters to find all the
cycles in the model, if any (see subsection 3.1).

123

M. A. Mohammed et al.

5.1.2 Generating initial candidate solutions

To be able to generate a random candidate solution (Algo-
rithm 1 – Step 5), we start by constructing a list of all the
links as shown in Table 2. Then, a random initial candidate
solution is constructed by selecting some or all of the links, as
shown in Fig. 9. To this end, the following steps are followed
by the developed approach:

1. An empty list of length n (i.e., number of links in the
model) is created.

2. For each position in the list, a probability is generated for
its filling as part of the candidate solution. This probabil-
ity is used to control the length of the solution (i.e., the
sequence to be tested). For example, if that probability is
set to 0.5, probably, half of the positions in the list will
be links and the other half will be zeros (i.e., empty).

3. Go through all positions in the list. If that position is not
chosen for filling (in step 2), it will be initialized to 0. If
it is chosen, it will be initialized to a randomly selected
link from the list of links in the model such that it was
not already included in the solution being constructed.

By performing these steps, an initial random candidate
solution will be constructed. In order to measure its fitness,
we need to develop a fitness function.

5.1.3 Fitness function

This section presents the developed fitness function intended
to be used in the context of the simulated annealing algorithm
(i.e., Algorithm1, steps 10&14). The developedfitness func-
tion is used to measure the proximity of a candidate solution
to a complete cycle. This proximity is used to evaluate the
quality of the candidate solutions. Based on this proxim-
ity, the simulated annealing algorithm processes candidate
solutions. Since cycles are defined as a series of consecutive
links that start and end at the same vertex, to define the fitness
function, the number of consecutive links is used as the main
component of evaluating the fitness of candidate solutions.
To accommodate the different lengths of cycles,we divide the
number of consecutive pairs of links in a candidate solution
by its length. Therefore, in evaluating the fitness of candi-
date solutions, the more the consecutive links in a candidate
solution, the closer this candidate solution is to a complete
cycle.

Aswedescribed earlier, in thiswork, computing thefitness
value of a solution is concerned with reflecting how a list of
links is close to a complete cycle. Hence, two cases can be
distinguished:

1. The candidate solution contains 0 or 1 link only thefitness
value equals 0% as no consecutive links exist.

2. Otherwise, the fitness value is computed using the fol-
lowing equation:

Fitness � Number of consecutive pairs of links in the solution

Number of included links in the solution
∗100

It is important to notice that the first link should be exam-
ined whether it is consecutive to the last link in the evaluated
candidate solution. Hence, the application of the fitness func-
tion on the examples in Fig. 9 results in the following values:

• For the candidate solution in (a) (1/5) *100 � 20%. For
the numerator, “1” represents the number of consecutive
pairs of links in the candidate solution (a). This pair is “13,
14.” For the denominator, “5” is the number of included
links in the candidate solution (a): “12, 15, 11, 13, 14.”

• For the candidate solution in (b) (4/4) *100 � 100%. The
numerator (i.e., 4) represents the number of consecutive
pairs of links in the candidate solution (b). These pairs
are “13,14,” “14,16,” “16,15,” “15,13.” For the denomi-
nator, “4” represents the number of included links in the
candidate solution (b): “13, 14, 16, 15.”

5.1.4 Tweaking mechanism

The tweaking mechanism is used in the context of the sim-
ulated annealing algorithm (i.e., Algorithm 1, step 8), to
generate a new adjacent random candidate solution to exploit
the neighborhood of the current candidate solution. To this
end, a small change is introduced to the current candidate
solution using the following simple procedure:

1. Copy the old candidate solution to a new candidate solu-
tion.

2. Pick a random position in the new candidate solution.
3. If the value of the selected random position is not zero,

change it to zero. This corresponds to the deletion of a
link from the old candidate solution.

4. If the value of the selected random position is zero, pick
a random link from the list of links in the model such that
it was not already included in the new candidate solution.
Then, insert this link into the selected random position.
This corresponds to the addition of a new link to the old
candidate solution.

5.1.5 Acceptance function

The acceptance function is developed to calculate the accep-
tance probability used in the context of the simulated
annealing algorithm (i.e., Algorithm 1, step 10). Mathemati-
cally, the starting temperature must be high enough to allow
the SA algorithm to accept new random candidate solutions
at a high rate at the primitive stages. By doing so, it is possible
to move to any new random candidate solution exploring the

123

A search-based approach for detecting circular dependency bad smell in goal-oriented models

search space effectively resembling a random search. Oth-
erwise, the algorithm will stick to the first initial candidate
solution or a very close one resembling the hill-climbing
search. Every time the temperature is reduced, the probabil-
ity of accepting a new worse candidate solution is reduced,
until finally, the probability becomes close to zero. In such a
case, rarely, a new worse candidate solution is accepted. To
manage the ratio of reducing the temperature, a geometric
reduction mechanism is adopted in this work. This mecha-
nism gradually reduces the temperature geometrically. This
reduction mechanism is presented in Eq. 1.

T
′ � T ∗ (1 − Cr) (1)

where.

– T
′
is the new temperature,

– T is the old temperature,
– Cr is the cooling rate.

Based on the already described parameters, the acceptance
probability is evaluated according to Eq. 2.

P � e∧(
Q

′ − Q
)
/T (2)

where.

– P is the probability of acceptance. It is compared to a ran-
domly generated probability P’. If P > P

′
, the new worse

candidate solution will be accepted. Otherwise, the new
worse candidate solution will be rejected,

– Q
′
is the fitness value of the new candidate solution,

– Q is the fitness value of the old candidate solution.

In this work, the maximum fitness value (Q) is 100, the
initial temperature (T) is set to 1000, and the cooling rate (Cr)
is set to 0.05. Analytically, these values allow the SA algo-
rithm to start exploring the search space and to end exploiting
the candidate solution neighborhood. The following exam-
ples are provided to clarify this idea. Assume fixed values
for the fitness of the old and the new candidate solutions
(i.e.,Q � 95 and Q

′ � 40). In the beginning, the value of
temperature is 1000, and close to the end, the value of the
temperature can be 10. To calculate the acceptance probabil-
ity at the beginning and close to the end, we apply Eq. 2 in
both cases as follows:

Q � 95, Q′ � 40, T � 1000(i.e., at the beginning)

→ P � e(40−95)/1000 � 0.95

Q � 95, Q′ � 40, T � 10 (i.e., close to the end)

→ P � e(40−95)/10 � 0.004

The obtained probabilities indicate that the algorithm
starts exploring the search space by accepting new worse
candidate solutions at a high rate, as the temperature is still
high. With the repeated reductions in the temperature and
close to the end, the algorithm starts exploiting the neigh-
borhood of the current solution and hardly accepts worse
candidate solutions.

To summarize the acceptance procedure, we calculate
the quality (i.e., fitness) for the new and current candidate
solutions. If the new candidate solution is better, it will be
accepted. Otherwise (i.e., if the new candidate solution is
worse than the old candidate solution), the probabilities P
and P

′
are used to determine which candidate solution will

be kept. If P > P
′
, the new candidate solution is adopted.

Otherwise, the old candidate solution is kept.

5.2 Structural properties of GRLmodels

The structural properties of a software artifact can effectively
contribute to processing it for various purposes. With respect
to detecting the instances of circular dependency bad smell
in GRL models, the structure of GRL models is found very
helpful. Based on our analysis of the structure of these mod-
els, we introduce two heuristics, namely pruning and pairing,
that can improve the performance of the SA algorithm. The
pruningheuristic is intended to develop amechanism toprune
the addressed model before starting the search algorithm or
after resolving each cycle. The pairing heuristic is intended
to develop a mechanism to improve the performance of the
tweaking mechanism.

5.2.1 Pruning mechanism

As shown in Sect. 0, the search space of the potential cycles
in GRL models is exponential with the number of cycles
in the model. Therefore, the availability of a heuristic that
can reduce the search space will be extremely handy. With
this in mind, we analyzed GRL models and observed that
thesemodels usually have a tree-like structure concerning the
direction of evaluation propagation. Hence, several elements
usually have either incoming or outgoing links only. These
elements are either destination elements or source elements
only. In other words, these elements cannot be part of a cycle
as each element in a cycle should have at least one incoming
link andoneoutgoing link.Thus,wecanprune these elements
and their associated links without affecting our endeavor of
detecting circular dependencies. Pruning these elements, in
turn, might expose other elements that have either incoming
or outgoing links only. The process of pruning these elements
continues until each element in the model has at least one
incoming link and one outgoing link. This process results
in reducing the size of the GRL model, and consequently,
a reduction in the search space. For example, in Fig. 8(b),

123

M. A. Mohammed et al.

the number of links in the model is 9 and the number of
elements is 9. Each of the elements 1, 2, 7, 8, and 9 is linked
to the rest of the model with a single link. Therefore, they
cannot be part of a cycle. Consequently, these elements and
their associated links will be pruned, resulting in a pruned
model (see Fig. 10) and a reduced search space. The steps of
the pruning mechanism are presented in Algorithm 2. This
algorithm iterates over every element in the model. For each
element, it extracts the set of source elements and the set
of destination elements. If any of these sets is empty, this
element is pruned. This process continues until all elements
in the model are left to have at least one source element and
one destination element.

5.2.2 Pairing mechanism

After applying the pruningmechanism, all the remaining ele-
ments in the pruned model are left connected to at least two
links—one incoming and one outgoing link—see Fig. 10 as
an example. This property can be utilized to improve the
search process by considering pairs of links connected to
each element as follows:

1. Randomly pick an element from the set of the elements
in the pruned model.

2. Randomly select one incoming link andoneoutgoing link
from the set of links connected to the selected element
(i.e., pairing). It is important tomention that outgoing and
incoming terms refer to the direction of the propagation
between elements as explained in Sect. 0.

3. Put these two links in randomly selected consecutive
positions in the candidate solution being constructed.

This property is adopted and integrated into the tweaking
mechanism as shown in Algorithm 3. It starts by copying the
old candidate solution into a new candidate solution. Then,
a random position in the new candidate solution is picked. If
the value of the selected random position is not zero, change
it to zero. This corresponds to deleting a link from the old
candidate solution. Otherwise, if the value of the selected

Fig. 10 The snippet in Fig. 8 after pruning – A pruned model (PM)

random position is zero, pick a random element from the list
of elements in the pruned model. Then, from the list of links
connected to that element, randomly pick one incoming and
one outgoing link. After that, consider the following cases:

• If this pair of links does not exist in the old candidate
solution insert them in two consecutive positions starting
by the randomly selected position, regardless of the content
of the next position, such that the outgoing link is in a
consecutive position to the incoming link.

• If one of the links in this pair already exists in the old
candidate solution and the other one does not insert the
new link such that the outgoing link is in a consecutive
position to the incoming link whatever the content of the
new position was.

• If this pair of links does exist in the old candidate solution
swap the outgoing link to be in a consecutive position to
the incoming link if they are not.

The new tweaking mechanism is developed to replace
tweak (S) that is presented in Sect. 5.1.4 and used in Algo-
rithm 1—Step 8. To clarify this mechanism, we provide an
example to show how a new candidate solution can be gen-

123

A search-based approach for detecting circular dependency bad smell in goal-oriented models

erated from an old candidate solution using this mechanism.
Referring to the pruned model in Fig. 10, assume that the
old candidate solution is “13, 16, 15, 14.” To generate a new
candidate solution from this candidate solution, a random
position in the old candidate solution is selected. Assume
position 2 is selected (i.e., position 1 in C-like programming
languages). Since the content of this location is “16” which
does not equal 0, a random element will be selected from
the set of elements in the pruned model. Assume element
4 is selected. Then, one of its incoming dependency links
and one of its outgoing dependency links will be selected.
Assume links “15” and “13” are selected. Since they are
already included in the old solution, the outgoing link (i.e.,
13) will be moved to the consecutive location of the incom-
ing link (i.e., 15) and the rest of the candidate solution will
be adjusted accordingly. Hence, the resulting new candidate
solution will be “14, 16,15,13” which constitutes a cycle.

5.3 Constructed approaches

We developed a search-based technique to detect the
instances of circular dependency bad smell by integrating the

Table 3 The developed approaches

Approach Simulated
annealing

Pruning
mechanism

Pairing
mechanism

SA ✔ ✘ ✘

SAP ✔ ✔ ✘

SAPP ✔ ✔ ✔

Fig. 11 A snapshot of the results as presented in the developed plugin

pruning andpairingmechanisms into the simulated annealing
search algorithm. To evaluate the efficiency of the simulated
annealing search algorithm and the developed mechanisms,
we constructed three approaches. Each of these approaches is
built on top of the previous one by adding a new mechanism
as presented in Table 3. Approach 1 uses only the Simulated
Annealing search algorithm (abbreviated as SA). Approach
2 uses the Simulated Annealing search algorithm along with
the Pruning mechanism (abbreviated as SAP). Approach 3
uses the Simulated Annealing along with the Pruning and
Pairing mechanisms (abbreviated as SAPP).

The SA approach uses the base simulated annealing to
search for cycles (i.e., Algorithm 1) and operates on the orig-
inal model. The SAP approach also uses the base simulated
annealing to search for cycles. However, it does not operate
on the original model. Rather, it operates on a pruned model
obtained by applying the pruningmechanism (i.e., Algorithm
2) on the original model. The SAPP approach also uses the
base simulated annealing to search for cycles. However, it
operates on a pruned model (i.e., Algorithm 2) and employs
a new tweaking mechanism (i.e., Algorithm 3).

5.4 Tool support

We developed a new tool implementing the SAPP approach
to support the adoption of the outcomes of this study in practi-
cal settings. This tool is developed as an open-source Eclipse
plugin. It is free to use and it works on top of the Eclipse
framework and the jUCMNav tool. Figure 11 illustrates a
snapshot of the results of running the tool showing an exam-
ple of a detected cycle. The detected cycle and its information
are shown in the “problems” view of the Eclipse workbench.

This tool is developed according to the application guide
(see Sect. 3.1, algorithm 4). It detects a cycle and then asks
the modeler to resolve it and runs the tool again. When all
cycles are resolved, or when the model is free of cycles, the

123

M. A. Mohammed et al.

tool informs themodeler of the absence of cycles. Installation
and using instructions along with the source code of this tool
are available on GitHub.2

6 Experimental evaluation

In this section, we introduce GRL models and performance
metrics used in the experimental evaluation and compari-
son of the proposed approaches. The objective of presenting
and comparing the different approaches is to show the
improvements brought by the pruning and pairing mecha-
nisms. Therefore, we started by evaluating the performance
of the SA approach. Then, to evaluate the effectiveness of
the pruning mechanism, we compared the performance of
the SAP with the performance of the SA. Next, to evaluate
the effectiveness of the pairing mechanism, we compared the
performance of the SAPP approach with the performance of
the SAP approach.

6.1 Description of the experimental GRLmodels

Seven GRL models are used to evaluate and compare the
developed approaches, as shown in Table 4. These mod-
els have different characteristics in terms of the number of
injected cycles (i.e., instances of the circular dependency bad
smell), number of actors, number of elements, and number
of links. The injected cycles are intentionally designed to
address the scalability and complexity aspects. Table 4 sum-
marizes the GRL evaluation models and the intent behind
each model. Model 1 includes several cycles, where some
links participate in more than one cycle. It is intended to
evaluate and compare the developed approaches when cycles
are overlapping. On the contrary, GRL model 4 is intended
to evaluate and compare the developed approaches when the
model is not dense with cycles. GRL models 2 and 3 are
intended to evaluate and compare the developed approaches
on models with different configurations of cycles. GRL
model 5 is intended to evaluate and compare the performance
of the developed approaches when the model contains a sin-
gle cycle that includes all links in the model. Model 6 is used
to evaluate the performance of the developed approaches
when the model is acyclic (i.e., when the model is free
of circular dependencies). Models 1 up to 6 are artificially
constructed to evaluate the effectiveness of the developed
techniques.

To increase our confidence in the developed tool and
ensure its scalability, we used a real-worldmodel (i.e.,Model
7 as shown in Table 4). Model 7 is constructed in the context
of the Adapting Service lifeCycle toward EfficienT Clouds

2 https://github.com/MawalMohammed/Circular-Dependency-in-
GRL

(ASCETiC) project5&.6 This project is intended to develop
tools and methods covering the whole lifecycle of a cloud
service taking energy efficiency into account. Specifically,
Model 7 was developed to model the application of an
experiment-based methodology to determine an appropri-
ate application cloud deployment. Real-world models, as in
Model 7, tend to spread over several graphs. Therefore, ele-
ments can be referenced in many graphs in the same model
using element’s references. Each element’s reference might
be linked to different elements compared to the other refer-
ences in the same model. With respect to its size, model 7
consists of 15 graphs; each graph contains elements and links.
Some of these elements are repeated as references in differ-
ent graphs within the same model. Although the number of
distinct elements is 151 (as shown in Table 4), the number of
elements and references is 288. Furthermore, the model con-
tains other types of constructs such as beliefs and indicators.
Although beliefs and indictors do not influence satisfaction
analysis of dependency cycles, they make the manual detec-
tion of cycles harder as they overwhelm themodel visually. In
total, model 7 contains 763 visually recognizable elements.
The model is originally free of cycles; hence, we can con-
trol the injection of cycles. We add one cycle at a time to the
model. Every timewe introduce a cycle, we test the introduc-
tion of that cycle separately to ensure that the introduction of
each cycle does not introduce more than one cycle as some
of the elements in this model have more than one reference.
This is important in order to have the right number of cycles
to calculate the recall correctly.

6.2 Performancemeasurement

To measure the performance of the proposed approaches,
two performance aspects need to be considered: accuracy
and time. Precision and recall metrics are frequently used to
measure the accuracy in the literature [71]. In the context of
this research, we define precision and recall as follows:

Precision � (number of retrieved cycles)

(number of retrieved valid solutions)

Recall � (number of retrieved cycles)

(number of cycles in the model)

Since the developed approaches are designed to return
complete cycles only (i.e., valid instances of the circular
dependency bad smell), the precision metric returns “1” (i.e.,
100%) all the time. In other words, when one of the devel-
oped approaches is evaluated on an evaluation model, the
evaluated approach either returns complete cycles or does
not return anything at all. Therefore, the precision measure

5 http://www.ascetic.eu/.
6 https://github.com/ascetictoolbox/ascetictoolbox.

123

https://github.com/MawalMohammed/Circular-Dependency-in-GRL
http://www.ascetic.eu/.
https://github.com/ascetictoolbox/ascetictoolbox.

A search-based approach for detecting circular dependency bad smell in goal-oriented models

Table 4 The summary of evaluation models

Model Intent No. of actors No. of elements No. of links No. of cycles Cycles’ length

Model 1 To test the capability of the developed approaches
when a link participates in more than one cycle

2 11 15 5 4, 4, 4, 5, 6

Model 2 To test the capability of the developed approaches to
detect cycles when they expand over several actors

3 17 18 2 3, 6

Model 3 To test the capability of the developed approaches to
detect cycles within cycles. It is also intended to test
the scalability of the developed approaches in
detecting lengthy cycles

4 25 28 3 4, 4, 9

Model 4 To evaluate the scalability of the developed
approaches. This model grows big in size compared
to the previous models. It also includes a lengthy
cycle. Furthermore, this model is intended to test
the capability of the developed approaches to detect
relatively small cycles in a large pool of links

5 67 71 4 4, 4, 5, 13

Model 5 To investigate the behavior of the different
approaches when all the links in the model
participate in one cycle

4 9 9 1 9

Model 6 To investigate the behavior of the different approaches
when the model does not contain any cycle

5 67 67 0 NA

Model
74

To evaluate the behavior of the developed approaches
on a real-world case study

0 151 248 3 3, 5, 7

here is irrelevant as it does not help differentiate the evaluated
approaches in terms of their accuracy. To clarify this point,
assume that the first approachwas run on an evaluationmodel
and returned 2 cycles out of the 4 cycles in that model, and
assume that the second approach was run on the same evalu-
ation model and returned 3 cycles out of the 4 cycles. In this
case, the precision of the first approach is 2/2 which equals 1
and the precision of the second approach is 3/3 which equals
1 as well. Hence, precision is not a differentiating measure.
Therefore, the recall measure is used to evaluate the accu-
racy of the developed approaches. Contrary to precision, the
recall measure provides differentiating ratios that can help
assess the accuracy of the proposed approaches. To clarify
this, assume that the first approach was run on an evaluation
model and returned 2 cycles out of the 4 cycles in that model,
and assume that the second approach was run on the same
test model and returned 3 cycles out of the 4 cycles. In this
case, the recall of the first approach is 2/4 which equals 0.5
and the recall of the second approach is 3/4 which equals
0.75. We can see that the recall ratios of the two approaches
are different.

The time aspect of the developed approaches is measured
in terms of the number of iterations. The number of iterations
was chosen because it is independent of the hardware used.
However, to give the reader a perception of the time required
to run the iterations in the different approaches, the timeneed-
ed—in terms of seconds—to run the different approaches is
also provided. In this paper, the algorithmwas run on a laptop
with an Intel Core i5 2.6 GHz microprocessor and 4G RAM.

6.3 Stopping condition setting

For experimental purposes, the stopping condition should
be chosen such that it allows for assessing and analyzing
the behavior of the developed approaches in various situ-
ations exposing their strengths and weaknesses. Therefore,
we designed the stopping condition in the experimental eval-
uation of the developed approaches such that it is reached
in one of two cases: either by detecting all the cycles in the
subject evaluation model or reaching the maximum number
of iterations. Since the number of cycles in each model is
known, we are left with specifying the maximum number of
iterations. To this end, to be effective in evaluating the devel-
oped approaches, the maximum number of iterations should
be high enough to raise questions if it was reached without
detecting all or some of the cycles. Based on experimen-
tal pilot trials, the maximum number of iterations is set to
1000,000. This condition allows us to study the performance
of the different approaches in various situations. However, it
is not practical in real-world settings (more in Sect. 3.1).

7 Results

The developed approaches (i.e., SA, SAP, and SAPP) are
evaluated using the sevenGRL evaluationmodels introduced
in Table 4. Before discussing the obtained results, it is impor-
tant to mention that only the summaries of the results are
presented in this section, as shown in Table 5. The detailed
results alongwith the source code used to implement the pro-
posed approaches are uploadedwith the experimental data on

123

M. A. Mohammed et al.

the paper website.7 The instructions on how to run the source
code and collect the obtained results are also available in the
readme file associated with these materials.

Metaheuristic search algorithms, such as the simulated
annealing search algorithm, might have slightly different
behavior and results every time they run. Hence, to build
our conclusions on solid ground, each of the proposed
approaches was run 10 times on each evaluation model (i.e.,
a total of 210 runs; each of the three proposed approaches
was run 10 times on each of the seven evaluation models).
Table 5shows the results of evaluating each approach on each
evaluation model. In each model, the mean (μ) and standard
deviation (σ) of the number of iterations performed to detect
each cycle when each of the proposed approaches is run 10
times on each evaluation model are presented. For example,
in model 1 cycle 1, the mean and standard deviation of the
number of iterations needed to detect the first cycle when the
SA approach was run 10 times are 67.4 and 54.05, respec-
tively.

7.1 First approach: SA

This approach is solely based on the simulated annealing
search algorithm as shown in Algorithm 1. In this approach,
no pruning nor pairing has been used to augment the simu-
lated annealing search algorithm.

Table 5 shows the results of evaluating this approach on
each evaluation model (i.e., the SA row in each model).
Specifically, it shows themean and standard deviation of run-
ning this approach on each model 10 times. This approach
successfully retrieved all the cycles in model 1 and model
2. Therefore, the obtained recall was 100% in each case. In
model 3 and model 4, the obtained recall values were 66.7%
and 0%, respectively. Only 2 cycles out of the 3 cycles in
model 3were detected and no cycle at all is detected inmodel
4. This can be justified by the size of the model being evalu-
ated in terms of the number of links and the length of cycles.
Models 1 and 2, having sizes of 15 and 18, respectively, are
smaller compared to the sizes of models 3 and 4 (28 and 71,
respectively) as shown in Table 4. Furthermore, the longest
cycles in models 1 and 2 (of length 6) are smaller than the
longest cycles in models 3 and 4 (of lengths 9 and 13, respec-
tively) as shown in Table 4.

As mentioned earlier in the experimental evaluation sec-
tion (i.e., Sect. 0), the stopping condition of the developed
approaches is either detecting all the cycles in the subject
model or reaching the maximum number of iterations, which
is 1,000,000. For models 3, 4, and 7, in which the condition
of detecting all the cycles is not met, the SA approach per-
formed the maximum number of iterations. Investigating the
obtained results with model 3 indicates that this approach

7 http://softwareengineeringresearch.net/GRLSBSE.html.

failed to detect the third cycle which is the longest cycle in
this model. Hence, the SA approach performs unsatisfacto-
rily when the existing cycles are lengthy. In addition, this
approach has another weakness when it comes to models
with a large number of links. This is apparent in the results
associated with model 4, which has 71 links. Although the
model includes cycles of short length (i.e., 4 and 5), the algo-
rithm failed to retrieve any. The SA approachwas also unable
to detect any of the cycles of model 7 due to the large size of
this model as well. It also took a longer time when compared
to the time it took with model 4 for the same reason.

Model 6 does not contain cycles (i.e., a non-cyclic model),
as shown in Table 4. However, the obtained results showed
that the SA approach reached the maximum number of iter-
ations (i.e., 1,000,000, until the stopping condition is met).
The SA approach needed to perform the maximum number
of iterations as it does not have any mechanism to recognize
the absence of cycles.

As we can see in this section, the size of the model and the
length of the cycles are the two factors that limit the capa-
bility of the simulated annealing search algorithm to retrieve
dependency cycles. This confirms our analysis of the com-
plexity of the problem in Sect. 0. Hence, augmenting the
simulated annealing algorithm with additional information
(see Sect. 0) to obtain a better convergence rate is very help-
ful as it will be discussed in the following two subsections.

7.2 Second approach: SAP

In this approach, the developed pruningmechanism is used to
improve the performance of the simulated annealing search
algorithm by reducing the size of the subject model. This
reduction in the number of links results in a reduction in the
search space which, in turn, results in an improvement in
the obtained results using the SAP approach compared to the
results obtained using the SA approach. Before applying the
simulated annealing algorithm, the sizes of evaluation mod-
els are reduced using the developed pruning mechanism as
described in Algorithm 2. Table 2 shows the percentage of
reduction in the number of links using the pruning mecha-
nism in each evaluationmodel.We can notice that the number
of links is reduced across all models with different percent-
ages except for model 5 and model 6. In model 5, no link was
pruned because all the links in model 5 participate in the only
cycle in that model. In model 6, all links are pruned because
this model does not have any cycle, as shown in Table 4.

The results of applying the SAP approach to the seven
evaluation models are presented in Table 5. The obtained
results show significant improvements compared to the SA
approach. In terms of the recall metric, both approaches per-
formed perfectly with model 1 and model 2. However, the
differences started to show in model 3. In model 3, there is
an improvement in the recall metric by 6.6% using the SAP

123

http://softwareengineeringresearch.net/GRLSBSE.html.

A search-based approach for detecting circular dependency bad smell in goal-oriented models

Table 5 The results of evaluating the proposed approaches on the evaluation models for 10 runs

Approach Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Recall Time (s)

μ σ μ σ μ σ μ σ μ σ μ σ μ σ

Model 1

SA 67.4 54.05 169.6 70.57 271.4 105.6 571.7 286 8341.2 6747.3 1 0 0.731 0.57

SAP 10 8.1 54.8 30.8 96 53.09 290.2 272.8 2279.4 1832.8 1 0 0.179 0.12

SAPP 1.8 1.24 2.9 1.97 5.3 2.36 10.1 5.68 16.9 9.73 1 0 0.005 0.007

Approach Cycle 1 Cycle 2 Recall Time (s)

μ σ μ σ μ σ μ σ

Model 2

SA 337.4 444.2 21,560.2 13,217.5 1 0 2.032 1.28

SAP 22.5 15.19 3141.4 3446.4 1 0 0.2617 0.27

SAPP 7.9 7.3 19.4 12.3 1 0 0.0067 0.011

Approach Cycle 1 Cycle 2 Cycle 3 Recall Time (s)

μ σ μ σ μ σ μ σ μ σ

Model 3

SA 54,812.1 57,505.9 102,180.4 64,742.3 NF NA 0.67 0 169.3225 13.46

SAP 327.7 311.8 1354.9 768.65 827,394.7 116,021.5 0.73 0.13 90.52 37.9

SAPP 78.4 87.48 209.4 115 835.1 551.9 1 0 0.1018 0.097

Approach Cycle 1 Cycle 2 Cycle 3 Cycle 4 Recall Time (s)

μ σ μ σ μ σ μ σ μ σ μ σ

Model 4

SA NF NA NF NA NF NA NF NA 0 NA 615.56 29.56

SAP 879.2 972.4 3120.9 1409.5 14,164.7 7546.8 NF NA 0.75 0 117.41 6.1

SAPP 194.3 153.2 356.3 189.2 1001.8 497.76 84,004.3 68,552.3 1 0 9.35 7.60

Approach Cycle 1 Time (s)

μ σ μ σ

Model 5

SA 132,721.3 121,958.9487 9.88 9

SAP 133,656.4 88,715.591 10.982 7.51

SAPP 132.3 136.04 0.0239 0.0302

Approach Number of iterations
performed

Time (s)

μ σ μ σ

Model 6

SA 1,000,000 0 580.47 26.65

SAP 0 0 0 0

SAPP 0 0 0 0

Approach Cycle 1 Cycle 2 Cycle 3 Recall Time (s)

μ σ μ σ μ σ μ σ μ σ

Model 7

SA NF NA NF NA NF NA 0 NA 6519.873 0

SAP 48.8 30.91 763.2 788.65 30,642.9 29,659.76 1 0 3.31 3.23

SAPP 10.7 7.60 29.6 18.79 59.5 31.84 1 0 0.011 0.0076

123

M. A. Mohammed et al.

approach indicating that additional instances of dependency
cycles are detected compared to the SA approach. In the SA
approach, the search algorithm failed to detect any instance
of the third cycle in all the10 runs of the algorithm on model
3. In the SAP approach, the algorithm succeeded to detect
two instances of the third cycle in model 3 in two runs—run
3 and run # 8. In addition, the value of the recall metric
associated with using the SAP approach on model 4 showed
a great improvement compared to the results obtained using
the SA approach due to the big reduction in the number of
links associated with this model. The number of links in this
model is reduced by 70.4% as shown in Table 2. Conse-
quently, the recall jumped from 0 when the SA approach is
used to 75% when the SAP approach is used.

With respect to the time needed to perform the pruning, it
is included in the average time of running each approach 10
times in the last column in Table 1. In each run, the pruning
time is added to the average time of running the approach
10 times. This provides the ability to compare the different
approaches on the samebasis (i.e., the total timeneeded to run
each approach regardless of its components). As described
earlier, the pruning mechanism is used in the SAP and SAPP
approaches. The time needed to perform the pruning is added
to the average time needed to run these approaches. The same
thing can be said about the time needed to perform the pairing
mechanism. This time is also added to the average time of
running the SAPP approach.

In terms of the average number of iterations and the time
needed to run the SAP approach, the improvement was more
obvious. The average number of iterations needed to retrieve
all the cycles in model 1 was reduced from 8341.2 in the
SA approach to 2279.4 in the SAP approach (see μ asso-
ciated with cycle 5, i.e., the last cycle, in the SA and SAP
rows in model 1) with a percentage of 72.67%. A similar
conclusion can be drawn in model 2, the average number of
iterations needed to retrieve all the cycles in this model was
reduced from 21,560.2 in the SA approach to 3141.4 in the
SAP approach with a percentage of 85.43%. With respect to
model 3, the improvement was relatively small. The average
number of iterations performed was reduced from 1,000,000
to 827,394.7, which represents a percentage of 17.26%. This
is because 8 runs out of the 10 performed runs reached the
maximum number of iterations without detecting the third
cycle. The other two runs detected the third cycle in itera-
tion # 252,995 and iteration # 20,952, respectively. These
two runs were the reason behind the slight improvement in
the number of iterations over the first approach. In model 4,
despite the great improvement in the recall associated with
using the SAP approach compared to the SA approach, the
maximum number of iterations in each run is reached with
both approaches. This is because the SA approach failed to
detect any cycle and the SAP approach failed to detect any
instance of the fourth cycle in all performed runs and this also

justifies why the average recall was exactly 0% and 75% (i.e.,
¾), respectively.

It is also important to investigate how the average number
of iterations changes between the different evaluation mod-
els using the SAP approach as it gives a glimpse of how the
SA algorithm and pruning mechanism work in various situa-
tions. The average number of iterations needed to retrieve all
the cycles inmodels 1 and 2 increased from 2279.4 to 3141.4,
which represents an increase of 37.82%. This increase is rea-
sonable given the increase in the number of links between
these models. On the other hand, the average number of iter-
ations increased from 3,141.4 to 827,394.7 with a percentage
increase of 26,238.41% in model 3. To understand the rea-
son for this increase, we investigated the average number of
iterations needed to retrieve each cycle in model 3. We found
that the average number of iterations to detect each cycle
in model 3 using the SAP approach was 327.7, 1354.9, and
827,394.70, respectively. Given these numbers, we can see
that the majority of the increase is associated with the detec-
tion of cycle 3. The reason for this increase is the length of
the third cycle (i.e., 9), as shown in Table 4. The same thing
applies to model 4. Most of the increase in the number of
iterations was associated with cycle 4. The reason for that
increase is the length of that cycle (i.e., 13). This can also
justify why the SAP approach failed to detect any instance
of the fourth cycle in model 4 in all of the 10 runs.

In model 5, all the links of the model participate in a sin-
gle cycle. That is, the pruning mechanism is useless as no
link can be removed to reduce the search space (0% in Table
2). Therefore, both SA and SAP approaches performed sim-
ilarly. They performed a comparable number of iterations
(The SA approach performed 132,721.3 iterations on aver-
age and the SAP approach performed 133,656.4 iterations
on average). This is because the pruning mechanism which
differentiates the SAP approach from the SA approach is
useless.

In model 6, the SA approach performed the maximum
number of iterations even though it does not contain any
cycle. This is because the SA approach lacks the capability
of differentiating cyclic from non-cyclic models. This is not
the case with the SAP and SAPP approaches. SAP and SAPP
approaches are augmented with the pruning mechanism. The
pruning mechanism prunes the model until only the links
that participate in cycles are left. Since there are no cycles in
model 6, all links in model 6 are pruned (100% in Table 2).
Consequently, these two approaches (i.e., SAP and SAPP)
do not need to perform any iteration at all as no links are left
to search for cycles.

In model 7, the reduction in the number of links due to
the application of the pruning mechanism was very signifi-
cant (i.e., 93.9%), as shown in Table 6. This reduction led to
significant improvement in the obtained results. With the SA
approach, none of the cycles was detected, but with the SAP

123

A search-based approach for detecting circular dependency bad smell in goal-oriented models

approach, all cycles were detected in an average of 30,642.9
iterations and 3.31 s.

This approach alleviates the problem of model size. How-
ever, it shows weakness when it comes to long cycles, as
shown in models 3 and 4. This problem is alleviated by aug-
menting the simulated annealing search algorithm with the
pairingmechanism, as described inAlgorithm 3 (see Sect. 0),
resulting in developing a new approach (i.e., SAPP).

7.3 Third approach: SAPP

This approach is augmented with the pairing mechanism
to help the simulated annealing search algorithm cope with
lengthy cycles. The results of evaluating the SAPP approach
are presented in Table 5. We can see that the obtained results
improved substantially compared to the previous approaches.
In terms of the recall metric, the SAPP approach was able
to achieve 100% with all the evaluation models (i.e., all the
cycles in each evaluation model were detected in each run).
In terms of the average number of iterations and average
time, the SAPP approach performed much better than the
SAP approach. The average number of iterations performed
to detect all the cycles in model 1 is reduced from 2279.4
using the SAP approach to 16.9 using the SAPP approach
with a reduction rate of 99.26%. This huge reduction proves
the effectiveness of the pairing mechanism. The same results
are obtained with the other models as well. In model 2, the
average number of iterations is reduced from 3141.4 using
the SAP approach to 19.4 using the SAPP approach with a
reduction rate of 99.38%. In model 3, the average number of
iterations is reduced from 116,021.5 using the SAP approach
to 551.9 using the SAPP approach with a reduction rate of
99.52%. In model 4, the SAP approach was unable to detect
any instance of the fourth cycle in all the runs. This is not the
casewith the SAPP approach, the SAPP approachwas able to
detect all the cycles in model 4 by performing an average of
84,004.3 iterations. In model 5, the SA and SAP approaches
performed a large number of iterations to be able to detect the
only cycle in that model. This is different from the obtained
results using the SAPP approach in which the pairingmecha-
nism is utilized to improve the search process. Consequently,
the average number of iterations is reduced significantly from
133,656.4 using the SAP approach to 132.3 using the SAPP
approach with a reduction rate of 99.9%. Finally, in model 7,
the SAPP approach was able to perform better than the SAP
approach in terms of the average number of iterations, and,
consequently, in terms of the average time needed to detect
all the cycles. The average number of iterations needed to
detect all the cycles was reduced from 30,642.9 using the
SAP approach to 59.5 using the SAPP approach. This is also
reflected in the reduction in the average time needed to detect

all the cycles from 3.31 s using the SAP approach to 0.011 s
using the SAPP approach.

The average number of iterations needed to detect all the
cycles using the SAPP approach inmodels 1 and 2 is 16.9 and
19.4, respectively, with an increase rate of 14.79% only. This
increase is expected given the increase in the size of model
2 over model 1, as shown in Table 4. On the other hand, the
average number of iterations needed to detect all the cycles in
model 3 is 835.1with an increase rate of 4204.64%compared
to model 2. This increase, in part, is due to the increase in
the size of model 3 over model 2; however, the major reason
behind this big increase comes from the length of cycles. The
length of cycles in model 3 is 4, 4, and 9, as shown in Table 4.
This is not the casewithmodel 2, inwhich the longest cycle is
of length 6. To confirm this finding, we examined the average
number of iterations performed to detect each cycle in model
3. As shown in Table 5, the average number of iterations
performed to detect each of the three cycles in model 3 is
78.4, 209.4, and 835.1 respectively. We can see that most
of the increase is associated with detecting the third cycle
(i.e., the longest cycle). The same behavior was observed in
the results associated with model 4. The average number of
iterations performed to detect all the cycles is 84,004.3 with
an increase rate of 9959.19% compared to model 3. This
increase, in most, is due to the length of cycles in model 4
in which the length of the longest cycle is 13, as shown in
Table 5. To confirm this finding, we examined the average
number of iterations performed to detect each cycle in model
4. As shown in Table 5, the average number of iterations
performed to detect each of the four cycles in model 4 is
194.3, 356.3, 1,001.8, and 84,004.3, respectively. We can
see that most of the increase in the number of iterations is
associated with detecting the fourth cycle (i.e., the longest
cycle).

8 Discussion

In the previous sections, the circular dependency bad smell is
introduced, and the detection technique is described and eval-
uated. In this section, we discuss two main concerns related
to this research. First, in this work, the developed approaches
are evaluated on experimental models in which the number
of cycles is known. However, this is not the case in real-world
settings. In real-world settings, usually, the number of cycles
is unknown in advance. Second, we discuss the threats to the
validity of this work that might affect the obtained results
and conclusion.

8.1 Application guide

The simulated annealing algorithm augmented with the
pruning and pairing mechanisms (i.e., SAPP) is proved to

123

M. A. Mohammed et al.

be the most effective approach among the three proposed
approaches, as shown in Sect. 2. However, to be able to
apply the SAPP approach in real-world settings, the num-
ber of iterations parameter needs to be set. This number is
set to 1000,000 in the conducted experiments, just to allow
us to study the behavior of the different approaches under the
different situations. This is different from real-world settings.
In real-world settings, this parameter needs to be set such that
it helps guide the search process in finding all the cycles in
the addressed model. Hence, how can this parameter be set?
There are several ways that are different from each other in
their effectiveness. Firstly, the number of iterations can be set
by the trial-and-error method as it is a common method in
setting parameters in search-based software engineering [76,
77]. To improve the effectiveness of this method, the trial-
and-error method can be combined with the model’s size.
However, it turns out that this technique is ineffective due to
the high variability in the number of iterations conducted to
retrieve the different cycles in the different models as shown
by the obtained standard deviations (σ), as shown in Table
5. This high variability makes this technique less effective in
setting the number of iterations parameter in our case.

Secondly, another way of setting the number of iterations
parameter is to link it to the number of cycles in the addressed
model. That is, SAPP will keep looking for cycles until find-
ing all cycles in the model. The problem is that the number
of cycles in the model is usually unknown in advance. There-
fore, themodeler needs to assume the number of cycles using
the trial-and-error method. If the number of existing cycles
in the model is less than the assumed number, the SAPP
approach will keep searching forever. If the number of exit-
ing cycles in the model is more than the assumed number, the
SAPP approach will falsely declare the absence of cycles in
the addressed model. We can see that this technique is inef-
fective, as well, as the actual number of the cycles in a model
is missing.

Since the techniques presented above are not effective in
setting a stopping condition, how can we specify the number
of iterations that can be performed until finding all the cycles
in a model, if any? We found that we can circumvent this
issue using the pruning mechanism. We observed that if the
model is non-cyclic, it can be fully pruned (see the outcomes
of pruning model 6, as shown in Table 6). Based on that we
established the following lemma.

Lemma 1. Anon-cyclicGRLmodel is a fully prunablemodel.

This lemma can be utilized in variousways to help identify
a stopping condition to run the needed number of iterations
until detecting all the exiting cycles in a model. One possible
way is shown in Algorithm 4. It starts by running the prun-
ing algorithm on the subject model. If the subject model is
not cyclic, it will be fully pruned. Otherwise, if the model
is not fully pruned, it indicates the presence of cycles. In

Table 6 The percentage of reduction in each evaluation model after
applying the pruning mechanism

Model No. of links before
pruning

No. of links after
pruning

Reduction (%)

Model 1 15 12 20%

Model 2 18 13 27.7%

Model 3 28 18 35.7%

Model 4 71 21 70.4%

Model 5 9 9 0%

Model 6 67 0 100%

Model 7 248 15 93.9%

this case, the detection approach (i.e., SAPP) will search for
cycles until finding a cycle. Resolving this cycle will allow
for more links to be pruned. This procedure will be repeated
until detecting all the cycles in the subject model and the
model is fully pruned.

This method can guarantee the detection of all cycles in
the subject model. It allows for more links to be pruned
each time a cycle is detected and resolved. This continues
until all links are pruned. It is worth pointing out that this
method does neither need to specify the number of cycles in
a model nor specify a maximum number of iterations, spar-
ing whoever wants to apply the SAPP approach from setting
parameters.

To clarify how this procedure works, this approach is
applied to model 4 (validation data, see Table 4). The appli-
cation of this procedure on model 4 resulted in pruning the
model links from 71 to 21 and detecting the first cycle in
the first round. Once the first cycle is resolved, this method
is applied for the second round and resulted in pruning the
links from 21 to 18 and detecting the second cycle. Once
the second cycle is resolved, the procedure is applied for
the third round and resulted in pruning the links from 18
to 15 and detecting the third cycle. Once the third cycle
is resolved, the method is applied for the fourth round and
resulted in pruning the links from 15 to 13 and detecting
the fourth cycle. This cycle is resolved, and this method
is applied for the fifth round. This time the application of
this method resulted in pruning all the remaining links in
the model indicating that all the cycles in the model are
detected.

123

A search-based approach for detecting circular dependency bad smell in goal-oriented models

Fig. 13 The results as seen by
end-users of the developed tool

Fig. 12 The results at the time of evaluation

Algorithm 4 is what the developed Eclipse plugin is
designed to do. For experimental purposes (i.e., to evaluate
the developed techniques), though, we designed the devel-
oped approaches to return a list of all the identified cycles,
as shown in Fig. 12. We believe this is not effective for final
users. Therefore, when we designed the tool (see Sect. 0)
that is intended to be used by the end users, we detect one
cycle each time and ask the user to resolve it, as shown in
Fig. 13. This is done because on many occasions, resolv-
ing one cycle might lead to resolving another cycle, and on
other occasions, resolving a cycle might bring another cycle.
Therefore, following lemma 1, we believe it will be better
to see the outcomes of resolving cycles one by one until the
model is free of cycles.

This is different from the experiments used to evaluate the
proposed approaches, as shown in Table 5. In these exper-
iments, when a cycle is detected, it does not get resolved.
The developed approaches are designed to proceed to find
the next cycle until all cycles are detected, or the maximum
number of iterations is reached (i.e., the stopping conditions).
This strategy is adopted to provide an objective homogeneous
evaluation. The gradual detection and resolution cycle by
cycle strategy has two issues that might result in less objec-
tive evaluation. Firstly, there are several ways to resolve the
detected cycle. Each way might have a different impact on
the rest of the model; it might lead to an increase or decrease
in the number of links, it might lead to removing or adding
new elements, it might lead to merging elements, etc. Sec-
ondly, resolving a cycle might result in resolving more than
one cycle. It might also result in resolving one cycle and
adding a new cycle.

8.2 Threats to validity

The proposed approaches and the empirical validation are
subject to several threats to validity that have been identified
and categorized according to the classification provided in
[78], as follows:

Construct threats: There is a possible threat related
to some of the goal models used to evaluate the pro-
posed approaches in this study. Some of the validation goal
models are created for experimental purposes. To over-
come this issue, we made sure that these experimental
models cover several configurations of cycles and models.
Besides, we augmented our evaluation with a real-world case
study.

Internal threats: Internal threats to validity concern
the degree to which a certain outcome depends on the
intended experimental variables. In this paper, the developed
approaches are implemented and tested to the best of our
knowledge. However, there might be some implementation
and code tweaks that work in favor or against the developed
technique. Other implementations might also result in differ-
ences in the obtained results. To overcome this situation, the
code used for implementing this technique is posted online
(see Sect. 0) so that others can use it for comparison with our
work.

External threats: External threats concern the ability to
generalize the obtained results. The experiments in this study
are conducted on GRL goal models built using the jUCM-
Nav Eclipse plugin [13]. To generalize the obtained results
to other goal models, such as i*, the developed approaches
may require some adaptations. However, we believe that such
adaptations would be minimal, if any. Circular dependencies
are structurally the same in the different goal modeling lan-
guages and frameworks (i.e., a propagation path that starts
and ends at the element). Moreover, goal models created by
the different goal modeling languages and frameworks can
be represented alike (see Sect. 0). Hence, the generalization
of our approach to other goal-oriented languages would not
require significant efforts.

Conclusion threats: Conclusion validity concerns the
degree to which the conclusions made in the study are
reasonable. Several conclusions are made with respect to

123

M. A. Mohammed et al.

the performance of the three proposed approaches. Since
metaheuristic search algorithms have a built-in randomness
component, this randomness can result in one approach per-
forming better than the other in one single run despite that
it is not a better approach in general. For example, the SAP
approach might perform better than SAPP approach in a sin-
gle run although, in general, SAPP performs much better
than SAP. Therefore, to mitigate this threat, the conclusions
made in this study are based on the average of running
each approach on each model for 10 runs. Another concern
that may threaten the conclusion validity of this study is
the time needed to run the different approaches. The time
needed to run the different approaches is obtained based
on our machine. The time is dependent on the machine
running the developed approaches and the other applica-
tions running on the same machine. To mitigate this threat,
this time is accompanied by the number of iterations. We
believe that combing these two measures creates a bet-
ter understanding of the time needed to run the developed
approaches.

9 Conclusion

In this paper, we introduced and defined the circular depen-
dency bad smell in GRL goal models. Circular dependencies
occur in the context of the satisfaction analysis of these mod-
els. Satisfaction analysis starts by setting evaluation values
to some elements of the model (i.e., a strategy). Then, these
evaluation values are propagated throughout the model by
a propagation algorithm to calculate the evaluation values
of the other elements in the model. When the path of the
propagation forms a cycle, it creates a circular dependency.
The impact of circular dependencies on the propagation algo-
rithm, and satisfaction analysis, depends on the design of the
algorithm. In forward propagation algorithms (designed as
suggested in the standard), circular dependencies block the
propagation of evaluation values of cycle elements hindering
satisfaction analysis. Beyond satisfaction analysis, circular
dependencies can cause problems in reusing the model or in
using the model in conjunction with the other models such
as UCM and feature models. Thus, to help eliminate these
problems, first, we need to detect these cycles.

The manual detection of dependency cycles is difficult,
if not impossible. The complexity of detecting these cycles
is exponential with the number of cycles and the number
of cycles grows exponentially with the number of elements
in the model. Hence, to provide a scalable technique, the
simulated annealing search algorithm is employed to detect
dependency cycles. To enhance the performance of the sim-
ulated annealing search algorithm, the structural properties
of GRLmodels are studied and two heuristics are developed.
These heuristics are integrated into the developed approach

as a pruning mechanism and as a pairing mechanism. Based
on that, three search approaches, namely simulated annealing
algorithm (SA), simulated annealing augmented with prun-
ing (SAP), and simulated annealing augmented with pruning
and pairing (SAPP), were proposed. Besides, we provided
an application procedure based on the pruning mechanism to
help modelers apply the outcomes of this study effectively.

The three approaches were evaluated on a set of seven
experimental models of different numbers of elements, num-
ber of links, number of cycles, and length of cycles. The
obtained results show that the simulated annealing algorithm
augmented with pruning and pairing mechanisms (SAPP) is
the most effective in finding cycles as compared to SA and
SAP.

As future work, we plan to generalize our approach to
cover many goal-oriented modeling languages such as i*. In
addition, we plan to develop a refactoring recommendation
technique to suggest resolutions to the detected cycles to
help modelers resolve dependency cycles. Moreover, we are
planning to add new features to the developed tool such as
presenting all the detected cycles as a list.

Acknowledgements The authors acknowledge the support of King
Fahd University of Petroleum and Minerals in the development of this
work.

References

1. Lamsweerde A.v.: Goal-oriented requirements engineering: a
guided tour. In: Proceedings of the Fifth IEEE International Sym-
posium on Requirements Engineering pp. 249–262 (2001)

2. Lapouchnian A.: Goal-oriented requirements engineering: an
overview of the current research. University of Toronto, vol. 32,
(2005)

3. Mylopoulos, J., Chung, L., Nixon, B.: Representing and using non-
functional requirements: a process-oriented approach. IEEE Trans.
Software Eng. 18(6), 483–497 (1992)

4. Chung, L., Nixon B.A., Yu, E.J: Mylopoulos: Non-functional
requirements in software engineering. Springer Science & Busi-
ness Media (2012)

5. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed
requirements acquisition. Sci. Comput. Program. 20(1–2), 3–50
(1993)

6. Van Lamsweerde, A., Letier: From object orientation to goal orien-
tation: A paradigm shift for requirements engineering," in Radical
Innovations of Software and Systems Engineering in the Future:
Springer, pp. 325–340 (2004)

7. Yu, E.:Towards modelling and reasoning support for early-phase
requirements engineering. In: Proceedings of the Third IEEE Inter-
national Symposium on Requirements Engineering, pp. 226–235:
IEEE (1997)

8. ITU-T, Z: 151 User requirements notation (URN)–Language defi-
nition. ITU-T, (2018)

9. Horkoff J. et al: Goal-oriented requirements engineering: a sys-
tematic literature Map. In: IEEE 24th International Requirements
Engineering Conference (RE), pp. 106–115 (2016)

123

A search-based approach for detecting circular dependency bad smell in goal-oriented models

10. Pacheco, C., Garcia, I.: A systematic literature review of stake-
holder identification methods in requirements elicitation. J. Syst.
Softw. 85(9), 2171–2181 (2012)

11. Amyot, D., Ghanavati, S., Horkoff, J., Mussbacher, G., Peyton, L.,
Yu, E.: Evaluating goal models within the goal-oriented require-
ment language. Int. J. Intell. Syst. 25(8), 841–877 (2010)

12. Amyot, D., Mussbacher, G., Ghanavati, S.,Kealey, J.: GRL Mod-
eling and Analysis with jUCMNav. iStar, 766, pp. 160–162 (2011)

13. Fowler, M.: Refactoring: Improving the Design of Existing Code
2nd ed. Addison-Wesley Signature Series (Fowler), (2018)

14. Sjøberg, D.I., Yamashita, A., Anda, B.C., Mockus, A., Dybå, T.:
Quantifying the effect of code smells on maintenance effort. IEEE
Trans. Softw. Eng. 39(8), 1144–1156 (2013)

15. Palomba, F., Bavota, G., Di Penta, M., Fasano, F., Oliveto, R., De
Lucia, A.: On the diffuseness and the impact on maintainability of
code smells: a large scale empirical investigation. Empir. Softw.
Eng. 23(3), 1188–1221 (2018)

16. Zazworka, N., Shaw, M. A.,Shull, F., Seaman C.: Investigating the
impact of design debt on software quality. In: Proceedings of the
2nd Workshop on Managing Technical Debt, (2011), pp. 17–23:
ACM.

17. Alshayeb, M.: Empirical investigation of refactoring effect on soft-
ware quality. Inf. Softw. Technol. 51(9), 1319–1326 (2009)

18. Arendt, T., Taentzer, G: UMLmodel smells andmodel refactorings
in early software development phases. UniversitatMarburg, (2010)

19. Horkoff, J., Eric, S.: A Qualitative, Interactive Evaluation Pro-
cedure for Goal-and Agent-Oriented Models. In: CAiSE Forum,
(2009)

20. Duran, M.B., Mussbacher, G.: Investigation of feature run-time
conflicts on goal model-based reuse. Inf. Syst. Front. 18(5),
855–875 (2016)

21. Tinnes, C., Biesdorf, A., Hohenstein, U., Matthes, F.: Ideas
on improving software artifact reuse via traceability and self-
awareness. In: IEEE/ACM 10th International Symposium on
Software and Systems Traceability (SST), pp. 13–16: IEEE (2019)

22. Duran, M.B., Mussbacher, G., Thimmegowda, N., Kienzle, J.:
On the reuse of goal models. In: International SDL Forum,
pp. 141–158: Springer. (2015)

23. Sharma, T., Spinellis, D.: A survey on software smells. J. Syst.
Softw. 138, 158–173 (2018)

24. Misbhauddin, M., Alshayeb, M.: UML model refactoring: a sys-
tematic literature review.Empir. Softw.Eng.20(1), 206–251 (2015)

25. Azeem, M.I., Palomba, F., Shi, L., Wang, Q.: Machine learning
techniques for code smell detection: a systematic literature review
and meta-analysis. Information and Software Technology, (2019)

26. Mariani, T., Vergilio, S.R.: A systematic review on search-based
refactoring. Inf. Softw. Technol. 83, 14–34 (2017)

27. Alkharabsheh, K., Crespo, Y., Manso, E., Taboada, J. A.: Software
design smell detection: a systematicmapping study. SoftwareQual-
ity Journal, pp. 1–80, (2018)

28. Bertran, I.M.: Detecting architecturally-relevant code smells in
evolving software systems. In: 33rd International Conference on
Software Engineering (ICSE), pp. 1090–1093: IEEE (2011)

29. Dexun, J., Peijun, M., Xiaohong, S., Tiantian, W.: Detecting bad
smells with weight based distance metrics theory. In: Second Inter-
national Conference on Instrumentation, Measurement, Computer,
Communication and Control, pp. 299–304: IEEE (2012)

30. Nongpong K.: Feature envy factor: a metric for automatic feature
envy detection. In: 7th International Conference onKnowledge and
Smart Technology (KST), pp. 7–12: IEEE (2015)

31. Fourati, R., Bouassida, N., Abdallah, H. B.: A metric-based
approach for anti-pattern detection in uml designs. In: Computer
and Information Science: Springer, pp. 17–33 (2011)

32. Singh, S., Kahlon, K.: Effectiveness of encapsulation and object-
oriented metrics to refactor code and identify error prone classes

using bad smells. ACM SIGSOFT Softw. Eng. Notes 36, 1–10
(2011)

33. Tahvildar, L., Kontogiannis, K.: A metric-based approach to
enhance design quality through meta-pattern transformations,"
in Seventh European Conference onSoftware Maintenance and
Reengineering, pp. 183–192: IEEE (2003)

34. Chen, Z., Chen, L., Ma, W., Zhou, X., Zhou, Y., Xu, B.: Under-
standing metric-based detectable smells in Python software: a
comparative study. Inf. Softw. Technol. 94, 14–29 (2018)

35. Velioğlu, S., Selçuk, Y.E.: An automated code smell and anti-
pattern detection approach: In: IEEE15th International Conference
on Software Engineering Research,Management and Applications
(SERA), pp. 271–275: IEEE (2017)

36. Czibula, G., Marian, Z., Czibula, I.G.: Detecting software design
defects using relational association rule mining. Knowl. Inf. Syst.
42(3), 545–577 (2015)

37. Lee, S.-J., Lo, L.H., Chen, Y.-C., Shen, S.-M.: Co-changing code
volume prediction through association rule mining and linear
regression model. Expert Syst. Appl. 45, 185–194 (2016)

38. Kessentini, M., Sahraoui, H., Boukadoum, M., Wimmer, M.:
Design defect detection rules generation: a music metaphor. In:
15th European Conference on Software Maintenance and Reengi-
neering, pp. 241–248: IEEE (2011)

39. Lee, K.S., Geem, Z.W.: A newmeta-heuristic algorithm for contin-
uous engineering optimization: harmony search theory and prac-
tice. Comput. Methods Appl. Mech. Eng. 194(36–38), 3902–3933
(2005)

40. Maddeh, M., Ayouni, S.: Extracting and Modeling Design Defects
Using Gradual Rules and UML Profile. In: IFIP International Con-
ference on Computer Science and its Applications, pp. 574–583:
Springer. (2015)

41. Di-Jorio, L., Laurent, A., Teisseire, M.: Mining frequent grad-
ual itemsets from large databases. In: International Symposium
on Intelligent Data Analysis, pp. 297–308: Springer (2009)

42. Palomba, F., Di Nucci, D., Panichella, A., Zaidman, A., De
Lucia, A.: Lightweight detection of Android-specific code smells:
The aDoctor project. In: IEEE 24th International Conference
on Software Analysis, Evolution and Reengineering (SANER),
pp. 487–491: IEEE (2017)

43. Fontana, F.A., Mäntylä, M.V., Zanoni, M., Marino, A.: Compar-
ing and experimenting machine learning techniques for code smell
detection. Empir. Softw. Eng. 21(3), 1143–1191 (2016)

44. Hozano, M., Antunes, N., Fonseca, B., Costa, E.: Evaluating the
accuracy of machine learning algorithms on detecting code smells
for different developers. In: ICEIS (2), pp. 474–482 (2017)

45. Maneerat, N., Muenchaisri, P.: Bad-smell prediction from soft-
ware design model using machine learning techniques. In: Eighth
International Joint Conference on Computer Science and Software
Engineering (JCSSE), pp. 331–336: IEEE (2011)

46. Maiga, A., Ali, N., Bhattacharya, N., Sabane, A., Gueheneuc, Y.-
G., Aimeur, E.:SMURF: A SVM-based incremental anti-pattern
detection approach. In: 19thWorkingConference onReverse Engi-
neering, pp. 466–475: IEEE (2012)

47. Maiga,A. et al.: Support vectormachines for anti-pattern detection.
In: Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering, pp. 278–281: IEEE (2012)

48. Hassaine, S., Khomh, F., Guéhéneuc, Y.-G., Hamel, S.: IDS: An
immune-inspired approach for the detection of software design
smells," in Seventh International Conference on the Quality of
Information and Communications Technology, pp. 343–348: IEEE
(2010)

49. Luke, S.: Essentials of metaheuristics. ed: Springer, (2011)
50. Kessentini,W., Kessentini,M., Sahraoui, H., Bechikh, S., Ouni, A.:

A cooperative parallel search-based software engineering approach
for code-smells detection. IEEETrans. Softw. Eng. 40(9), 841–861
(2014)

123

M. A. Mohammed et al.

51. Ouni, A., Kessentini, M., Inoue, K., Cinnéide, M.O.: Search-based
web service antipatterns detection. IEEE Trans. Serv. Comput.
10(4), 603–617 (2017)

52. Boussaa, M., Kessentini, W., Kessentini, M., Bechikh, S., Chikha,
S.B.: Competitive coevolutionary code-smells detection. In: Inter-
national Symposium on Search Based Software Engineering,
pp. 50–65: Springer (2013)

53. Ghannem, A., Kessentini, M., El Boussaidi, G.: Detecting model
refactoring opportunities using heuristic search," In: Proceedings
of the 2011 Conference of the Center for Advanced Studies on
Collaborative Research, pp. 175–187: IBM Corp (2011)

54. Asano, K., Hayashi, S., Saeki. M.: Detecting bad smells of
refinement in goal-oriented requirements analysis. In: Interna-
tional Conference on ConceptualModeling, pp. 122–132: Springer
(2017)

55. Yan, J.B.: Static Semantics Checking Tool for jUCMNav. ed: Mas-
ter’s project, SITE, University of Ottawa, (2008)

56. E. Knauss, El Boustani, C.,Flohr, T.: Investigating the impact of
software requirements specification quality on project success. In:
International Conference on Product-Focused Software Process
Improvement, pp. 28–42: Springer (2009)

57. Mussbacher, G., Amyot, D., Heymans, P.: Eight Deadly Sins of
GRL. In: iStar, pp. 2–7 (2011)

58. Johnson, D.B.: Finding all the elementary circuits of a directed
graph. SIAM J. Comput. 4(1), 77–84 (1975)

59. Horkoff, J., Yu, E.: Comparison and evaluation of goal-oriented sat-
isfaction analysis techniques. Requirements Eng. 18(3), 199–222
(2013)

60. Yu, E.: Modelling strategic relationships for process reengineering
(Social Modeling for Requirements Engineering). p. 2011 (2011)

61. Jureta, I.J., Faulkner, S.: Clarifying goal models. In: 26th interna-
tional conference on Conceptual modeling, vol. 28, pp. 139–144
(2007)

62. Santander, V.F., Castro, J. F.: Deriving use cases from orga-
nizational modeling. In: Proceedings IEEE joint international
conference on requirements engineering, pp. 32–39: IEEE (2002)

63. Jureta, I.J., Faulkner, S., Schobbens, P.-Y.: Clear justification of
modeling decisions for goal-oriented requirements engineering.
Requirements Eng. 13(2), 87 (2008)

64. Rayasam, S: Transformational creativity in requirements goalmod-
els. University of Cincinnati, (2016)

65. Omer, A.M., Schill, A.: Automatic management of cyclic depen-
dency amongweb services. In: 14th IEEE International Conference
on Computational Science and Engineering, pp. 44–51: IEEE
(2011)

66. Bitonti, T.F., Lei, Y.: Methods, systems, and computer program
products for using graphs to solve circular dependency in object
persistence. ed: Google Patents, (2009)

67. Zhong, E.: Methods and systems for determining circular depen-
dency. ed: Google Patents, (2007)

68. Melton, H., Tempero, E.: An empirical study of cycles among
classes in Java. Empir. Softw. Eng. 12(4), 389–415 (2007)

69. Hassine, J., Alshayeb, M.: Measurement of actor external depen-
dencies in GRL Models. In: Proceedings of the Seventh Interna-
tional i* Workshop co-located with the 26th International Con-
ference on Advanced Information Systems Engineering (CAiSE
2014), Thessaloniki, Greece, (2014)

70. Yu, E., Giorgini, P., Maiden, N., Mylopoulos, J., Fickas, S.:
Strengths and weaknesses of the i* framework: an empirical evalu-
ation (SocialModeling for Requirements Engineering).MIT Press,
(2011)

71. Lima, P., et al.: An extended systematic mapping study about the
scalability of i* Models. CLEI Electron. J. 19(3), 7–7 (2016)

72. Yu, E., Giorgini, P., Maiden, N., Mylopoulos, J., Fickas, S.:
Strengths andWeaknesses of the i*Framework:AnEmpiricalEval-
uation. MIT Press, Social Modeling for Requirements Engineering
(2011)

73. Abdel-Basset, M., Abdel-Fatah, L., Sangaiah, A.K.: Metaheuristic
algorithms: a comprehensive review. Computational intelligence
for multimedia big data on the cloudwith engineering applications,
pp. 185–231, (2018)

74. Almhana, R., Kessentini, M.: Considering dependencies between
bug reports to improve bugs triage. Autom. Softw. Eng. 28(1), 1–26
(2021)

75. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simu-
lated annealing. science, vol. 220, no. 4598, pp. 671–680, (1983)

76. Arcuri, A., Briand, L.: A practical guide for using statistical
tests to assess randomized algorithms in software engineering. In:
33rd International Conference on Software Engineering (ICSE),
pp. 1–10: IEEE (2011)

77. Eiben, A.E., Smit, S.K.: Parameter tuning for configuring and ana-
lyzing evolutionary algorithms. Swarm Evol. Comput. 1(1), 19–31
(2011)

78. Campbell, D.T., Cook, T.D.: Quasi-experimentation: Design &
analysis issues for field settings. RandMcNally College Publishing
Company Chicago, (1979)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Mawal A. Mohammed received
his PhD and MSc from the
department of Information and
Computer science of King Fahd
University of Petroleum and
Minerals (KFUPM). Prior to
this, Mr. Mawal worked as a
full-time teaching assistant in the
Software Engineering department
of Taiz University, Yemen, where
he received his BS degree. His
research interests include soft-
ware engineering, requirements
engineering, software design
patterns, and software quality.

123

A search-based approach for detecting circular dependency bad smell in goal-oriented models

Mohammad Alshayeb is a Pro-
fessor at the Information and
Computer Science Depart-
ment, King Fahd University
of Petroleum and Minerals, Saudi
Arabia. He received his MS and
PhD in Computer Science and
certificate of Software Engi-
neering from the University of
Alabama in Huntsville in 2000,
2002 and 1999 respectively. Dr.
Alshayeb worked as a senior
researcher and Software Engineer
and managed software projects in
the United States and the Middle

East. He published over 100 refereed conference and journal publica-
tions and holds 5 US patents. He received Khalifa award for education
as "the distinguished University Professor in the Field of Teaching
within Arab World", 2016. Dr. Alshayeb’s research interests include
software quality and quality improvements, software measurement
and metrics, evidence-based software engineering and empirical
studies in Software Engineering. More

Jameleddine Hassine is an Asso-
ciate Professor at the department
of Information and Computer
Science of King Fahd Univer-
sity of Petroleum and Minerals
(KFUPM). Dr. Hassine holds a
Ph.D. from Concordia University,
Canada (2008) and an M.Sc.
from the University of Ottawa,
Canada (2001). Dr. Hassine
has several years of industrial
experience within worldwide
telecommunication companies;
Nortel Networks (Canada) and
Cisco Systems (Canada). His

main research interests include requirements engineering (languages
and methods), software testing, formal methods, software evaluation,
and maintenance. He is actively involved in several funded research
projects and has over 50 publications on various research topics in
his field. Dr. Hassine published his research in many high-impact
journals like Requirements Engineering Journal (REJ), Journal of
Systems and Software (JSS), Information and Software Technology
(IST), and Software and Systems Modeling (SoSyM).

123

	A search-based approach for detecting circular dependency bad smell in goal-oriented models
	Abstract
	1 Introduction
	2 State of the art
	2.1 Bad smell detection techniques
	2.2 Metric-based bad smell detection
	2.2.1 Rule-based bad smell detection
	2.2.2 Machine learning-based bad smell detection
	2.2.3 Search-based bad smell detection

	2.3 Goal-oriented bad smell detection
	2.4 Comparison with the related work

	3 Motivational example: meeting Scheduler
	4 Problem definition and formulation
	4.1 Circular dependency in GRL models
	4.2 Problem formulation
	4.3 Solution identification
	4.3.1 Model representation
	4.3.2 Candidate solutions specification

	5 Circular dependency detection approach
	5.1 Simulated annealing
	5.1.1 Steps of the search algorithm
	5.1.2 Generating initial candidate solutions
	5.1.3 Fitness function
	5.1.4 Tweaking mechanism
	5.1.5 Acceptance function

	5.2 Structural properties of GRL models
	5.2.1 Pruning mechanism
	5.2.2 Pairing mechanism

	5.3 Constructed approaches
	5.4 Tool support

	6 Experimental evaluation
	6.1 Description of the experimental GRL models
	6.2 Performance measurement
	6.3 Stopping condition setting

	7 Results
	7.1 First approach: SA
	7.2 Second approach: SAP
	7.3 Third approach: SAPP

	8 Discussion
	8.1 Application guide
	8.2 Threats to validity

	9 Conclusion
	Acknowledgements
	References

