
Experiment 3

Introduction:
In this experiment the students are exposed to the structure of an assembly language
program and the definition of data variables and constants.

Objectives:

• Assembly language program structure
• Instructions and Directives
• Data representation
• Variable & constant declaration,
• ADD & SUB instructions

Assembly Language Program Structure

• An assembly language program is a sequence of instructions and directives.
• A program consists of one statement per line.
• The general structure of an assembly language program follows the guidelines

shown in the following table:

TITLE “Optional: Write here the Title of your program”
 .MODEL SMALL

This directive defines the memory model used in the program.

.STACK

This directive specifies the memory space reserved for the stack

.DATA

Assembler directive that reserves a memory space for constants and variables

.CODE

Assembler directive that defines the program instructions

END

Assembler directive that finishes the assembler program

Table 3.1: Assembly Language Program Structure

Instructions and Directives:

Instruction:

• The format of an assembly instruction closely mirrors the structure of a machine
instruction

• An instruction is meant for the processor.
• The assembler translates this instruction into machine code

Statement syntax:

Name operation operand(s) ;comment

 1

Examples:
 MOV AX, BX ; Load AX to prepare for multiplication
 ADD AX, MEM16 ; AX = AX + MEM16

Directive:

Pseudo-instructions or assembler directives are instructions that are directed to the
assembler. They will affect the machine code generated by and will not be translated
directly into machine code. Directives are used to declare variables, constants, segments,
macros, and procedures as well as supporting conditional assembly

Model Directive:

The model determines the size of the code stack and data segments of the program. Each,
of the segments is called a logical segment. Depending on the model used, the code and
data segments may be in the same or in different physical segments as shown in table 3.2.

In most of our programs, the model small is sufficient. The tiny model is usually used to
generate command files (files with extension .com). This type of files is smaller in size
than the executable files with extension .exe.

Size of Code and Data

 Memory
Model

Code Data Note

TINY ≤ 64KB ≤ 64KB Code + Data ≤ 64KB

SMALL ≤ 64KB ≤ 64KB

MEDIUM may be ≥ 64KB ≤ 64KB

COMPACT ≤ 64KB may be ≥ 64KB

LARGE may be ≥ 64KB may be ≥ 64KB no array ≥ 64KB

HUGE may be ≥ 64KB may be ≥ 64KB arrays can be ≥ 64KB

Table 3.2: Memory Models

Stack Directive:

 Directive is .stack for stack segment
 Should be declared even if program itself does not use stack needed for subroutine

calling (return address) and possibly passing parameters
 May be needed to temporarily save registers or variable content

 2

Memory Segment:

 Directive = .Data
 All variables must be declared at this level
 All constants must be defined at this level
 A variable is declared by : DB, DW ,…..
 A constant is defined using: the directive equ.

Code Segment:

 The directive .code is used for code segment
 The program code resides here

End of Program:

 The Directive End is used to tell the assembler that this is the end of the program
source file.

Note:

The following sequence of instructions is always used at the beginning of a program to
assign the data segment:

 MOV AX, @DATA
 MOV DS, AX

This sequence may be replaced by the following directive:

.STARTUP

which assigns both DATA and CODE segments, and hence the assembler will issue no
warning. However, it should be noted that the program would start at address CS:0017H.
The Startup directive occupies the bytes CS:0000 to CS:0017H.

.EXIT
ically, the sequence used to terminate and exit to DOS

 MOV AH, 4CH
 INT 21H

can be replaced by the .EXIT directive, which has exactly the same effect.

 3

Data Representation:

Numbers:

• 11011 decimal
• 11011B binary
• 64223 decimal
• -21843D decimal
• 1,234 illegal, contains a non-digit character
• 1B4DH hexadecimal number
• 1B4D illegal hex number, does not end with “H”
• FFFFH illegal hex number, does not begin with a digit
• 0FFFFH hexadecimal number

 Signed numbers are represented using 2’s complement notation

Characters
• A character must be enclosed in single or double quotes: e.g. “Hello”,

‘Hello’, “A”, ‘B’
• The ASCII code is used to encode characters
• Examples:

• ‘A’ has ASCII code 41H
• ‘a’ has ASCII code 61H
• ‘0’ has ASCII code 30H
• Line feed has ASCII code 0AH
• Carriage Return has ASCII code 0DH
• Back Space has ASCII code 08H
• Horizontal tab has ASCII code 09H

Note:

• The value of a variable, the content of registers or memory is based on the
programmer interpretation:

• AL = FFH
• represents the unsigned number 255
• represents the signed number -1 (in 2’s complement)

• AH = 30H
• represents the decimal number 48
• represents the character ‘0’

• BL = 80H
• represents the unsigned number +128
• represents the signed number -128

 4

Variable Declaration

• Each variable has a type
• Based on its definition, a variable is assigned a memory location
• The location is defined by its address and number of bytes.
• Different data definition directives for different size types of memory

o DB define byte
o DW define word
o DD define double word (two consecutive words)
o DQ define quad word (four consecutive words)
o DT define ten bytes (five consecutive words)

• Each pseudo-op can be used to define one or more data items of given type.

Byte Variables

• The following directive defines a variable of size byte:

o Var_name DB initial value
o a question mark (?) place in initial value leaves variable non-initialized

Examples:

• I DB 4 define variable I with initial value 4
• J DB ? Define variable J with no initial value
• Name DB “Course” allocate 6 bytes for the variable Name
• K DB 5, 3, -1 allocates 3 bytes

KK 0055
0033

FFFF

Word Variables:

• The following directive defines a variable of size word:

o Var_name DW initial value
o a question mark (?) place in initial value leaves variable non-initialized

 5

Examples:

I DW 4

J DW -2

K DW 1ABCH

L DW “01”

Double Word Variables

• The following directive defines a variable of size double word:

o Var_name DD initial value

I DD 1FE2AB20H

J DD -4

FFEE
FFFF

JJ

0044 II
0000

BBCC KK
11AA
3311 L

3300
L

22II
AABB
EE
11

 JJ
FFFF
FF
FF

 6

Constant Definition:

• The EQU pseudo-op is used to assign a name to a constant

st_name EQU Cst_Value

• No memory allocated for EQU names.
erstand

xamples:

• Syntax:
C

• Makes assembly language easier to und

E

xample 1:

OV DL, 0AH

an be replaced by:

F EQU 0AH

xample 2:

MSG DB “Type your name”

Can be replaced by:

ROMPT EQU “Type your name”
O

E

M

C

L
MOV DL, LF

E

P
MSG DB PR MPT

 7

ASCII Table

binary MSN 0000 0001 0010 0011 0100 0101 0110 0111
LSN hex 0 1 2 3 4 5 6 7

0000 0 NUL 0
00 DLE 16

10 SP 32
20 0 48

30 @ 64
40 P

80
50 `

96
60 p

112
70

0001 1 SOH 1
01

XON
(DC1)

17
11 !

33
21 1 49

31 A 65
41 Q 81

51 a
97
61 q

113
71

0010 2 STX 2
02 DC2 18

12 "
34
22 2 50

32 B 66
42 R 82

52 b
98
62 r

114
72

0011 3 ETX 3
03

XOFF
(DC2)

19
13 #

35
23 3 51

33 C 67
43 S

83
53 c

99
63 s

115
73

0100 4 EOT 4
04 DC4 20

14 $
36
24 4 52

34 D 68
44 T

84
54 d

100
64 t

116
74

0101 5 ENQ 5
05 NAK 21

15 % 37
25 5 53

35 E 69
45 U 85

55 e
101
65 u

117
75

0110 6 ACK 6
06 SYN 22

16 & 38
26 6 54

36 F
70
46 V 86

56 f
102
66 v

118
76

0111 7 BEL 7
07 ETB 23

17 '
39
27 7 55

37 G 71
47 W 87

57 g
103
67 w

119
77

1000 8 BS 8
08 CAN 24

18 (
40
28 8 56

38 H 72
48 X 88

58 h
104
68 x

120
78

1001 9 HT 9
09 EM 25

19)
41
29 9 57

39 I
73
49 Y 89

59 i
105
69 y

121
79

1010 A LF 10
0A SUB 26

1A *
42
2A :

58
3A J

74
4A Z

90
5A j

106
6A z

122
7A

1011 B VT 11
0B ESC 27

1B +
43
2B ;

59
3B K 75

4B [
91
5B k

107
6B {

123
7B

1100 C FF 12
0C FS 28

1C , 44
2C < 60

3C L 76
4C \

92
5C l

108
6C | 124

7C

1101 D CR 13
0D GS 29

1D -
45
2D = 61

3D M 77
4D]

93
5D m

109
6D }

125
7D

1110 E SO 14
0E RS 30

1E . 46
2E > 62

3E N 78
4E ^

94
5E n

110
6E ~

126
7E

1111 F SI 15
0F US 31

1F /
47
2F ? 63

3F O 79
4F _

95
5F o

111
6F DEL 127

7F

Example on the use of the ASCII table

Character Column # Row # Code (H) Code (binary)
a 6 1 61H
A 4 1 41H
β E 1 E1H
% 2 5 25H

Table 3.3: Using the ASCII table:

 8

ADD & SUB instructions:

Flags Affected
Type Inst. Example Meaning O

F
S
F

Z
F

A
F

P
F

C
F

ADD ADD AX, 7BH AX ← AX + 7B * * * * * *

ADC ADC AX, 7BH AX ← AX + 7B +CF * * * * * *

INC INC [BX] [BX]←[BX]+1 * * * * * -
Addition

DAA DAA ? * * * * *

SUB SUB CL,AH CL ← CL – AH * * * * * *

SBB SBB CL,AH CL ← CL – AH – CF * * * * * *

DEC DEC DAT [DAT] ← [DAT] – 1 * * * * * -

DAS DAS ? * * * * *

Subtraction

NEG NEG CX CX ← 0 – CX * * * * * *

Table 3. 4:: Summary of add and sub instructions

 9

 10

Exercises
Program 1: A Case Conversion Program

Write a program that prompts the user to enter a lowercase letter, and on next
line displays another message with letter in uppercase.

• Enter a lowercase letter: a
• In upper case it is: A

Title “Program Small to Upper Case Conversion”

.Model Small

.Stack 100

.DATA
CR EQU 0DH
LF EQU 0AH
MSG1 DB ‘Enter a lower case letter: $’
MSG2 DB CR, LF, ‘In upper case it is: ‘
Char DB ?, ‘$’

.CODE

.STARTUP ; initialize data segment
LEA DX, MSG1 ; display first message
MOV AH, 9
INT 21H
MOV AH, 1 ; read character
INT 21H
SUB AL, 20H ; convert it to upper case
MOV CHAR, AL ; and store it
LEA DX, MSG2 ; display second message and
MOV AH, 9 ; uppercase letter
INT 21H

.EXIT ; return to DOS

END

Program 2: A Case Conversion Program 2

Write a program that prompts the user to enter an uppercase letter, and on the next
line displays another message with letter in lowercase.

Program 3:

Write a program that reads small characters from the keyboard and converts them
online to uppercase ones. Use the following to make your program loop. Also use
function 08 to read a character without echo.

 next: ……… ; read character
 ……… ; convert

……… ; display
Loop next

	Type
	Experiment 3Introduction:In this experiment the students are exposed to the structure of an assembly language program and the definition of data variables and constants. Objectives:Assembly language program structureInstructions and DirectivesData repres

