Catalog Description:
Introduction to computer organization. Octal and Hexadecimal number systems, ASCII codes. Assembly language programming, instruction format and types, memory and I/O instructions, arithmetic instructions, addressing modes, stack operations, and interrupts. ALU and control unit design. RTL, microprogramming, and hardwired control. Practice of assembly language programming.

Prerequisites: COE 200 and ICS 201

Instructor: Kamal Chenaoua. Room: 23/082 Phone: 2082
Email: kamel@ccse.kfupm.edu.sa

Course URL:
- http://196.1.65.105/
- http://assembly.pc.ccse.kfupm.edu.sa

Office Hours: SMW 11:00-12:00 (or by appointment)

Text Books & References:
- Additional notes will be given when needed.

Grading Policy:

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight</th>
<th>Exam Tentative Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory</td>
<td>20 %</td>
<td></td>
</tr>
<tr>
<td>Programming Assignments</td>
<td>5 %</td>
<td></td>
</tr>
<tr>
<td>Quizzes + HWs</td>
<td>15 %</td>
<td></td>
</tr>
<tr>
<td>Major Exam I</td>
<td>20 %</td>
<td>October 14(^{\text{th}}), 2004</td>
</tr>
<tr>
<td>Major Exam II</td>
<td>20 %</td>
<td>December 16(^{\text{th}}), 2004</td>
</tr>
<tr>
<td>Final Exam</td>
<td>25 %</td>
<td></td>
</tr>
</tbody>
</table>

• Assignments are to be submitted in class in the specified due date.
• Late assignments will be accepted but will be penalized 5 % per each late day.
Course Content:

Part I: Assembly Language Programming

1. Introduction to Computer Organization and Information Representation. (6 lectures)
 - Introduction to computer organization. Instruction Set Architecture.
 - Computer Components.
 - Fetch-Execute cycle.
 - Signed number representation: Ranges, Overflow.

2. Assembly Language Concepts. (6 lectures)
 - Assembly language format.
 - Directives vs. instructions.
 - Variable declaration: Constants and variables.
 - Input Output: INT 21H.
 - Addressing modes.

3. 8086 Assembly Language Programming. (17 lectures)
 - Register Set.
 - Memory Segmentation.
 - Data Transfer Instructions: MOV instructions.
 - Arithmetic instructions and flags: (ADD, ADC, SUB, SBB, INC, DEC, MUL, IMUL, DIV, IDIV).
 - Compare, Jump and Loop Instructions (CMP, JMP, Conditional jumps, LOOP).
 - Logic, Shift and Rotate.
 - Stack operations: (PUSH, POP)
 - Subprograms. Macros.
 - String instructions: (MOVS, CMPS, SCAS)
 - Interrupts and interrupt processing: INT and IRET.
 - Input Output (IN, OUT).

Part II: Computer Organization

4. Memory System Design. (4 lectures)
 - Main memory, SRAM, DRAM.
 - External memory, magnetic and optical disks.
 - Bus system.

5. CPU Design. (12 lectures)
 - Register transfer.
 - Data-path design: 1-bus, 2-bus and 3-bus CPU organization.
 - Fetch and execute phases of instruction processing. Performance consideration.
 - Control steps.
 - CPU-Memory Interface circuit.
 - Hardwired control unit design.
 - Microprogramming. Horizontal and Vertical microprogramming.
 - Microprogrammed control unit design.