
KFUPM - ICS 353 - E. Malalla 0-0

ICS 353–Handout 2

Asymptotic Notations

Landau symbols

Very useful for comparing the performances of al-

gorithms with respect to the consumed time and

space. That is, they are used to describe the com-

plexity classes of algorithms.



KFUPM - ICS 353 - E. Malalla 0-1

Definitions

Let f(n), g(n) : N → (0,∞) be two functions.

Then

1. Big-Oh: f(n) = O(g(n)) ⇐⇒ ∃ n1 ∈ N
and a constant c1 > 0 such that

f(n) ≤ c1 g(n), for all n ≥ n1 .

2. Big-Omega: f(n) = Ω(g(n)) ⇐⇒ ∃ n2 ∈
N and a constant c2 > 0 such that

f(n) ≥ c2g(n), for all n ≥ n2 .

3. Theta: f(n) = Θ(g(n)) ⇐⇒ ∃ n0 ∈ N and

two constants c1, c2 > 0 such that

c1g(n) ≤ f(n) ≤ c2g(n), for all n ≥ n0 .



KFUPM - ICS 353 - E. Malalla 0-2

4. Small-oh: f(n) = o(g(n)) ⇐⇒

lim
n→∞

f(n)
g(n)

= 0 .

We write f(n) ¿ g(n) or f(n) ≺ g(n).

5. Small-omega: f(n) = ω(g(n)) ⇐⇒

lim
n→∞

g(n)
f(n)

= 0 .

We write f(n) À g(n) or f(n) Â g(n)..



KFUPM - ICS 353 - E. Malalla 0-3

Remarks

Notice the following.

1. Big Oh = upper bound of a function.

Used to get an upper bound on the worst-case

(or the maximum) running time.

2. Big Omega = lower bound of a function.

Used to get a lower bound on the best-case

(or the minimum) running time of the algo-

rithm.



KFUPM - ICS 353 - E. Malalla 0-4

3. Θ = O + Ω

f(n) = Θ(g(n)) ⇐⇒ f(n) = O(g(n)) and

f(n) = Ω(g(n)).

This means both functions are of the same

order; in fact

lim
n→∞

f(n)
g(n)

= lim
n→∞

g(n)
f(n)

= constant .

4. If f(n) = o(g(n)) or g(n) = ω(f(n)), we write

f(n) ≺ g(n). This means that the functions

belong to different classes, indeed, g(n) goes

to ∞ faster than f(n), as n →∞.

Examples:

1 ≺ log∗ n ≺ log log n ≺
√

log n ≺ log n

log log n
≺

log n ≺ √
n ≺ n ≺ n log n ≺ n2 ≺ en ≺ n! ≺ nn .



KFUPM - ICS 353 - E. Malalla 0-5

5. In all of these cases, we only need to prove

these statements for n large enough (i.e., for

n ≥ n0). That’s why it is called asymptotic

notations.

6. The constants c1 and c2 are all hidden within

the notations because they are not important

at this stage.

Example: Suppose the running time of a given

algorithm is O(n2). Say we run the algorithm

with input of size n = 100, and we find that

it takes 4 seconds. If we want to find the

time for m = 10n, we don’t have to run the

algorithm over again. Since the time grows

quadratically in this case, the estimated time

should be close to 100× 4 seconds. Had this

algorithm been linear O(n), the time would

have been 10× 4!



KFUPM - ICS 353 - E. Malalla 0-6

7. Thus, the performance analysis of algorithms

should be independent from the type of ma-

chine and technology. I.e.,

• We should concentrate on the asymp-

totic performances (for large input size

n),

• We should concentrate on the main term

and ignore the smaller ones and the con-

stant factors,

• The constant factors and other smaller

terms are useful only to compare be-

tween two algorithms that have the same

order of running time.



KFUPM - ICS 353 - E. Malalla 0-7

Examples

1. Let f(n) = 35n and g(n) = 2n + 3. Then

f(n) = Θ(g(n)) because

1× g(n) ≤ f(n) ≤ 20× g(n), ∀ n ≥ 1 .

2. For any constants a > 0 and b, we have

f(n) = an + b = Θ(n). Notice also that

f(n) = O(n2) = O(n3) = O(nk) for any

k > 1 because an + b ≤ (a + b)nk, for any

k > 1 and n ≥ 1.



KFUPM - ICS 353 - E. Malalla 0-8

3. If f(n) = 5n2−6n+3 and g(n) = 2n+8, then

f(n) = ω(g(n)) and g(n) = o(f(n)) because

lim
n→∞

g(n)
f(n)

= lim
n→∞

2n + 8
5n2 − 6n + 3

= lim
n→∞

2 + 8/n

5n− 6 + 3/n
= 0 .

4. Clearly, log n = O(n) and n = Ω(log n). In

fact, log n = o(n) and n = ω(log n) because

by L’Höpital’s rule

lim
n→∞

log n

n
= 0 .

In fact, if c ∈ (0, 1) is any constant than

log n = o(nc) by applying the same rule.

5. Also, log nk = k log n = o(n), for any con-

stant k > 0, and n + log nk = Θ(n) because

n ≤ n + k log n ≤ 2kn.

6. n+
√

n log n = Θ(n) because log n ≤ √
n and

hence n ≤ n +
√

n log n ≤ 2n.



KFUPM - ICS 353 - E. Malalla 0-9

7. Clearly, for any constant c ∈ (0, 1) we have

n = ω(nc) = ω(log n) = ω(log log n) = ω(1) .

8. Also, cn = O(n!) = O(nn), for any constant

c > 0, and log n! = Θ(n log n).

9. See also Examples 1.12- 1.14 in the textbook.


