KFUPM - ICS 353 - E. Malalla O'O

ICS 353—-Handout 2
Asymptotic Notations

Landau symbols

Very useful for comparing the performances of al-
gorithms with respect to the consumed time and
space. That is, they are used to describe the com-

plexity classes of algorithms.



KFUPM - ICS 353 - E. Malalla O— 1

Definitions

Let f(n), gn) : N — (0,00) be two functions.
Then

1. Big-Oh: f(n)=0(g(n)) < dny € N

and a constant ¢; > 0 such that

fn) <ec1 g(n), forall n>nq.

2. Big-Omega: f(n) =Q(g(n)) <= dng €

N and a constant ¢, > 0 such that

f(n) > cag(n), for all n > ns.

3. Theta: f(n) =0(g(n)) <= I ng € N and

two constants cq,co > 0 such that

c1g(n) < f(n) < cag(n), for all n > ng.



KFUPM - ICS 353 - E. Malalla 0'2
4. Small-oh: f(n) =o0(g(n)) <

im M —
nl_wo o(n) 0.

We write f(n) < g(n) or f(n) < g(n).
5. Small-omega: f(n) =w(g(n)) <=

lim M:O.

w0 f(n)

We write f(n) > g(n) or f(n) = g(n)..



KFUPM - ICS 353 - E. Malalla 0—3

Remarks

Notice the following.
1. Big Oh = upper bound of a function.
Used to get an upper bound on the worst-case

(or the maximum) running time.

2. Big Omega = lower bound of a function.
Used to get a lower bound on the best-case

(or the minimum) running time of the algo-

rithm.



KFUPM - ICS 353 - E. Malalla 0—4

3. =0+
f(n) = ©(g(n)) < f(n) = O(g(n)) and
F(n) = Q(g(n).
This means both functions are of the same

order; in fact

nh_)ngo % = nh—{%o % = constant .

4. If f(n) = o(g(n)) or g(n) = w(f(n)), we write
f(n) < g(n). This means that the functions
belong to different classes, indeed, g(n) goes
to oo faster than f(n), as n — oo.

Examples:

logn

1 <log"n < loglogn < y/logn < og log 1 <

logn < vn<n<nlogn <n?*<e" <nl<n".



KFUPM - ICS 353 - E. Malalla 0—5

5. In all of these cases, we only need to prove
these statements for n large enough (i.e., for
n > ng). That’s why it is called asymptotic

notations.

6. The constants ¢; and ¢y are all hidden within
the notations because they are not important
at this stage.

Example: Suppose the running time of a given
algorithm is O(n?). Say we run the algorithm
with input of size n = 100, and we find that
it takes 4 seconds. If we want to find the
time for m = 10n, we don’t have to run the
algorithm over again. Since the time grows
quadratically in this case, the estimated time
should be close to 100 x 4 seconds. Had this
algorithm been linear O(n), the time would

have been 10 x 4!



KFUPM - ICS 353 - E. Malalla 0—6

7. Thus, the performance analysis of algorithms
should be independent from the type of ma-

chine and technology. l.e.,

e We should concentrate on the asymp-

totic performances (for large input size
n),

e We should concentrate on the main term
and ignore the smaller ones and the con-

stant factors,

e The constant factors and other smaller
terms are useful only to compare be-
tween two algorithms that have the same

order of running time.



KFUPM - ICS 353 - E. Malalla 0'7

Examples

1. Let f(n) = 35n and g(n) = 2n + 3. Then
f(n) = 0©(g(n)) because

1 xgn) < f(n)<20xgn), Vv n>1.

2. For any constants a > 0 and b, we have
f(n) = an 4+ b = BO(n). Notice also that
f(n) = O(n?) = O3 = O(n*) for any
k > 1 because an + b < (a + b)n*, for any

k>1andn>1.



KFUPM - ICS 353 - E. Malalla 0'8

3. If f(n) = 5n?—6n+3 and g(n) = 2n+8, then
f(n) =w(g(n)) and g(n) = o(f(n)) because

g(n) 2n 4+ 8
—~ = lim
n—>oo f(n n—oo Hn? — 6n + 3
2+ 8
= lim +8/n

n—oo bn — 6 + S/n
4. Clearly, logn = O(n) and n = Q(logn). In
fact, logn = o(n) and n = w(logn) because
by L’Hopital’s rule
logn

= 0.

lim
n—oo N

In fact, if ¢ € (0,1) is any constant than

logn = o(n®) by applying the same rule.

5. Also, logn® = klogn = o(n), for any con-
stant k > 0, and n + logn® = O(n) because

n <n-+ klogn < 2kn.

6. n++/nlogn = O(n) because logn < /n and
hence n < n + y/nlogn < 2n.



KFUPM -

ICS 353 - E. Malalla 0—9

Clearly, for any constant ¢ € (0,1) we have

n=w(n =w(logn) = w(loglogn) = w(1).

. Also, ¢" = O(n!) = O(n™), for any constant

c > 0, and logn! = O(nlogn).

. See also Examples 1.12- 1.14 in the textbook.



