
Binary Logic and Gates 
 
Introduction 
 

 Our objective is to learn how to design digital circuits.  

 These circuits use binary systems.  

 Signals in such binary systems may represent only one of 2 possible values 

0 or 1 

 Physically, these signals are electrical voltage signals 

 These signals may assume either a high or a Low voltage value.  

 The high voltage value typically equals the voltage of the power supply (e.g.  

5 volts or 3.3 volts), and the Low voltage value is typically 0 volts (or 

Ground). 

 When a signal is at the High voltage value, we say that the signal has a 

Logic 1 value. 

 When a signal is at the Low voltage value, we say that the signal has a Logic 0 

value. 

 Hence, the physical value of a signal is the actual voltage value it carries, 

while its Logic value is either 1 (High) or 0 (Low). 

 Digital circuits process (or manipulate) input binary signals and produce the 

required output binary signals as shown in Figure 1 

 
 
 
 
 
 
 
 
 
 

Figure 1 A Digital Circuit with n Input Signals and m Output Signals 
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 Generally, the circuit will have a number of input signals (say n of them) as 

shown in the Figure x1, x2, up to  xn, and a number of output signals (say m ) 

Z1, Z2, up to  Zm. 

 The value assumed by the ith output signal Zi depends on the values of the 

input signals x1, x2, up to  xn. 

 In other words, we can say that Zi is a function of the n  input signals x1, x2, up 

to  xn . Or we can write:    

Zi = Fi (x1, x2, ……, xn )   for i = 1, 2, 3, ….m 

 The m output functions (Fi) are functions of binary signals and produce a 

single binary output signal.  

 Thus, these functions are binary functions and require binary logic algebra for 

their derivation and manipulation. This binary system algebra is commonly 

referred to as Boolean Algebra after the mathematician George Boole. The 

functions are known as Boolean functions while the binary signals are 

represented by Boolean variables. 

 To be able to design a digital circuit, we must learn how to derive the Boolean 

function implemented by this circuit. 

Notes: 

1. The two values of binary variables may be equivalently referred to as 0 and 1 

or False (0) and True (1)or as Low (0) and High(1).  

2. Whether we use 0 and 1 or False and True or Low and High, all these are 

referred to as Logic Values. 

3. Systems manipulating Binary Logic Signals are commonly referred to as 

Binary Logic systems. 

4. Digital circuits implementing a particular Binary (Boolean) function are 

commonly known as Logic Circuits. 



CHAPTER OBJECTIVES 
 Learn Binary Logic and BOOLEAN Algebra 

 Learn How to Map a Boolean Expressions into Logic Circuit 

Implementations 

 Learn How To Manipulate Boolean Expressions and Simplify Them 

 

Elements of Boolean Algebra (Binary Logic) 
As in standard algebra, Boolean algebra has 3  main elements: 

1. Constants,  

2. Variables, and  

3. Operators.  

 

Logically 

 Constant Values  are either   0   or  1Binary Variables  ∈{ 0, 1} 

 3 Possible Operators  The AND operator, the OR operator, and the 

NOT operator 

Physically 

 Constants    ⇒ Power Supply Voltage (Logic 1) 

⇒ Ground  Voltage (Logic 0) 

 Variables     ⇒ Signals (High = 1,  Low = 0) 

 Operators   ⇒ Electronic Devices (Logic Gates) 

1. • AND - Gate 

2. • OR    - Gate 

3. • NOT - Gate  (Inverter) 

 

Logic Gates & Logic Operations 

The AND Operation 

 If X and Y are two binary variables, the result of the operation X AND Y is 1 

if and only if both X = 1 and Y = 1, and is 0 otherwise.  

 In Boolean expressions, the AND operation is represented either by a “dot” or 

by the absence of an operator. Thus, X AND Y is written as X.Y or just XY  

 This is summarized in the following table (commonly called truth table): 



 

 

 

 

 

 

 

 

 

 The electronic device which performs the AND operation is called the AND 

gate. Figure 2 shows the symbol of a 2-input AND gate which has two inputs 

(X and Y) and gives one output Z=XY 
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Figure 2 Two-Input AND gate 

 

 The AND logic can be further illustrated using what is known as the Venn 

diagram 

 AND gates may have more than 2 inputs. Figure 3 shows a 3-input AND gate. 
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Figure 3 Three-Input AND gate 

 

Table 1 Truth Table of the 

AND operation 

  Z = X AND Y 

X Y Z=XY 

F F F 

F T F 

T F F 

T T T 

Table 1 Truth Table of the 

AND operation 

  Z = X AND Y 

X Y Z=XY 

0 0 0 

0 1 0 

1 0 0 

1 1 1 



 The truth table of the output variable Z=WXY of the 3-input AND gate is 

given in Table 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes 

 The output of an AND gate is 1 if and only if  ALL  its input signals are 1’s, 

otherwise it is 0. 

 A function of two input binary variables will have a truth table of 4 rows since 

each variable may assume any one of two possible values (0 or 1). 

 A function of three input variables will have a truth table of 8 rows since each 

variable may assume any one of two possible values (0 or 1). 

 In general, n input variables have 2n possible combinations. Accordingly, a 

function of n input variables, will have a truth table of  2n  rows. 

 

The OR Operation 

 If X and Y are two binary variables, the result of the operation X OR Y is 1 if 

and only if either X = 1 or Y = 1 or both X & Y are 1’s, but it  is 0 

otherwise.  

 In other words, X OR Y is 0 if and only if both X = 0 and Y = 0, but  is 1 

otherwise. 

 In Boolean expressions, the OR operation is represented by a “plus” sign. 

Thus, X OR Y is written as X+Y  

 This is summarized in the Table 3. 

Table 2  Truth Table of  

3-Input AND gate 

W X Y Z=WXY 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 0 

1 0 0 0 

1 0 1 0 

1 1 0 0 

1 1 1 1 



 

 

 

 

 

 

 

 

 

 

 The electronic device which performs the OR operation is called the OR gate. 

Figure 4 shows the symbol of a 2-input OR gate which has two inputs (X and 

Y) and gives one output Z=X+Y 
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Figure 4 Two-Input OR gate 

 

 The OR logic can be further illustrated using the Venn diagram 

 OR gates may have more than 2 inputs. Figure 5 shows a 3-input OR gate. 
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Figure 5 Three-Input OR gate 

 
 The truth table of a 3 input OR gate Z=W+X+Y is given in Table 4 

Table 3 Truth Table of the

OR operation 

  Z = X OR Y 

X Y Z=X+Y 

0 0 0 

0 1 1 

1 0 1 

1 1 1 



 

 

 

 

 

 

 

 

 

 

 

 

 

 In general, the output of an OR gate is 1 unless ALL  its input signals are 0’s.  
 

The NOT Operation 

 NOT is a “unary” operator.  

 IF Z = NOT X, then the value of Z will always be the complement of the value 

of X. In other words, if X = 0 then Z = 1, and if X = 1 then Z =0. 

 In Boolean expressions, the NOT operation is represented by either a bar on 

top of the variable (e.g. XZ =  ) or a prime (e.g. 'XZ =  ). 

 This is summarized in Table 5. 

 

 

 

 

 

 

 

 The electronic device which performs the NOT operation is called the NOT 

gate, or simply INVERTER. Figure 5 shows the inverter symbol. 

 

Table 4  Truth Table of  

3-Input OR gate 

W X Y Z=WXY 

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 1 

1 0 0 1 

1 0 1 1 

1 1 0 1 

1 1 1 1 

Table 5 Truth Table of the

NOT operation 

X Z=X’ 

0 1 

1 0 
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Figure 5 An Inverter 

 

 If XZ = , Z is commonly referred to as the Complement of X. Alternatively, 

we say that Z equals X-complemented 

 The NOT operation can be further illustrated using the Venn diagram 

 

 

 

 

 

Boolean Algebra  
Logic Circuits and Boolean Expressions 

 
 A Boolean expression (or a Boolean function) is a combination of Boolean 

variables, AND-operators, OR-operators, and NOT operators. 

 • Boolean Expressions (Functions) are fully defined by their truth tablesEach 

Boolean function (expression) can be implemented by a digital logic circuit 

which consists of logic gates.  

o Variables of the function correspond to signals in the logic circuit, 

o Operators of the function are converted into corresponding logic gates 

in the logic circuit. 



Example 

Consider the expression  ).( ZYXF += The diagram of the logic circuit 

corresponding to this function is shown in Figure 6 
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Figure  6 Logic Circuit Diagram of ).( ZYXF +=  

 

The truth table of this function is shown in Table 6 

 
Table .6 Truth Table of ).( ZYXF +=  

 

X 
 

Y 
 

Z 
 

Y` 
 

Y`Z 
 

F= X + Y`Z 

0 0 0 1 0 0 
0 0 1 1 1 1 
0 1 0 0 0 0 
0 1 1 0 0 0 
1 0 0 1 0 1 
1 0 1 1 1 1 
1 1 0 0 0 1 
1 1 1 0 0 1 

 
 Since F is function of 3 variables (X, Y, Z), the truth table has 23 or 8 

rows. 

Basic Identities of Boolean Algebra  



AND Identities 

 

From the truth table of the AND operation, shown here for 

reference, we can derive some basic identities. These identities 

can be easily verified by showing that they are valid for both 

possible values of X (0 and 1). 

 

1. 0 . X = 0 
 

 

 

 

 

 

 

 

2. 1 . X = X 
 
 

 

 

 

 

 

 

3. X . X = X 
 
 

 

 

 

 

 

 

 

AND Truth Table

X Y Z=XY 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

AND Truth Table 

X Y Z=XY 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

AND Truth Table 

X Y Z=XY 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

AND Truth Table 

X Y Z=XY 

0 0 0 

0 1 0 

1 0 0 

1 1 1 



4. 0. =XX  

 

 

 

 

 

 

 

 

 

 

OR Identities 

From the truth table of the OR operation, shown here for reference, we can derive 

some basic identities. These identities can be easily verified by showing that they are 

valid for both possible values of X (0 and 1). 

 

 

 

1. 1 + X = 1 

 

 

 

 

 

2. 0 + X = X 

 

 

 

 

 

 

 

 

AND Truth Table

X Y Z=XY 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

OR Truth Table

X Y Z=X+Y 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

OR Truth Table

X Y Z=X+Y 

0 0 0 

0 1 1 

1 0 1 

1 1 1 



3.  X + X = X 

 

 

 

 

 

 

 

4. 1=+ XX  

 

 

 

 

 

 

 

 

Summary of the basic identity 

AND Identities 

 

1. 0 . X = 0 

2. 1 . X = X 

3. X . X = X 

4. 0. =XX  

 

OR Identities 

5. 1 + X = 1 

6. 0 + X = X 

7. X + X = X 

8. 1=+ XX  

 

OR Truth Table

X Y Z=X+Y 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

OR Truth Table

X Y Z=X+Y 

0 0 0 

0 1 1 

1 0 1 

1 1 1 



Duality Principle 

 Given a Boolean expression, its dual is obtained by replacing each 1 with a 0, 

each 0 with a 1, each AND (.) with an OR (+), and each OR (+) with an 

AND(.).   

 The dual of an identity is also an identity. This is known as the duality 

principle.  

 

It can be easily shown that the AND basic identities and the OR basic identities are 

duals as shown in Table 7 

 

Table 7 Duality of the AND and OR Basic Identities 

 
AND Identities

  
Dual Identities 
(OR Udentities)

 
0 . X = 0 

0  1
 
.  + 

 
1 + X = 1 

 
1 . X = X 

1  0
 
.  + 

 
0 + X = X 

 
X . X = X 

 
.  + 

 
X + X = X 

 
X . X = 0 

0  1
 
.  + 

 
X + X = 1 

 

 

Another Important Identity 

( ) XX =  

 This can be simply proven from the truth table of the NOT 

operation as shown. 

 

 

 

NOT operation 

Truth Table 

 

X X  ( )X  

0 1 0 

1 0 1 

marwan
Pencil

marwan
Pencil



Operator Precedence 

 
Given the Boolean expression  X.Y + W.Z  the order of applying the operators will 
affect the final value of the expression.  
 

X.Y + W.Z

AND Higher Priority

1. Compute X AND Y

2. Compute W AND Z

3. OR the previousle
    computed two values

((X.Y) + (W.Z))

OR Higher Priority

1. Compute Y OR W

2. AND the result with X

3. AND the result with Z

X . (Y + W) . Z  
 
 
 

For Boolean Algebra, the precedence rules for various operators are given below , in a 

decreasing order of priority: 

1- Parentheses     Highest Priority 

2- Not operator (Complement) 

3- AND operator, 

4- OR operator     Lowest Priority 



Properties of Boolean Algebra 
Important properties of Boolean Algebra are shown in Table  

 

   
Property 

 

 
Dual Property 

 

 
1 

 
Commutative 

  
X + Y = Y + X 

 
X . Y = Y . X 

 
2 

 
Distributive 

 
X.(Y + Z) = X.Y + X.Z 

 
X+(Y.Z) = (X+Y).(X+Z) 

 

3 
 

DeMorgan 
 

 (X + Y) ` = X`.Y` 
 

 (X.Y) ` = X` + Y` 
 

4 
Extended 
DeMorgan 

(A+B+C+ ….+Z) ` = 
A`.B`.C`…..Z` 

(A.B.C….Z) ` =  
A`+B`+C`+….+Z` 

 
5 

Generalized 
DeMorgan 

 

 [F(x1,x2,…,xn,0,1,+,.)] `=F(x`1,x`2,…,x`n,1,0,.,+)  
Notes 

 The above properties can be easily proved using truth tables. 

 The only difference between the dual of an expression and the complement of 

that expression is that in the dual variables are not complemented while in the 

complement expression, all variables are complemented. 

 Using the above properties, complex Boolean expressions can be manipulated 

into a simpler forms resulting in simpler logic circuit implementations.  

 Simpler expressions are generally implemented by simpler logic circuits 

which are both faster and less expensive. This represents a great advantage 

since  cost and speed are prime factors in the success and profitability of any 

product. 

 



Algebraic Manipulation 
 The objective here is to acquire some skills in manipulating Boolean 

expressions into simpler forms for more efficient implementations. 

 Properties of Boolean algebra will be utilized for this purpose. 

 

Example  Prove that  X + XY = X 

Proof:   X + XY =   X..(1 + Y)   =   X.1   =   X 

Example  Prove that X + X`Y = X + Y  This an important identity that is 

useful in simplifying more complex expressions 

 
Proof:  This will be proved in two ways 

 

 (1) X + X`Y  = (X+ X`) (X + Y)  

 

 

= 1.(X + Y) 

=     X + Y 

 

 (2) X + X`Y  = X.1 + X`Y =  

 

= X.(1+Y) + X`Y  

 

 

= X  + XY  + X`Y 

= X  + (XY +X`Y) 

= X + Y(X +X` ) 

 

 

= X + Y 

= 1 = X

= 1 

= 1



Example ``Consensus Theory``   

Show that XY + X`Z + YZ = XY + X`Z  

Proof:    

LHS  = XY + X`Z + YZ  

= XY + X`Z + YZ . 1 

 
= XY + X`Z + YZ . (X +X`)  

= XY + X`Z + YZX + YZX`  

= XY + YZX + X`Z + YZX` 
 

 

= XY(1 + Z)  +  X`Z(1 + Y)  

 

 

= XY . 1 + X`Z . 1= XY + X`Z = LHS

= 1

= 1 = 1



Example  

Simplify the following function   

)(1 BABAF ++=  )( BCCAAB ++  
Solution:    

 F1 = )( BABA ++  )( BCCAAB ++  

Using De-Morgan theorem 

 )( BABA ++  = A` . B. (A` + B) = A` . B + A` . B = A`. B 

 )( BCCAAB ++  = (A` + B`).(A + C` ).(B` + C` ) 

 F1 = )( BABA ++  )( BCCAAB ++  

  = A`. B. (A` + B`).(A + C` ).(B` + C` ) 

Since X= X.X=X.X.X, we can rewrite the previous expression as follows 

 F1 = (A`.B). (A`. B). (A`. B). (A` + B).(A + C` ).(B` + C` ) 

  = (A`.B). (A` + B`). (A`. B) .(A + C` ). (A`. B). (B` + C` ) 

 

 

  = (A`.B +  0 )   . (0 + A`. B.C` ) . (A`.B + A`.B.C`) 

 

 

  = (A`.B) . (A`. B.C` ) . (A`.B) 

 

  = A`. B.C`  



Example  

Simplify the following function   

i. G = 




 ++++ ACDDCABCBA )(.)(  

Solution:    

( )ACDDCABCBAG ++++= )(.)(  

 

 

( )( )( ) ACDDCABCBA ..)( ++++=  

 

 

( )( ) ACDDCABACDCBA ...)( ++++=
 

 

 

)()( ACDBACDBBACDACD +++=
 

 

ACDBACD+=  

 

 

ACD=  


