Data Representation

COE 308

Computer Architecture

Prof. Muhamed Mudawar
College of Computer Sciences and Engineering
King Fahd University of Petroleum and Minerals

Presentation Outline

* Positional Number Systems
* Binary and Hexadecimal Numbers
* Base Conversions
* Integer Storage Sizes
* Binary and Hexadecimal Addition
* Signed Integers and 2's Complement Notation
* Sign Extension
* Binary and Hexadecimal subtraction
* Carry and Overflow
* Character Storage

Positional Number Systems

Different Representations of Natural Numbers
XXVII Roman numerals (not positional)
27 Radix-10 or decimal number (positional)
11011_{2} Radix-2 or binary number (also positional)
Fixed-radix positional representation with k digits
Number N in radix $r=\left(d_{k-1} d_{k-2} \ldots d_{1} d_{0}\right)_{r}$
Value $=\mathrm{d}_{k-1} \times r^{k-1}+\mathrm{d}_{k-2} \times r^{k-2}+\ldots+\mathrm{d}_{1} \times r+\mathrm{d}_{0}$
Examples: $(11011)_{2}=1 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2+1=27$
$(2103)_{4}=2 \times 4^{3}+1 \times 4^{2}+0 \times 4+3=147$

Binary Numbers

* Each binary digit (called bit) is either 1 or 0
* Bits have no inherent meaning, can represent
\diamond Unsigned and signed integers
\diamond Characters
Most
Significant Bit

* Bit Numbering
\diamond Least significant bit (LSB) is rightmost (bit 0)
\diamond Most significant bit (MSB) is leftmost (bit 7 in an 8 -bit number)

Converting Binary to Decimal

* Each bit represents a power of 2
* Every binary number is a sum of powers of 2
* Decimal Value $=\left(d_{n-1} \times 2^{n-1}\right)+\ldots+\left(d_{1} \times 2^{1}\right)+\left(d_{0} \times 2^{0}\right)$
* Binary $(10011101)_{2}=2^{7}+2^{4}+2^{3}+2^{2}+1=157$

7	6	5	4	3	2	1		$2^{\text {n }}$	Decimal Value	$2^{\text {n }}$	Decimal Value
1	0	0	1	1	1	0	1	2^{0}	1	2^{8}	256
2^{7}	2^{6}			$\begin{array}{lllll} \\ \\ & 2^{2} & 2^{1} & 2^{\text {® }}\end{array}$				2^{1}	2	2^{9}	512
								2^{2}	4	2^{10}	1024
		Some common powers of 2						2^{3}	8	2^{11}	2048
								2^{4}	16	2^{12}	4096
								2^{5}	32	2^{13}	8192
								2^{6}	64	2^{14}	16384
								2^{7}	128	2^{15}	32768

Convert Unsigned Decimal to Binary

* Repeatedly divide the decimal integer by 2
* Each remainder is a binary digit in the translated value

Division	Quotient	Remainder	
37/2	18	1	least significant bit
18/2	9	0	$37=(100101)_{2}$
9/2	4	1	
4/2	2	0	
2/2	1	0	
1/2	0	1	- most significant bit

Hexadecimal Integers

* 16 Hexadecimal Digits: $0-9$, A - F

More convenient to use than binary numbers
Binary, Decimal, and Hexadecimal Equivalents

Binary	Decimal	Hexadecimal	Binary	Decimal	Hexadecimal
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	10	A
0011	3	3	1011	11	B
0100	4	4	1100	12	C
0101	5	5	1101	13	D
0110	6	7	1110	14	E
0111	7	1111	15	F	

Converting Binary to Hexadecimal

* Each hexadecimal digit corresponds to 4 binary bits
* Example:

Convert the 32-bit binary number to hexadecimal
11101011000101101010011110010100

* Solution:

E	B	1	6	A	7	9	4
1110	1011	0001	0110	1010	0111	1001	0100

Converting Hexadecimal to Decimal

Multiply each digit by its corresponding power of 16
Value $=\left(d_{n-1} \times 16^{n-1}\right)+\left(d_{n-2} \times 16^{n-2}\right)+\ldots+\left(d_{1} \times 16\right)+d_{0}$

* Examples:
$(1234)_{16}=\left(1 \times 16^{3}\right)+\left(2 \times 16^{2}\right)+(3 \times 16)+4=$
Decimal Value 4660
$(3 B A 4)_{16}=\left(3 \times 16^{3}\right)+\left(11 \times 16^{2}\right)+(10 \times 16)+4=$
Decimal Value 15268

Converting Decimal to Hexadecimal

* Repeatedly divide the decimal integer by 16
* Each remainder is a hex digit in the translated value

Division	Quotient	Remainder
$422 / 16$	26	6
$26 / 16$	1	A
$1 / 16$	0	1

Decimal $422=1$ A6 hexadecimal

Integer Storage Sizes

Storage Type	Unsigned Range	Powers of 2
Byte	0 to 255	0 to $\left(2^{8}-1\right)$
Half Word	0 to 65,535	0 to $\left(2^{16}-1\right)$
Word	0 to $4,294,967,295$	0 to $\left(2^{32}-1\right)$
Double Word	0 to $18,446,744,073,709,551,615$	0 to $\left(2^{64}-1\right)$

What is the largest 20-bit unsigned integer?
Answer: $2^{20}-1=1,048,575$

Binary Addition

Start with the least significant bit (rightmost bit)
Add each pair of bits
Include the carry in the addition, if present

carry	1	1	1	1												
0	0	1	1	0	1	1	0		0	0	0	1	1	1	0	1
:---	:---	:---	:---	:---	:---	:---	:---	\quad (29)								

Hexadecimal Addition

* Start with the least significant hexadecimal digits
* Let Sum = summation of two hex digits
* If Sum is greater than or equal to 16
\diamond Sum $=$ Sum -16 and Carry $=1$
* Example:
carry:
$\begin{array}{lll}1 & 1\end{array}$
$1 C 37286 A$
$9395 E 84 B$
AFCD10B5
$A+B=10+11=21$
Since $21 \geq 16$
Sum $=21-16=5$
Carry = 1

Signed Integers

Several ways to represent a signed number
\& Sign-Magnitude
\triangleleft Biased
\& 1's complement
\diamond 2's complement

* Divide the range of values into 2 equal parts
\diamond First part corresponds to the positive numbers (≥ 0)
\diamond Second part correspond to the negative numbers (<0)
* Focus will be on the 2's complement representation
\diamond Has many advantages over other representations
\diamond Used widely in processors to represent signed integers

Two's Complement Representation

* Positive numbers
\diamond Signed value $=$ Unsigned value
* Negative numbers
\diamond Signed value $=$ Unsigned value -2^{n}
$\diamond n=$ number of bits
* Negative weight for MSB
\diamond Another way to obtain the signed value is to assign a negative weight to most-significant bit

1 0 1 1	0	1	0	0			
-128	64	32	16	8	4	2	1
$-\mathbf{- 1 2 8}+32+16+4=-76$							

$8-$ bit Binary value	Unsigned value	Signed value
00000000	0	0
00000001	1	+1
00000010	2	+2
\ldots	\ldots	\ldots
01111110	126	+126
01111111	127	+127
10000000	128	-128
10000001	129	-127
\ldots	\ldots	\ldots
11111110	254	-2
11111111	255	-1

Forming the Two's Complement

starting value	$00100100=+36$
step1: reverse the bits (1's complement)	11011011
step 2: add 1 to the value from step 1	$+\quad 1$
sum = 2's complement representation	$11011100=-36$

Sum of an integer and its 2's complement must be zero:
$00100100+11011100=00000000$ (8-bit sum) \Rightarrow Ignore Carry

Another way to obtain the 2's complement:
Start at the least significant 1
Leave all the 0 s to its right unchanged
Complement all the bits to its left

> Binary Value
> $= 0 0 1 0 0 \longdiv { 0 0 }$ significant
> 2's Complement
> = 11011 100

Sign Bit

* Highest bit indicates the sign
* 1 = negative

For Hexadecimal Numbers, check most significant digit
If highest digit is >7, then value is negative
Examples: 8A and C5 are negative bytes
B1C42A00 is a negative word (32-bit signed integer)

Sign Extension

Step 1: Move the number into the lower-significant bits
Step 2: Fill all the remaining higher bits with the sign bit
$\%$ This will ensure that both magnitude and sign are correct

* Examples

\triangleleft Sign-Extend 10110011 to 16 bits
$10110011=-77 \quad 11111111$ 10110011 $=-77$
\diamond Sign-Extend 01100010 to 16 bits
$01100010=+98 \Rightarrow 0000000001100010=+98$

* Infinite 0s can be added to the left of a positive number
* Infinite 1s can be added to the left of a negative number

Two's Complement of a Hexadecimal

* To form the two's complement of a hexadecimal

২ Subtract each hexadecimal digit from 15
\diamond Add 1

* Examples:

2's complement of 6A3D $=95 \mathrm{C} 2+1=95 \mathrm{C} 3$
2's complement of 92F15AC0 $=6$ D0EA53F $+1=6$ D0EA540
2's complement of FFFFFFFF = 00000000 + $1=00000001$

* No need to convert hexadecimal to binary

Binary Subtraction

* When subtracting A - B, convert B to its 2's complement
* Add A to (-B)

$01001101 \quad 01001101$
${ }_{-}^{-} \frac{0111010}{00010011} \quad{ }^{+} \frac{11000110}{00010011}$ (2's complement)
* Final carry is ignored, because
\diamond Negative number is sign-extended with 1's
\diamond You can imagine infinite 1 's to the left of a negative number
\diamond Adding the carry to the extended 1's produces extended zeros

Hexadecimal Subtraction

Borrow: 11
$16+5=21$

B14FC675
-839EA247
2DB1242E

Carry: $1 \quad 1111$
B14FC675
${ }^{+}$7C615DB9 (2's complement)
2DB1242E (same result)

* When a borrow is required from the digit to the left, then

Add 16 (decimal) to the current digit's value

* Last Carry is ignored

Ranges of Signed Integers

For n-bit signed integers: Range is -2^{n-1} to $\left(2^{n-1}-1\right)$
Positive range: 0 to $2^{n-1}-1$
Negative range: -2^{n-1} to -1

Storage Type	Unsigned Range	Powers of 2
Byte	-128 to +127	-2^{7} to $\left(2^{7}-1\right)$
Half Word	$-32,768$ to $+32,767$	-2^{15} to $\left(2^{15}-1\right)$
Word	$-2,147,483,648$ to $+2,147,483,647$	-2^{31} to $\left(2^{31}-1\right)$
Double Word	$-9,223,372,036,854,775,808$ to $+9,223,372,036,854,775,807$	-2^{63} to $\left(2^{63}-1\right)$

Practice: What is the range of signed values that may be stored in 20 bits?

Carry and Overflow

* Carry is important when ...
» Adding or subtracting unsigned integers
\diamond Indicates that the unsigned sum is out of range
\triangleleft Either < 0 or >maximum unsigned n-bit value
* Overflow is important when ...
\diamond Adding or subtracting signed integers
\diamond Indicates that the signed sum is out of range
* Overflow occurs when
\triangleleft Adding two positive numbers and the sum is negative
\diamond Adding two negative numbers and the sum is positive
\diamond Can happen because of the fixed number of sum bits

Carry and Overflow Examples

* We can have carry without overflow and vice-versa
* Four cases are possible (Examples are 8-bit numbers)

Range, Carry, Borrow, and Overflow

* Unsigned Integers: n-bit representation

* Signed Integers: n-bit 2's complement representation

Character Storage

* Character sets

\triangleleft Standard ASCII: 7-bit character codes (0-127)
\triangleleft Extended ASCII: 8-bit character codes (0-255)
\triangleleft Unicode: 16-bit character codes ($0-65,535$)
\diamond Unicode standard represents a universal character set

- Defines codes for characters used in all major languages
- Used in Windows-XP: each character is encoded as 16 bits
\diamond UTF-8: variable-length encoding used in HTML
- Encodes all Unicode characters
- Uses 1 byte for ASCII, but multiple bytes for other characters
* Null-terminated String
\triangleleft Array of characters followed by a NULL character

Printable ASCII Codes

	0	1	2	3	4	5	6	7		9	A	B	C	D	E	F
2	ace	!	"	\#	\$	\%	\&)	*	+		-		/
3	0	1	2	3	4	5	6	7	8	9		,	<	=	$>$?
4	@	A	B	C	D	E	F		H	I	J	K	L	M	N	0
5	P	Q	R	S	T	U	V		X	Y	Z	[\backslash]	\wedge	
6		a	b	c	d	e	f			i	j	k	1	m	n	
7	p	q	r	s	t	u	v	W	X	y	Z	\{	\|	\}	\sim	

* Examples:
\triangleleft ASCII code for space character $=20($ hex $)=32$ (decimal)
\diamond ASCII code for 'L' = 4C (hex) $=76$ (decimal)
\triangleleft ASCII code for 'a' $=61$ (hex) $=97$ (decimal)

Control Characters

* The first 32 characters of ASCII table are used for control
* Control character codes $=00$ to 1F (hexadecimal)
\triangleleft Not shown in previous slide
\& Examples of Control Characters
\triangleleft Character 0 is the NULL character \Rightarrow used to terminate a string
\triangleleft Character 9 is the Horizontal Tab (HT) character
\diamond Character 0A (hex) $=10$ (decimal) is the Line Feed (LF)
\diamond Character OD (hex) $=13$ (decimal) is the Carriage Return (CR)
\diamond The LF and CR characters are used together
- They advance the cursor to the beginning of next line
* One control character appears at end of ASCII table
\diamond Character 7F (hex) is the Delete (DEL) character

