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Presentation Outline
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� Translating Loops and Traversing Arrays
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� Critical Interface between hardware and software

� An ISA includes the following …
� Instructions and Instruction Formats

� Data Types, Encodings, and Representations

� Programmable Storage: Registers and Memory

� Addressing Modes: to address Instructions and Data

� Handling Exceptional Conditions (like division by zero)

� Examples (Versions) First Introduced in
� Intel (8086, 80386, Pentium, ...) 1978 

� MIPS (MIPS I, II, III, IV, V) 1986

� PowerPC (601, 604, …) 1993

Instruction Set Architecture (ISA)
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Instructions
� Instructions are the language of the machine

�We will study the MIPS instruction set architecture
� Known as Reduced Instruction Set Computer (RISC)

� Elegant and relatively simple design

� Similar to RISC architectures developed in mid-1980’s and 90’s

� Very popular, used in many products
� Silicon Graphics, ATI, Cisco, Sony, etc.

� Comes next in sales after Intel IA-32 processors
� Almost 100 million MIPS processors sold in 2002 (and increasing)

� Alternative design: Intel IA-32
� Known as Complex Instruction Set Computer (CISC)
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Basics of RISC Design
� All instructions are typically of one size

� Few instruction formats

� Arithmetic instructions are register to register
� Operands are read from registers

� Result is stored in a register

� General purpose integer and floating point registers
� Typically, 32 integer and 32 floating-point registers

�Memory access only via load and store instructions
� Load and store: bytes, half words, words, and double words 

� Few simple addressing modes
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Next . . .
� Instruction Set Architecture

� Overview of the MIPS Processor

� R-Type Arithmetic, Logical, and Shift Instructions

� I-Type Format and Immediate Constants 

� Jump and Branch Instructions

� Translating If Statements and Boolean Expressions

� Load and Store Instructions

� Translating Loops and Traversing Arrays

� Alternative Architecture
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Overview of the MIPS Processor

Memory
Up to 232 bytes = 230 words

4 bytes per word
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� 32 General Purpose Registers (GPRs)
� 32-bit registers are used in MIPS32

� Register 0 is always zero

� Any value written to R0 is discarded

� Special-purpose registers LO and HI
� Hold results of integer multiply and divide

� Special-purpose program counter PC

� 32 Floating Point Registers (FPRs)
� Floating Point registers can be either 32-bit or 64-bit

� A pair of registers is used for double-precision floating-point

Overview of the MIPS Registers

GPRs

$0 – $31

LO
HI
PC

FPRs

$F0 – $F31
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MIPS General-Purpose Registers
� 32 General Purpose Registers (GPRs)

� Assembler uses the dollar notation to name registers
� $0 is register 0, $1 is register 1, …, and $31 is register 31

� All registers are 32-bit wide in MIPS32

� Register $0 is always zero
� Any value written to $0 is discarded

� Software conventions
� Software defines names to all registers

� To standardize their use in programs 

� $8 - $15 are called $t0 - $t7
� Used for temporary values

� $16 - $23 are called $s0 - $s7

$0  = $zero

$1  = $at

$2  = $v0

$3  = $v1

$4  = $a0

$5  = $a1

$6  = $a2

$7  = $a3

$8  = $t0

$9  = $t1

$10 = $t2

$11 = $t3

$12 = $t4

$13 = $t5

$14 = $t6

$15 = $t7

$16 = $s0

$17 = $s1

$18 = $s2

$19 = $s3

$20 = $s4

$21 = $s5

$22 = $s6

$23 = $s7

$24 = $t8

$25 = $t9

$26 = $k0

$27 = $k1

$28 = $gp

$29 = $sp

$30 = $fp

$31 = $ra
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MIPS Register Conventions

Return address (used by jal for function call)$31$ra
Frame pointer (points to stack frame)$30$fp
Stack pointer (points to top of stack)$29$sp

Reserved for OS kernel$26 – $27$k0 – $k1
More temporaries$24 – $25$t8 – $t9
Saved registers (preserved across call)$16 – $23$s0 – $s7

Global pointer (points to global data)$28$gp

Temporary Values$8 – $15$t0 – $t7
Arguments of a function$4 – $7$a0 – $a3
Result values of a function$2 – $3$v0 – $v1
Reserved for assembler use$1$at
Always 0 (forced by hardware)$0$zero
UsageRegisterName

� Assembler can refer to registers by name or by number
� It is easier for you to remember registers by name

� Assembler converts register name to its corresponding number
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Instruction Formats
� All instructions are 32-bit wide, Three instruction formats:

� Register (R-Type)
� Register-to-register instructions

� Op: operation code specifies the format of the instruction

� Immediate (I-Type)
� 16-bit immediate constant is part in the instruction

� Jump (J-Type)
� Used by jump instructions

Op6 Rs5 Rt5 Rd5 funct6sa5

Op6 Rs5 Rt5 immediate16

Op6 immediate26
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Instruction Categories
� Integer Arithmetic

� Arithmetic, logical, and shift instructions

� Data Transfer
� Load and store instructions that access memory
� Data movement and conversions

� Jump and Branch
� Flow-control instructions that alter the sequential sequence

� Floating Point Arithmetic
� Instructions that operate on floating-point registers

�Miscellaneous
� Instructions that transfer control to/from exception handlers
� Memory management instructions



7

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 13

Next . . .
� Instruction Set Architecture

� Overview of the MIPS Processor

� R-Type Arithmetic, Logical, and Shift Instructions

� I-Type Format and Immediate Constants 

� Jump and Branch Instructions

� Translating If Statements and Boolean Expressions

� Load and Store Instructions

� Translating Loops and Traversing Arrays

� Alternative Architecture
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R-Type Format

� Op: operation code (opcode)
� Specifies the operation of the instruction
� Also specifies the format of the instruction

� funct: function code – extends the opcode
� Up to 26 = 64 functions can be defined for the same opcode
� MIPS uses opcode 0 to define R-type instructions

� Three Register Operands (common to many instructions)
� Rs, Rt: first and second source operands
� Rd: destination operand
� sa: the shift amount used by shift instructions

Op6 Rs5 Rt5 Rd5 funct6sa5
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Integer Add /Subtract Instructions

f = 0x23
f = 0x22
f = 0x21
f = 0x20

sa = 0
sa = 0
sa = 0
sa = 0

rd = $s1
rd = $s1
rd = $s1
rd = $s1

rt = $s3
rt = $s3
rt = $s3
rt = $s3

rs = $s2
rs = $s2
rs = $s2
rs = $s2

op = 0$s1 = $s2 – $s3subu $s1, $s2, $s3
op = 0$s1 = $s2 – $s3sub $s1, $s2, $s3
op = 0$s1 = $s2 + $s3addu $s1, $s2, $s3
op = 0$s1 = $s2 + $s3add $s1, $s2, $s3

R-Type FormatMeaningInstruction

� add & sub: overflow causes an arithmetic exception
� In case of overflow, result is not written to destination register

� addu & subu: same operation as add & sub
� However, no arithmetic exception can occur

� Overflow is ignored

�Many programming languages ignore overflow
� The + operator is translated into addu
� The – operator is translated into subu
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Addition/Subtraction Example
� Consider the translation of: f = (g+h) – (i+j)

� Compiler allocates registers to variables
�Assume that f, g, h, i, and j are allocated registers $s0 thru $s4

�Called the saved registers: $s0 = $16, $s1 = $17, …, $s7 = $23

� Translation of: f = (g+h) – (i+j)
addu $t0, $s1, $s2 # $t0 = g + h
addu $t1, $s3, $s4 # $t1 = i + j
subu $s0, $t0, $t1 # f = (g+h)–(i+j)

� Temporary results are stored in $t0 = $8 and $t1 = $9

� Translate: addu $t0,$s1,$s2 to binary code

� Solution: 000000
op

10001
rs = $s1

10010
rt = $s2

01000
rd = $t0

00000
sa

100001
func
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Logical Bitwise Operations
� Logical bitwise operations: and, or, xor, nor

� AND instruction is used to clear bits: x and 0 = 0

� OR instruction is used to set bits: x or 1 = 1

� XOR instruction is used to toggle bits: x xor 1 = not x

� NOR instruction can be used as a NOT, how?
� nor $s1,$s2,$s2 is equivalent to not $s1,$s2

x

0
0
1
1

y

0
1
0
1

x and y

0
0
0
1

x

0
0
1
1

y

0
1
0
1

x or y

0
1
1
1

x

0
0
1
1

y

0
1
0
1

x xor y

0
1
1
0

x

0
0
1
1

y

0
1
0
1

x nor y

1
0
0
0
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Logical Bitwise Instructions

f = 0x27
f = 0x26
f = 0x25
f = 0x24

sa = 0
sa = 0
sa = 0
sa = 0

rd = $s1
rd = $s1
rd = $s1
rd = $s1

rt = $s3
rt = $s3
rt = $s3
rt = $s3

rs = $s2
rs = $s2
rs = $s2
rs = $s2

op = 0$s1 = ~($s2|$s3)nor $s1, $s2, $s3
op = 0$s1 = $s2 ^ $s3xor $s1, $s2, $s3
op = 0$s1 = $s2 | $s3or $s1, $s2, $s3
op = 0$s1 = $s2 & $s3and $s1, $s2, $s3

R-Type FormatMeaningInstruction

� Examples:

Assume $s1 = 0xabcd1234 and $s2 = 0xffff0000

and $s0,$s1,$s2 # $s0 = 0xabcd0000

or  $s0,$s1,$s2 # $s0 = 0xffff1234

xor $s0,$s1,$s2 # $s0 = 0x54321234

nor $s0,$s1,$s2 # $s0 = 0x0000edcb



10

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 19

Shift Operations
� Shifting is to move all the bits in a register left or right
� Shifts by a constant amount: sll, srl, sra

� sll/srl mean shift left/right logical by a constant amount

� The 5-bit shift amount field is used by these instructions
� sra means shift right arithmetic by a constant amount

� The sign-bit (rather than 0) is shifted from the left

shift-in 0. . .shift-out MSB
sll 32-bit register

. . .shift-in 0 shift-out LSB
srl

. . .shift-in sign-bit shift-out LSB
sra
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$s1 = 0x0000abcd

$s1 = 0xcd123400

Shift Instructions

f = 7sa = 0rd = $s1rt = $s2rs = $s3op = 0$s1 = $s2 >> $s3srav $s1,$s2,$s3
f = 6sa = 0rd = $s1rt = $s2rs = $s3op = 0$s1 = $s2>>>$s3srlv $s1,$s2,$s3
f = 4
f = 3
f = 2
f = 0

sa = 0
sa = 10
sa = 10
sa = 10

rd = $s1
rd = $s1
rd = $s1
rd = $s1

rt = $s2
rt = $s2
rt = $s2
rt = $s2

rs = $s3
rs = 0
rs = 0
rs = 0

op = 0$s1 = $s2 << $s3sllv $s1,$s2,$s3
op = 0$s1 = $s2 >> 10sra $s1, $s2, 10
op = 0$s1 = $s2>>>10srl $s1,$s2,10
op = 0$s1 = $s2 << 10sll $s1,$s2,10

R-Type FormatMeaningInstruction

� Shifts by a variable amount: sllv, srlv, srav
� Same as sll, srl, sra, but a register is used for shift amount

� Examples: assume that $s2 = 0xabcd1234, $s3 = 16
sll $s1,$s2,8

sra $s1,$s2,4 $s1 = 0xfabcd123

srlv $s1,$s2,$s3

rt=$s2=10010op=000000 rs=$s3=10011 rd=$s1=10001 sa=00000 f=000110

$s1 = $s2<<8

$s1 = $s2>>4

$s1 = $s2>>>$s3
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Binary Multiplication
� Shift-left (sll) instruction can perform multiplication

� When the multiplier is a power of 2 

� You can factor any binary number into powers of 2 
� Example: multiply $s1 by 36

� Factor 36 into (4 + 32) and use distributive property of multiplication

� $s2 = $s1*36 = $s1*(4 + 32) = $s1*4 + $s1*32

sll $t0, $s1, 2 ; $t0 = $s1 * 4

sll $t1, $s1, 5 ; $t1 = $s1 * 32

addu $s2, $t0, $t1 ; $s2 = $s1 * 36
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Your Turn . . .

sll $t0, $s1, 1 ; $t0 = $s1 * 2
sll $t1, $s1, 3 ; $t1 = $s1 * 8
addu $s2, $t0, $t1 ; $s2 = $s1 * 10
sll $t0, $s1, 4 ; $t0 = $s1 * 16
addu $s2, $s2, $t0 ; $s2 = $s1 * 26

Multiply $s1 by 26, using shift and add instructions 

Hint: 26 = 2 + 8 + 16

Multiply $s1 by 31, Hint: 31 = 32 – 1

sll $s2, $s1, 5 ; $s2 = $s1 * 32
subu $s2, $s2, $s1 ; $s2 = $s1 * 31
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Integer Multiplication & Division
� Consider a×b and a/b where a and b are in $s1 and $s2

�Signed multiplication: mult $s1,$s2
�Unsigned multiplication: multu $s1,$s2
�Signed division: div   $s1,$s2
�Unsigned division: divu $s1,$s2

� For multiplication, result is 64 bits
� LO = low-order 32-bit and HI = high-order 32-bit

� For division
� LO = 32-bit quotient and HI = 32-bit remainder
� If divisor is 0 then result is unpredictable

� Moving data
� mflo rd (move from LO to rd), mfhi rd (move from HI to rd)
� mtlo rs (move to LO from rs), mthi rs (move to HI from rs)

Multiply

Divide

$0

HI LO

$1

..
$31
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Integer Multiply/Divide Instructions

0x100rd500op6 = 0rd = himfhi rd
0x120rd500op6 = 0rd = lomflo rd
0x11000rs5op6 = 0hi = rsmthi rs
0x13000rs5op6 = 0lo = rsmtlo rs

0x1b
0x1a
0x19
0x18

0
0
0
0

0
0
0
0

rt5
rt5
rt5
rt5

rs5
rs5
rs5
rs5

op6 = 0hi, lo = rs / rtdivu rs, rt

op6 = 0hi, lo = rs × rtmultu rs, rt
op6 = 0hi, lo = rs × rtmult rs, rt

op6 = 0hi, lo = rs / rtdiv rs, rt

FormatMeaningInstruction

� Signed arithmetic: mult, div (rs and rt are signed)
� LO = 32-bit low-order and HI = 32-bit high-order of multiplication

� LO = 32-bit quotient and HI = 32-bit remainder of division

� Unsigned arithmetic: multu, divu (rs and rt are unsigned)

� NO arithmetic exception can occur
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Next . . .
� Instruction Set Architecture

� Overview of the MIPS Processor

� R-Type Arithmetic, Logical, and Shift Instructions

� I-Type Format and Immediate Constants 

� Jump and Branch Instructions

� Translating If Statements and Boolean Expressions

� Load and Store Instructions

� Translating Loops and Traversing Arrays

� Alternative Architecture
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I-Type Format
� Constants are used quite frequently in programs

� The R-type shift instructions have a 5-bit shift amount constant

�What about other instructions that need a constant?

� I-Type: Instructions with Immediate Operands

� 16-bit immediate constant is stored inside the instruction
�Rs is the source register number

�Rt is now the destination register number (for R-type it was Rd)

� Examples of I-Type ALU Instructions:
�Add immediate: addi $s1, $s2, 5 # $s1 = $s2 + 5

�OR immediate: ori $s1, $s2, 5 # $s1 = $s2 | 5

Op6 Rs5 Rt5 immediate16
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I-Type ALU Instructions

imm16 = 10rt = $s1rs = $s2op = 0x9$s1 = $s2 + 10addiu $s1, $s2, 10
imm16 = 10rt = $s1rs = $s2op = 0x8$s1 = $s2 + 10addi $s1, $s2, 10

imm16 = 10rt = $s1rs = $s2op = 0xc$s1 = $s2 & 10andi $s1, $s2, 10
imm16 = 10rt = $s1rs = $s2op = 0xd$s1 = $s2 | 10ori $s1, $s2, 10
imm16 = 10rt = $s1rs = $s2op = 0xe$s1 = $s2 ^ 10xori $s1, $s2, 10
imm16 = 10rt = $s10op = 0xf$s1 = 10 << 16lui $s1, 10

I-Type FormatMeaningInstruction

� addi: overflow causes an arithmetic exception
� In case of overflow, result is not written to destination register

� addiu: same operation as addi but overflow is ignored

� Immediate constant for addi and addiu is signed
� No need for subi or subiu instructions

� Immediate constant for andi, ori, xori is unsigned
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� Examples: assume A, B, C are allocated $s0, $s1, $s2

� No need for subi, because addi has signed immediate

� Register 0 ($zero) has always the value 0

Examples: I-Type ALU Instructions

A = B+5; translated as
C = B–1; translated as

addiu $s0,$s1,5

addiu $s2,$s1,-1

A = B&0xf; translated as
C = B|0xf; translated as

andi $s0,$s1,0xf

ori $s2,$s1,0xf

C = 5; translated as
A = B; translated as

ori $s2,$zero,5

ori $s0,$s1,0

rt=$s2=10010op=001001 rs=$s1=10001 imm = -1 = 1111111111111111
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� I-Type instructions can have only 16-bit constants

�What if we want to load a 32-bit constant into a register?

� Can’t have a 32-bit constant in I-Type instructions /
�We have already fixed the sizes of all instructions to 32 bits

� Solution: use two instructions instead of one ☺
�Suppose we want: $s1=0xAC5165D9 (32-bit constant)

� lui: load upper immediate

32-bit Constants

Op6 Rs5 Rt5 immediate16

lui $s1,0xAC51

ori $s1,$s1,0x65D9 0xAC51 0x65D9$s1=$17

0xAC51 0x0000$s1=$17

clear lower
16 bits

load upper
16 bits
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� Overview of the MIPS Processor

� R-Type Arithmetic, Logical, and Shift Instructions
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� Jump and Branch Instructions
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� Translating Loops and Traversing Arrays
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J-Type Format

� J-type format is used for unconditional jump instruction:
j   label # jump to label
. . .

label:

� 26-bit immediate value is stored in the instruction
� Immediate constant specifies address of target instruction

� Program Counter (PC) is modified as follows:

�Next PC =

�Upper 4 most significant bits of PC are unchanged

Op6 immediate26

immediate26PC4 00
least-significant 

2 bits are 00
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� MIPS compare and branch instructions:
beq Rs,Rt,label branch to label if (Rs == Rt)

bne Rs,Rt,label branch to label if (Rs != Rt)

� MIPS compare to zero & branch instructions

Compare to zero is used frequently and implemented efficiently

bltz Rs,label branch to label if (Rs < 0)

bgtz Rs,label branch to label if (Rs > 0)

blez Rs,label branch to label if (Rs <= 0)

bgez Rs,label branch to label if (Rs >= 0)

� No need for beqz and bnez instructions. Why?

Conditional Branch Instructions
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Set on Less Than Instructions
�MIPS also provides set on less than instructions
slt rd,rs,rt if (rs < rt) rd = 1 else rd = 0

sltu rd,rs,rt unsigned <

slti rt,rs,im16 if (rs < im16) rt = 1 else rt = 0

sltiu rt,rs,im16 unsigned <

� Signed / Unsigned Comparisons

Can produce different results
Assume $s0 = 1 and $s1 = -1 = 0xffffffff

slt $t0,$s0,$s1 results in $t0 = 0

stlu $t0,$s0,$s1 results in $t0 = 1
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More on Branch Instructions
� MIPS hardware does NOT provide instructions for …
blt, bltu branch if less than (signed/unsigned)
ble, bleu branch if less or equal (signed/unsigned)
bgt, bgtu branch if greater than (signed/unsigned)
bge, bgeu branch if greater or equal (signed/unsigned)

Can be achieved with a sequence of 2 instructions

� How to implement: blt $s0,$s1,label
� Solution: slt $at,$s0,$s1

bne $at,$zero,label

� How to implement: ble $s2,$s3,label
� Solution: slt $at,$s3,$s2

beq $at,$zero,label
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Pseudo-Instructions
� Introduced by assembler as if they were real instructions

� To facilitate assembly language programming

� Assembler reserves $at = $1 for its own use
� $at is called the assembler temporary register

ori $s1, $zero, 0xabcdli $s1, 0xabcd

slt $s1, $s3, $s2sgt $s1, $s2, $s3

nor   $s1, $s2, $s2not  $s1, $s2

slt $at, $s1, $s2
bne $at, $zero, label

blt $s1, $s2, label

lui $s1, 0xabcd
ori $s1, $s1, 0x1234

li $s1, 0xabcd1234

addu Ss1, $s2, $zeromove $s1, $s2
Conversion to Real InstructionsPseudo-Instructions
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Jump, Branch, and SLT Instructions

imm26op6 = 2jump to labelj label

imm160rs5op6 = 1branch if (rs < 0)bltz rs, label
imm160rs5op6 = 7branch if (rs > 0)bgtz rs, label

imm161rs5op6 = 1branch if (rs>=0)bgez rs, label

imm16rt5rs5op6 = 4branch if (rs == rt)beq rs, rt, label
imm16rt5rs5op6 = 5branch if (rs != rt)bne rs, rt, label
imm160rs5op6 = 6branch if (rs<=0)blez rs, label

FormatMeaningInstruction

imm16rt5rs50xbrt=(rs<imm?1:0)sltiu rt, rs, imm16

imm16rt5rs50xart=(rs<imm?1:0)slti rt, rs, imm16

0x2a0rd5rt5rs5op6 = 0rd=(rs<rt?1:0)slt rd, rs, rt
0x2b0rd5rt5rs5op6 = 0rd=(rs<rt?1:0)sltu rd, rs, rt

FormatMeaningInstruction
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Translating an IF Statement
� Consider the following IF statement:
if (a == b) c = d + e; else c = d – e;

Assume that a, b, c, d, e are in $s0, …, $s4 respectively

� How to translate the above IF statement?

bne $s0, $s1, else

addu $s2, $s3, $s4

j     exit

else: subu $s2, $s3, $s4

exit: . . .
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Compound Expression with AND
� Programming languages use short-circuit evaluation

� If first expression is false, second expression is skipped

if (($s1 > 0) && ($s2 < 0)) {$s3++;}

# One Possible Implementation ...
bgtz $s1, L1 # first expression
j next # skip if false

L1: bltz $s2, L2 # second expression
j next # skip if false

L2: addiu $s3,$s3,1 # both are true
next:
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Better Implementation for AND

The following implementation uses less code

Reverse the relational operator

Allow the program to fall through to the second expression

Number of instructions is reduced from 5 to 3

if (($s1 > 0) && ($s2 < 0)) {$s3++;}

# Better Implementation ...
blez $s1, next # skip if false
bgez $s2, next # skip if false
addiu $s3,$s3,1 # both are true

next:
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Compound Expression with OR
� Short-circuit evaluation for logical OR

� If first expression is true, second expression is skipped

� Use fall-through to keep the code as short as possible

� bgt, ble, and li are pseudo-instructions
� Translated by the assembler to real instructions

if (($sl > $s2) || ($s2 > $s3)) {$s4 = 1;}

bgt $s1, $s2, L1 # yes, execute if part
ble $s2, $s3, next # no: skip if part

L1: li $s4, 1 # set $s4 to 1
next:
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Your Turn . . .
� Translate the IF statement to assembly language

� $s1 and $s2 values are unsigned

� $s3, $s4, and $s5 values are signed

bgtu $s1, $s2, next
move $s3, $s4

next:

if( $s1 <= $s2 ) {
$s3 = $s4

}

if (($s3 <= $s4) && 
($s4 >  $s5)) {

$s3 = $s4 + $s5
}

bgt $s3, $s4, next
ble $s4, $s5, next
addu $s3, $s4, $s5

next:
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Load and Store Instructions
� Instructions that transfer data between memory & registers

� Programs include variables such as arrays and objects

� Such variables are stored in memory

� Load Instruction:

� Transfers data from memory to a register

� Store Instruction:

� Transfers data from a register to memory

�Memory address must be specified by load and store 

MemoryRegisters

load

store
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� Load Word Instruction (Word = 4 bytes in MIPS)

lw Rt, imm16(Rs)  # Rt = MEMORY[Rs+imm16]

� Store Word Instruction

sw Rt, imm16(Rs)  # MEMORY[Rs+imm16] = Rt

� Base or Displacement addressing is used
�Memory Address = Rs (base) + Immediate16 (displacement)

� Immediate16 is sign-extended to have a signed displacement

Load and Store Word

Op6 Rs5 Rt5 immediate16

Base or Displacement Addressing

Memory Word

Base address

+
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Example on Load & Store
� Translate  A[1] = A[2] + 5   (A is an array of words)

� Assume that address of array A is stored in register $s0

lw $s1, 8($s0) # $s1 = A[2] 

addiu $s2, $s1, 5 # $s2 = A[2] + 5

sw $s2, 4($s0) # A[1] = $s2

� Index of a[2] and a[1] should be multiplied by 4. Why?

sw

Memory

A[1]
A[0]

A[2]
A[3]

. . .

. . .

A+12
A+8
A+4
A

Registers

address of A$s0 = $16
value of A[2]$s1 = $17

A[2] + 5$s2 = $18

. . .

. . .

lw
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0 0
s s s

s s

0 0

s

bu
b

h

hu

sign – extend
zero – extend

sign – extend
zero – extend

32-bit Register

� The MIPS processor supports the following data formats:
�Byte = 8 bits, Halfword = 16 bits, Word = 32 bits

� Load & store instructions for bytes and halfwords
� lb = load byte, lbu = load byte unsigned, sb = store byte
� lh = load half, lhu = load half unsigned, sh = store halfword

� Load expands a memory data to fit into a 32-bit register
� Store reduces a 32-bit register to fit in memory

Load and Store Byte and Halfword
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Load and Store Instructions

imm16rt5rs50x23rt = MEM[rs+imm16]lw rt, imm16(rs)
imm16rt5rs50x24rt = MEM[rs+imm16]lbu rt, imm16(rs)
imm16rt5rs50x25rt = MEM[rs+imm16]lhu rt, imm16(rs)

imm16rt5rs50x29MEM[rs+imm16] = rtsh rt, imm16(rs)
imm16rt5rs50x28MEM[rs+imm16] = rtsb rt, imm16(rs)

imm16rt5rs50x20rt = MEM[rs+imm16]lb rt, imm16(rs)
imm16rt5rs50x21rt = MEM[rs+imm16]lh rt, imm16(rs)

imm16rt5rs50x2bMEM[rs+imm16] = rtsw rt, imm16(rs)

I-Type FormatMeaningInstruction

� Base or Displacement Addressing is used
� Memory Address = Rs (base) + Immediate16 (displacement)

� Two variations on base addressing
� If Rs = $zero = 0 then Address = Immediate16 (absolute)

� If Immediate16 = 0 then Address = Rs (register indirect)
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Translating a WHILE Loop
� Consider the following WHILE statement:
i = 0; while (A[i] != k) i = i+1;
Where A is an array of integers (4 bytes per element)
Assume address A, i, k in $s0, $s1, $s2, respectively

� How to translate above WHILE statement?
xor $s1, $s1, $s1 # i = 0
move $t0, $s0 # $t0 = address A

loop: lw $t1, 0($t0) # $t1 = A[i]
beq $t1, $s2, exit # exit if (A[i]== k)
addiu $s1, $s1, 1 # i = i+1
sll $t0, $s1, 2 # $t0 = 4*i
addu $t0, $s0, $t0 # $t0 = address A[i]
j loop

exit: . . .

Memory

A[2]

A[i]

A[1]
A[0]

. . .

. . .

A
A+4
A+8

A+4×i

. . .
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Using Pointers to Traverse Arrays
� Consider the same WHILE loop:
i = 0; while (A[i] != k) i = i+1;

Where address of A, i, k are in $s0, $s1, $s2, respectively

�We can use a pointer to traverse array A
Pointer is incremented by 4 (faster than indexing)

move $t0, $s0 # $t0 = $s0 = addr A
j cond # test condition

loop: addiu $s1, $s1, 1 # i = i+1
addiu $t0, $t0, 4 # point to next

cond: lw $t1, 0($t0) # $t1 = A[i]
bne $t1, $s2, loop # loop if A[i]!= k

� Only 4 instructions (rather than 6) in loop body
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Copying a String

move $t0, $s0 # $t0 = pointer to source
move $t1, $s1 # $t1 = pointer to target

L1: lb $t2, 0($t0) # load  byte into $t2
sb $t2, 0($t1) # store byte into target
addiu $t0, $t0, 1 # increment source pointer
addiu $t1, $t1, 1 # increment target pointer
bne $t2, $zero, L1 # loop until NULL char

The following code copies source string to target string

Address of source in $s0 and address of target in $s1

Strings are terminated with a null character (C strings)

i = 0;
do {target[i]=source[i]; i++;} while (source[i]!=0);
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Summing an Integer Array

move $t0, $s0 # $t0 = address A[i]
xor $t1, $t1, $t1 # $t1 = i = 0
xor $s2, $s2, $s2 # $s2 = sum = 0

L1: lw $t2, 0($t0) # $t2 = A[i]
addu $s2, $s2, $t2 # sum = sum + A[i]
addiu $t0, $t0, 4 # point to next A[i]
addiu $t1, $t1, 1 # i++
bne $t1, $s1, L1 # loop if (i != n)

Assume $s0 = array address, $s1 = array length = n

sum = 0;
for (i=0; i<n; i++) sum = sum + A[i];

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 54

Addressing Modes

Op6 Rs5 Rt5 immediate16

Base or Displacement Addressing

Word

Operand is in memory (load/store)

Register = Base address

+ HalfwordByte

Op6 Rs5 Rt5 immediate16

Immediate Addressing

Operand is a constant

Op6 Rs5 Rt5 Rd5 funct6sa5

Register Addressing

Register

Operand is in a register

�Where are the operands?

� How memory addresses are computed?
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Branch / Jump Addressing Modes
Used for branching (beq, bne, …)

Word = Target Instruction

Op6 Rs5 Rt5 immediate16

PC-Relative Addressing

PC30 00

+1

Target Instruction Address
PC = PC + 4 × (1 + immediate16) PC30 + immediate16 + 1 00

immediate26PC4 00Target Instruction Address

Word = Target Instruction

immediate26Op6

Pseudo-direct Addressing

PC26

:
00

Used by jump instruction

PC4
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Jump and Branch Limits
� Jump Address Boundary = 226 instructions = 256 MB

� Text segment cannot exceed 226 instructions or 256 MB

� Upper 4 bits of PC are unchanged

� Branch Address Boundary
� Branch instructions use I-Type format (16-bit immediate constant)

� PC-relative addressing:

� Target instruction address = PC + 4×(1 + immediate16)

� Count number of instructions to branch from next instruction

� Positive constant => Forward Branch, Negative => Backward branch

� At most ±215 instructions to branch (most branches are near)

immediate26PC4 00Target Instruction Address

PC30 + immediate16 + 1 00
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�Design alternative:
� Provide more complex instructions

� Goal is to reduce number of instructions executed

� Danger is a slower cycle time and/or a higher CPI

� Let’s look briefly at IA-32 (Intel Architecture - 32 bits)

� An architecture that is “difficult to explain and impossible to love”

� Developed by several independent groups

� Evolved over more than 20 years 

� History illustrates impact of compatibility on the ISA

Alternative Architecture
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IA–32 History
1978: Intel 8086 is announced (16-bit architecture)
1980: 8087 floating point coprocessor is added + 60 FP instructions
1982: 80286 increases address space to 24 bits
1985: 80386 extended to 32 bits + new addressing modes + paging
1989-95: 80486, Pentium, Pentium Pro aimed at higher performance
1997: Intel added 57 new “MMX” instructions, Pentium II
1999: Pentium III added another 70 “SSE” instructions

Streaming SIMD Extensions operate on 128-bit registers
2001: Another 144 “SSE2” instructions
2003: AMD increases address space to 64 bits

Widens all registers to 64 bits and other changes (AMD64)
2004: Intel embraces AMD64 (calls it Intel x64) + SSE3 (13 instr.)
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IA-32 Registers & Addressing Modes
� Registers in the 32-bit subset that originated with 80386

� Only 8 GPR Registers, which are not “general purpose”
EAX

ECX

EDX

EBX

ESP

EBP

ESI

EDI

EIP

EFLAGS

CS

SS

DS

ES

FS

GS

$s0=index, $s1=base
sll $t0, $s0, 1|2|3 
add $t0, $s1, $t0
lw rt, im16($t0)

Base: any GPR
Index: not ESP
scale value: 0,1,2,3

Base + scaled index 
with 8- or 32-bit offset

$s0=index, $s1=base
sll $t0, $s0, 1|2|3 
add $t0, $s1, $t0
lw rt, 0($t0)

lw rt, im16(rs)
im16 = 16-bit offset

lw rt, 0(rs)
MIPS equivalent

Base: any GPR
Index: not ESP
scale value: 0,1,2,3

Base + scaled index

Base: not ESP or EBPBase addressing with 
8- or 32-bit offset

not ESP or EBPRegister Indirect
RestrictionsMode

� Base + scaled index mode is not found in MIPS
� MIPS immediate offsets are limited to 16 bits
� For 32-bit offsets, lui instruction is needed
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Typical IA-32 Instructions
� Data movement instructions

� MOV, PUSH, POP, LEA, …

� Arithmetic and logical instructions
� ADD, SUB, SHL, SHR, ROL, OR, XOR, INC, DEC, CMP, …

� Control flow instructions
� JMP, JZ, JNZ, CALL, RET, LOOP, …

� String instructions
� MOVS, LODS, …

� First operand is a source and destination
� Can be register or memory operand

� Second operand is a source
� Can be register, memory, or an immediate constant 
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IA-32 Instruction Formats
� Complexity:

� Instruction formats from 1 to 17 bytes long

� One operand must act as both a source and destination

� One operand can come from memory

� Complex addressing modes
� Base or scaled index with 8 or 32 bit displacement

� Typical IA-32 Instruction Formats:

JE EIP + displacement

JE DisplacementCondi-
tion

4 4 8

CALL

CALL Offset

8 32

MOV EBX, [EDI + 45]

MOV wd Displacementr/m
Postbyte

6 81 1 8

PUSH ESI

PUSH Reg

5 3

ADD EAX, #6765

ADD w ImmediateReg

4 323 1

TEST EDX, #42

ImmediatePostbyteTEST w

7 321 8
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Summary of Design Principles
1. Simplicity favors regularity

� Simple instructions dominate the instruction frequency
� So design them to be simple and regular, and make them fast
� Use general-purpose registers uniformly across instructions

� Fix the size of instructions (simplifies fetching & decoding)
� Fix the number of operands per instruction

� Three operands is the natural number for a typical instruction 

2. Smaller is faster
� Limit the number of registers for faster access (typically 32)

3. Make the common case fast
� Include constants inside instructions (faster than loading them)
� Design most instructions to be register-to-register

4. Good design demands good compromises
� Having one-size formats is better than variable-size formats, even 

though it limits the size of the immediate constants


