
1

Instruction Set Architecture

COE 308
Computer Architecture

Prof. Muhamed Mudawar

Computer Engineering Department
King Fahd University of Petroleum and Minerals

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 2

Presentation Outline
� Instruction Set Architecture

� Overview of the MIPS Processor

� R-Type Arithmetic, Logical, and Shift Instructions

� I-Type Format and Immediate Constants

� Jump and Branch Instructions

� Translating If Statements and Boolean Expressions

� Load and Store Instructions

� Translating Loops and Traversing Arrays

� Alternative Architecture

2

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 3

� Critical Interface between hardware and software

� An ISA includes the following …
� Instructions and Instruction Formats

� Data Types, Encodings, and Representations

� Programmable Storage: Registers and Memory

� Addressing Modes: to address Instructions and Data

� Handling Exceptional Conditions (like division by zero)

� Examples (Versions) First Introduced in
� Intel (8086, 80386, Pentium, ...) 1978

� MIPS (MIPS I, II, III, IV, V) 1986

� PowerPC (601, 604, …) 1993

Instruction Set Architecture (ISA)

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 4

Instructions
� Instructions are the language of the machine

�We will study the MIPS instruction set architecture
� Known as Reduced Instruction Set Computer (RISC)

� Elegant and relatively simple design

� Similar to RISC architectures developed in mid-1980’s and 90’s

� Very popular, used in many products
� Silicon Graphics, ATI, Cisco, Sony, etc.

� Comes next in sales after Intel IA-32 processors
� Almost 100 million MIPS processors sold in 2002 (and increasing)

� Alternative design: Intel IA-32
� Known as Complex Instruction Set Computer (CISC)

3

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 5

Basics of RISC Design
� All instructions are typically of one size

� Few instruction formats

� Arithmetic instructions are register to register
� Operands are read from registers

� Result is stored in a register

� General purpose integer and floating point registers
� Typically, 32 integer and 32 floating-point registers

�Memory access only via load and store instructions
� Load and store: bytes, half words, words, and double words

� Few simple addressing modes

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 6

Next . . .
� Instruction Set Architecture

� Overview of the MIPS Processor

� R-Type Arithmetic, Logical, and Shift Instructions

� I-Type Format and Immediate Constants

� Jump and Branch Instructions

� Translating If Statements and Boolean Expressions

� Load and Store Instructions

� Translating Loops and Traversing Arrays

� Alternative Architecture

4

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 7

Overview of the MIPS Processor

Memory
Up to 232 bytes = 230 words

4 bytes per word

$0
$1
$2

$31

Hi Lo

ALU

$F0
$F1
$F2

$F31
FP

Arith

EPC
Cause

BadVaddr
Status

EIU FPU

TMU

Execution &
Integer Unit
(Main proc)

Floating
Point Unit
(Coproc 1)

Trap &
Memory Unit
(Coproc 0)

. . .

. . .

Integer
mul/div

Arithmetic &
Logic Unit

32 General
Purpose
Registers

Integer
Multiplier/Divider

32 Floating-Point
Registers

Floating-Point
Arithmetic Unit

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 8

� 32 General Purpose Registers (GPRs)
� 32-bit registers are used in MIPS32

� Register 0 is always zero

� Any value written to R0 is discarded

� Special-purpose registers LO and HI
� Hold results of integer multiply and divide

� Special-purpose program counter PC

� 32 Floating Point Registers (FPRs)
� Floating Point registers can be either 32-bit or 64-bit

� A pair of registers is used for double-precision floating-point

Overview of the MIPS Registers

GPRs

$0 – $31

LO
HI
PC

FPRs

$F0 – $F31

5

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 9

MIPS General-Purpose Registers
� 32 General Purpose Registers (GPRs)

� Assembler uses the dollar notation to name registers
� $0 is register 0, $1 is register 1, …, and $31 is register 31

� All registers are 32-bit wide in MIPS32

� Register $0 is always zero
� Any value written to $0 is discarded

� Software conventions
� Software defines names to all registers

� To standardize their use in programs

� $8 - $15 are called $t0 - $t7
� Used for temporary values

� $16 - $23 are called $s0 - $s7

$0 = $zero

$1 = $at

$2 = $v0

$3 = $v1

$4 = $a0

$5 = $a1

$6 = $a2

$7 = $a3

$8 = $t0

$9 = $t1

$10 = $t2

$11 = $t3

$12 = $t4

$13 = $t5

$14 = $t6

$15 = $t7

$16 = $s0

$17 = $s1

$18 = $s2

$19 = $s3

$20 = $s4

$21 = $s5

$22 = $s6

$23 = $s7

$24 = $t8

$25 = $t9

$26 = $k0

$27 = $k1

$28 = $gp

$29 = $sp

$30 = $fp

$31 = $ra

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 10

MIPS Register Conventions

Return address (used by jal for function call)31ra
Frame pointer (points to stack frame)30fp
Stack pointer (points to top of stack)29sp

Reserved for OS kernel$26 – 27k0 – $k1
More temporaries$24 – 25t8 – $t9
Saved registers (preserved across call)$16 – 23s0 – $s7

Global pointer (points to global data)28gp

Temporary Values$8 – 15t0 – $t7
Arguments of a function$4 – 7a0 – $a3
Result values of a function$2 – 3v0 – $v1
Reserved for assembler use1at
Always 0 (forced by hardware)0zero
UsageRegisterName

� Assembler can refer to registers by name or by number
� It is easier for you to remember registers by name

� Assembler converts register name to its corresponding number

6

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 11

Instruction Formats
� All instructions are 32-bit wide, Three instruction formats:

� Register (R-Type)
� Register-to-register instructions

� Op: operation code specifies the format of the instruction

� Immediate (I-Type)
� 16-bit immediate constant is part in the instruction

� Jump (J-Type)
� Used by jump instructions

Op6 Rs5 Rt5 Rd5 funct6sa5

Op6 Rs5 Rt5 immediate16

Op6 immediate26

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 12

Instruction Categories
� Integer Arithmetic

� Arithmetic, logical, and shift instructions

� Data Transfer
� Load and store instructions that access memory
� Data movement and conversions

� Jump and Branch
� Flow-control instructions that alter the sequential sequence

� Floating Point Arithmetic
� Instructions that operate on floating-point registers

�Miscellaneous
� Instructions that transfer control to/from exception handlers
� Memory management instructions

7

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 13

Next . . .
� Instruction Set Architecture

� Overview of the MIPS Processor

� R-Type Arithmetic, Logical, and Shift Instructions

� I-Type Format and Immediate Constants

� Jump and Branch Instructions

� Translating If Statements and Boolean Expressions

� Load and Store Instructions

� Translating Loops and Traversing Arrays

� Alternative Architecture

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 14

R-Type Format

� Op: operation code (opcode)
� Specifies the operation of the instruction
� Also specifies the format of the instruction

� funct: function code – extends the opcode
� Up to 26 = 64 functions can be defined for the same opcode
� MIPS uses opcode 0 to define R-type instructions

� Three Register Operands (common to many instructions)
� Rs, Rt: first and second source operands
� Rd: destination operand
� sa: the shift amount used by shift instructions

Op6 Rs5 Rt5 Rd5 funct6sa5

8

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 15

Integer Add /Subtract Instructions

f = 0x23
f = 0x22
f = 0x21
f = 0x20

sa = 0
sa = 0
sa = 0
sa = 0

rd = $s1
rd = $s1
rd = $s1
rd = $s1

rt = $s3
rt = $s3
rt = $s3
rt = $s3

rs = $s2
rs = $s2
rs = $s2
rs = $s2

op = 0$s1 = $s2 – $s3subu $s1, $s2, $s3
op = 0$s1 = $s2 – $s3sub $s1, $s2, $s3
op = 0$s1 = $s2 + $s3addu $s1, $s2, $s3
op = 0$s1 = $s2 + $s3add $s1, $s2, $s3

R-Type FormatMeaningInstruction

� add & sub: overflow causes an arithmetic exception
� In case of overflow, result is not written to destination register

� addu & subu: same operation as add & sub
� However, no arithmetic exception can occur

� Overflow is ignored

�Many programming languages ignore overflow
� The + operator is translated into addu
� The – operator is translated into subu

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 16

Addition/Subtraction Example
� Consider the translation of: f = (g+h) – (i+j)

� Compiler allocates registers to variables
�Assume that f, g, h, i, and j are allocated registers $s0 thru $s4

�Called the saved registers: $s0 = $16, $s1 = $17, …, $s7 = $23

� Translation of: f = (g+h) – (i+j)
addu $t0, $s1, $s2 # $t0 = g + h
addu $t1, $s3, $s4 # $t1 = i + j
subu $s0, $t0, $t1 # f = (g+h)–(i+j)

� Temporary results are stored in $t0 = $8 and $t1 = $9

� Translate: addu $t0,$s1,$s2 to binary code

� Solution: 000000
op

10001
rs = $s1

10010
rt = $s2

01000
rd = $t0

00000
sa

100001
func

9

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 17

Logical Bitwise Operations
� Logical bitwise operations: and, or, xor, nor

� AND instruction is used to clear bits: x and 0 = 0

� OR instruction is used to set bits: x or 1 = 1

� XOR instruction is used to toggle bits: x xor 1 = not x

� NOR instruction can be used as a NOT, how?
� nor $s1,$s2,$s2 is equivalent to not $s1,$s2

x

0
0
1
1

y

0
1
0
1

x and y

0
0
0
1

x

0
0
1
1

y

0
1
0
1

x or y

0
1
1
1

x

0
0
1
1

y

0
1
0
1

x xor y

0
1
1
0

x

0
0
1
1

y

0
1
0
1

x nor y

1
0
0
0

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 18

Logical Bitwise Instructions

f = 0x27
f = 0x26
f = 0x25
f = 0x24

sa = 0
sa = 0
sa = 0
sa = 0

rd = $s1
rd = $s1
rd = $s1
rd = $s1

rt = $s3
rt = $s3
rt = $s3
rt = $s3

rs = $s2
rs = $s2
rs = $s2
rs = $s2

op = 0$s1 = ~($s2|$s3)nor $s1, $s2, $s3
op = 0$s1 = $s2 ^ $s3xor $s1, $s2, $s3
op = 0$s1 = $s2 | $s3or $s1, $s2, $s3
op = 0$s1 = $s2 & $s3and $s1, $s2, $s3

R-Type FormatMeaningInstruction

� Examples:

Assume $s1 = 0xabcd1234 and $s2 = 0xffff0000

and $s0,$s1,$s2 # $s0 = 0xabcd0000

or $s0,$s1,$s2 # $s0 = 0xffff1234

xor $s0,$s1,$s2 # $s0 = 0x54321234

nor $s0,$s1,$s2 # $s0 = 0x0000edcb

10

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 19

Shift Operations
� Shifting is to move all the bits in a register left or right
� Shifts by a constant amount: sll, srl, sra

� sll/srl mean shift left/right logical by a constant amount

� The 5-bit shift amount field is used by these instructions
� sra means shift right arithmetic by a constant amount

� The sign-bit (rather than 0) is shifted from the left

shift-in 0. . .shift-out MSB
sll 32-bit register

. . .shift-in 0 shift-out LSB
srl

. . .shift-in sign-bit shift-out LSB
sra

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 20

$s1 = 0x0000abcd

$s1 = 0xcd123400

Shift Instructions

f = 7sa = 0rd = $s1rt = $s2rs = $s3op = 0$s1 = $s2 >> $s3srav $s1,$s2,$s3
f = 6sa = 0rd = $s1rt = $s2rs = $s3op = 0$s1 = $s2>>>$s3srlv $s1,$s2,$s3
f = 4
f = 3
f = 2
f = 0

sa = 0
sa = 10
sa = 10
sa = 10

rd = $s1
rd = $s1
rd = $s1
rd = $s1

rt = $s2
rt = $s2
rt = $s2
rt = $s2

rs = $s3
rs = 0
rs = 0
rs = 0

op = 0$s1 = $s2 << $s3sllv $s1,$s2,$s3
op = 0$s1 = $s2 >> 10sra $s1, $s2, 10
op = 0$s1 = $s2>>>10srl $s1,$s2,10
op = 0$s1 = $s2 << 10sll $s1,$s2,10

R-Type FormatMeaningInstruction

� Shifts by a variable amount: sllv, srlv, srav
� Same as sll, srl, sra, but a register is used for shift amount

� Examples: assume that $s2 = 0xabcd1234, $s3 = 16
sll $s1,$s2,8

sra $s1,$s2,4 $s1 = 0xfabcd123

srlv $s1,$s2,$s3

rt=$s2=10010op=000000 rs=$s3=10011 rd=$s1=10001 sa=00000 f=000110

$s1 = $s2<<8

$s1 = $s2>>4

$s1 = $s2>>>$s3

11

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 21

Binary Multiplication
� Shift-left (sll) instruction can perform multiplication

� When the multiplier is a power of 2

� You can factor any binary number into powers of 2
� Example: multiply $s1 by 36

� Factor 36 into (4 + 32) and use distributive property of multiplication

� $s2 = $s1*36 = $s1*(4 + 32) = $s1*4 + $s1*32

sll $t0, $s1, 2 ; $t0 = $s1 * 4

sll $t1, $s1, 5 ; $t1 = $s1 * 32

addu $s2, $t0, $t1 ; $s2 = $s1 * 36

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 22

Your Turn . . .

sll $t0, $s1, 1 ; $t0 = $s1 * 2
sll $t1, $s1, 3 ; $t1 = $s1 * 8
addu $s2, $t0, $t1 ; $s2 = $s1 * 10
sll $t0, $s1, 4 ; $t0 = $s1 * 16
addu $s2, $s2, $t0 ; $s2 = $s1 * 26

Multiply $s1 by 26, using shift and add instructions

Hint: 26 = 2 + 8 + 16

Multiply $s1 by 31, Hint: 31 = 32 – 1

sll $s2, $s1, 5 ; $s2 = $s1 * 32
subu $s2, $s2, $s1 ; $s2 = $s1 * 31

12

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 23

Integer Multiplication & Division
� Consider a×b and a/b where a and b are in $s1 and $s2

�Signed multiplication: mult $s1,$s2
�Unsigned multiplication: multu $s1,$s2
�Signed division: div $s1,$s2
�Unsigned division: divu $s1,$s2

� For multiplication, result is 64 bits
� LO = low-order 32-bit and HI = high-order 32-bit

� For division
� LO = 32-bit quotient and HI = 32-bit remainder
� If divisor is 0 then result is unpredictable

� Moving data
� mflo rd (move from LO to rd), mfhi rd (move from HI to rd)
� mtlo rs (move to LO from rs), mthi rs (move to HI from rs)

Multiply

Divide

$0

HI LO

$1

..
$31

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 24

Integer Multiply/Divide Instructions

0x100rd500op6 = 0rd = himfhi rd
0x120rd500op6 = 0rd = lomflo rd
0x11000rs5op6 = 0hi = rsmthi rs
0x13000rs5op6 = 0lo = rsmtlo rs

0x1b
0x1a
0x19
0x18

0
0
0
0

0
0
0
0

rt5
rt5
rt5
rt5

rs5
rs5
rs5
rs5

op6 = 0hi, lo = rs / rtdivu rs, rt

op6 = 0hi, lo = rs × rtmultu rs, rt
op6 = 0hi, lo = rs × rtmult rs, rt

op6 = 0hi, lo = rs / rtdiv rs, rt

FormatMeaningInstruction

� Signed arithmetic: mult, div (rs and rt are signed)
� LO = 32-bit low-order and HI = 32-bit high-order of multiplication

� LO = 32-bit quotient and HI = 32-bit remainder of division

� Unsigned arithmetic: multu, divu (rs and rt are unsigned)

� NO arithmetic exception can occur

13

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 25

Next . . .
� Instruction Set Architecture

� Overview of the MIPS Processor

� R-Type Arithmetic, Logical, and Shift Instructions

� I-Type Format and Immediate Constants

� Jump and Branch Instructions

� Translating If Statements and Boolean Expressions

� Load and Store Instructions

� Translating Loops and Traversing Arrays

� Alternative Architecture

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 26

I-Type Format
� Constants are used quite frequently in programs

� The R-type shift instructions have a 5-bit shift amount constant

�What about other instructions that need a constant?

� I-Type: Instructions with Immediate Operands

� 16-bit immediate constant is stored inside the instruction
�Rs is the source register number

�Rt is now the destination register number (for R-type it was Rd)

� Examples of I-Type ALU Instructions:
�Add immediate: addi $s1, $s2, 5 # $s1 = $s2 + 5

�OR immediate: ori $s1, $s2, 5 # $s1 = $s2 | 5

Op6 Rs5 Rt5 immediate16

14

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 27

I-Type ALU Instructions

imm16 = 10rt = $s1rs = $s2op = 0x9$s1 = $s2 + 10addiu $s1, $s2, 10
imm16 = 10rt = $s1rs = $s2op = 0x8$s1 = $s2 + 10addi $s1, $s2, 10

imm16 = 10rt = $s1rs = $s2op = 0xc$s1 = $s2 & 10andi $s1, $s2, 10
imm16 = 10rt = $s1rs = $s2op = 0xd$s1 = $s2 | 10ori $s1, $s2, 10
imm16 = 10rt = $s1rs = $s2op = 0xe$s1 = $s2 ^ 10xori $s1, $s2, 10
imm16 = 10rt = $s10op = 0xf$s1 = 10 << 16lui $s1, 10

I-Type FormatMeaningInstruction

� addi: overflow causes an arithmetic exception
� In case of overflow, result is not written to destination register

� addiu: same operation as addi but overflow is ignored

� Immediate constant for addi and addiu is signed
� No need for subi or subiu instructions

� Immediate constant for andi, ori, xori is unsigned

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 28

� Examples: assume A, B, C are allocated $s0, $s1, $s2

� No need for subi, because addi has signed immediate

� Register 0 ($zero) has always the value 0

Examples: I-Type ALU Instructions

A = B+5; translated as
C = B–1; translated as

addiu $s0,$s1,5

addiu $s2,$s1,-1

A = B&0xf; translated as
C = B|0xf; translated as

andi $s0,$s1,0xf

ori $s2,$s1,0xf

C = 5; translated as
A = B; translated as

ori $s2,$zero,5

ori $s0,$s1,0

rt=$s2=10010op=001001 rs=$s1=10001 imm = -1 = 1111111111111111

15

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 29

� I-Type instructions can have only 16-bit constants

�What if we want to load a 32-bit constant into a register?

� Can’t have a 32-bit constant in I-Type instructions /
�We have already fixed the sizes of all instructions to 32 bits

� Solution: use two instructions instead of one ☺
�Suppose we want: $s1=0xAC5165D9 (32-bit constant)

� lui: load upper immediate

32-bit Constants

Op6 Rs5 Rt5 immediate16

lui $s1,0xAC51

ori $s1,$s1,0x65D9 0xAC51 0x65D9$s1=$17

0xAC51 0x0000$s1=$17

clear lower
16 bits

load upper
16 bits

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 30

Next . . .
� Instruction Set Architecture

� Overview of the MIPS Processor

� R-Type Arithmetic, Logical, and Shift Instructions

� I-Type Format and Immediate Constants

� Jump and Branch Instructions

� Translating If Statements and Boolean Expressions

� Load and Store Instructions

� Translating Loops and Traversing Arrays

� Alternative Architecture

16

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 31

J-Type Format

� J-type format is used for unconditional jump instruction:
j label # jump to label
. . .

label:

� 26-bit immediate value is stored in the instruction
� Immediate constant specifies address of target instruction

� Program Counter (PC) is modified as follows:

�Next PC =

�Upper 4 most significant bits of PC are unchanged

Op6 immediate26

immediate26PC4 00
least-significant

2 bits are 00

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 32

� MIPS compare and branch instructions:
beq Rs,Rt,label branch to label if (Rs == Rt)

bne Rs,Rt,label branch to label if (Rs != Rt)

� MIPS compare to zero & branch instructions

Compare to zero is used frequently and implemented efficiently

bltz Rs,label branch to label if (Rs < 0)

bgtz Rs,label branch to label if (Rs > 0)

blez Rs,label branch to label if (Rs <= 0)

bgez Rs,label branch to label if (Rs >= 0)

� No need for beqz and bnez instructions. Why?

Conditional Branch Instructions

17

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 33

Set on Less Than Instructions
�MIPS also provides set on less than instructions
slt rd,rs,rt if (rs < rt) rd = 1 else rd = 0

sltu rd,rs,rt unsigned <

slti rt,rs,im16 if (rs < im16) rt = 1 else rt = 0

sltiu rt,rs,im16 unsigned <

� Signed / Unsigned Comparisons

Can produce different results
Assume $s0 = 1 and $s1 = -1 = 0xffffffff

slt $t0,$s0,$s1 results in $t0 = 0

stlu $t0,$s0,$s1 results in $t0 = 1

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 34

More on Branch Instructions
� MIPS hardware does NOT provide instructions for …
blt, bltu branch if less than (signed/unsigned)
ble, bleu branch if less or equal (signed/unsigned)
bgt, bgtu branch if greater than (signed/unsigned)
bge, bgeu branch if greater or equal (signed/unsigned)

Can be achieved with a sequence of 2 instructions

� How to implement: blt $s0,$s1,label
� Solution: slt $at,$s0,$s1

bne $at,$zero,label

� How to implement: ble $s2,$s3,label
� Solution: slt $at,$s3,$s2

beq $at,$zero,label

18

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 35

Pseudo-Instructions
� Introduced by assembler as if they were real instructions

� To facilitate assembly language programming

� Assembler reserves $at = $1 for its own use
� $at is called the assembler temporary register

ori $s1, $zero, 0xabcdli $s1, 0xabcd

slt $s1, $s3, $s2sgt $s1, $s2, $s3

nor $s1, $s2, $s2not $s1, $s2

slt $at, $s1, $s2
bne $at, $zero, label

blt $s1, $s2, label

lui $s1, 0xabcd
ori $s1, $s1, 0x1234

li $s1, 0xabcd1234

addu Ss1, $s2, $zeromove $s1, $s2
Conversion to Real InstructionsPseudo-Instructions

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 36

Jump, Branch, and SLT Instructions

imm26op6 = 2jump to labelj label

imm160rs5op6 = 1branch if (rs < 0)bltz rs, label
imm160rs5op6 = 7branch if (rs > 0)bgtz rs, label

imm161rs5op6 = 1branch if (rs>=0)bgez rs, label

imm16rt5rs5op6 = 4branch if (rs == rt)beq rs, rt, label
imm16rt5rs5op6 = 5branch if (rs != rt)bne rs, rt, label
imm160rs5op6 = 6branch if (rs<=0)blez rs, label

FormatMeaningInstruction

imm16rt5rs50xbrt=(rs<imm?1:0)sltiu rt, rs, imm16

imm16rt5rs50xart=(rs<imm?1:0)slti rt, rs, imm16

0x2a0rd5rt5rs5op6 = 0rd=(rs<rt?1:0)slt rd, rs, rt
0x2b0rd5rt5rs5op6 = 0rd=(rs<rt?1:0)sltu rd, rs, rt

FormatMeaningInstruction

19

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 37

Next . . .
� Instruction Set Architecture

� Overview of the MIPS Processor

� R-Type Arithmetic, Logical, and Shift Instructions

� I-Type Format and Immediate Constants

� Jump and Branch Instructions

� Translating If Statements and Boolean Expressions

� Load and Store Instructions

� Translating Loops and Traversing Arrays

� Alternative Architecture

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 38

Translating an IF Statement
� Consider the following IF statement:
if (a == b) c = d + e; else c = d – e;

Assume that a, b, c, d, e are in $s0, …, $s4 respectively

� How to translate the above IF statement?

bne $s0, $s1, else

addu $s2, $s3, $s4

j exit

else: subu $s2, $s3, $s4

exit: . . .

20

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 39

Compound Expression with AND
� Programming languages use short-circuit evaluation

� If first expression is false, second expression is skipped

if (($s1 > 0) && ($s2 < 0)) {$s3++;}

One Possible Implementation ...
bgtz $s1, L1 # first expression
j next # skip if false

L1: bltz $s2, L2 # second expression
j next # skip if false

L2: addiu $s3,$s3,1 # both are true
next:

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 40

Better Implementation for AND

The following implementation uses less code

Reverse the relational operator

Allow the program to fall through to the second expression

Number of instructions is reduced from 5 to 3

if (($s1 > 0) && ($s2 < 0)) {$s3++;}

Better Implementation ...
blez $s1, next # skip if false
bgez $s2, next # skip if false
addiu $s3,$s3,1 # both are true

next:

21

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 41

Compound Expression with OR
� Short-circuit evaluation for logical OR

� If first expression is true, second expression is skipped

� Use fall-through to keep the code as short as possible

� bgt, ble, and li are pseudo-instructions
� Translated by the assembler to real instructions

if (($sl > $s2) || ($s2 > $s3)) {$s4 = 1;}

bgt $s1, $s2, L1 # yes, execute if part
ble $s2, $s3, next # no: skip if part

L1: li $s4, 1 # set $s4 to 1
next:

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 42

Your Turn . . .
� Translate the IF statement to assembly language

� $s1 and $s2 values are unsigned

� $s3, $s4, and $s5 values are signed

bgtu $s1, $s2, next
move $s3, $s4

next:

if($s1 <= $s2) {
$s3 = $s4

}

if (($s3 <= $s4) &&
($s4 > $s5)) {

$s3 = $s4 + $s5
}

bgt $s3, $s4, next
ble $s4, $s5, next
addu $s3, $s4, $s5

next:

22

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 43

Next . . .
� Instruction Set Architecture

� Overview of the MIPS Processor

� R-Type Arithmetic, Logical, and Shift Instructions

� I-Type Format and Immediate Constants

� Jump and Branch Instructions

� Translating If Statements and Boolean Expressions

� Load and Store Instructions

� Translating Loops and Traversing Arrays

� Alternative Architecture

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 44

Load and Store Instructions
� Instructions that transfer data between memory & registers

� Programs include variables such as arrays and objects

� Such variables are stored in memory

� Load Instruction:

� Transfers data from memory to a register

� Store Instruction:

� Transfers data from a register to memory

�Memory address must be specified by load and store

MemoryRegisters

load

store

23

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 45

� Load Word Instruction (Word = 4 bytes in MIPS)

lw Rt, imm16(Rs) # Rt = MEMORY[Rs+imm16]

� Store Word Instruction

sw Rt, imm16(Rs) # MEMORY[Rs+imm16] = Rt

� Base or Displacement addressing is used
�Memory Address = Rs (base) + Immediate16 (displacement)

� Immediate16 is sign-extended to have a signed displacement

Load and Store Word

Op6 Rs5 Rt5 immediate16

Base or Displacement Addressing

Memory Word

Base address

+

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 46

Example on Load & Store
� Translate A[1] = A[2] + 5 (A is an array of words)

� Assume that address of array A is stored in register $s0

lw $s1, 8($s0) # $s1 = A[2]

addiu $s2, $s1, 5 # $s2 = A[2] + 5

sw $s2, 4($s0) # A[1] = $s2

� Index of a[2] and a[1] should be multiplied by 4. Why?

sw

Memory

A[1]
A[0]

A[2]
A[3]

. . .

. . .

A+12
A+8
A+4
A

Registers

address of A$s0 = $16
value of A[2]$s1 = $17

A[2] + 5$s2 = $18

. . .

. . .

lw

24

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 47

0 0
s s s

s s

0 0

s

bu
b

h

hu

sign – extend
zero – extend

sign – extend
zero – extend

32-bit Register

� The MIPS processor supports the following data formats:
�Byte = 8 bits, Halfword = 16 bits, Word = 32 bits

� Load & store instructions for bytes and halfwords
� lb = load byte, lbu = load byte unsigned, sb = store byte
� lh = load half, lhu = load half unsigned, sh = store halfword

� Load expands a memory data to fit into a 32-bit register
� Store reduces a 32-bit register to fit in memory

Load and Store Byte and Halfword

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 48

Load and Store Instructions

imm16rt5rs50x23rt = MEM[rs+imm16]lw rt, imm16(rs)
imm16rt5rs50x24rt = MEM[rs+imm16]lbu rt, imm16(rs)
imm16rt5rs50x25rt = MEM[rs+imm16]lhu rt, imm16(rs)

imm16rt5rs50x29MEM[rs+imm16] = rtsh rt, imm16(rs)
imm16rt5rs50x28MEM[rs+imm16] = rtsb rt, imm16(rs)

imm16rt5rs50x20rt = MEM[rs+imm16]lb rt, imm16(rs)
imm16rt5rs50x21rt = MEM[rs+imm16]lh rt, imm16(rs)

imm16rt5rs50x2bMEM[rs+imm16] = rtsw rt, imm16(rs)

I-Type FormatMeaningInstruction

� Base or Displacement Addressing is used
� Memory Address = Rs (base) + Immediate16 (displacement)

� Two variations on base addressing
� If Rs = $zero = 0 then Address = Immediate16 (absolute)

� If Immediate16 = 0 then Address = Rs (register indirect)

25

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 49

Next . . .
� Instruction Set Architecture

� Overview of the MIPS Processor

� R-Type Arithmetic, Logical, and Shift Instructions

� I-Type Format and Immediate Constants

� Jump and Branch Instructions

� Translating If Statements and Boolean Expressions

� Load and Store Instructions

� Translating Loops and Traversing Arrays

� Alternative Architecture

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 50

Translating a WHILE Loop
� Consider the following WHILE statement:
i = 0; while (A[i] != k) i = i+1;
Where A is an array of integers (4 bytes per element)
Assume address A, i, k in $s0, $s1, $s2, respectively

� How to translate above WHILE statement?
xor $s1, $s1, $s1 # i = 0
move $t0, $s0 # $t0 = address A

loop: lw $t1, 0($t0) # $t1 = A[i]
beq $t1, $s2, exit # exit if (A[i]== k)
addiu $s1, $s1, 1 # i = i+1
sll $t0, $s1, 2 # $t0 = 4*i
addu $t0, $s0, $t0 # $t0 = address A[i]
j loop

exit: . . .

Memory

A[2]

A[i]

A[1]
A[0]

. . .

. . .

A
A+4
A+8

A+4×i

. . .

26

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 51

Using Pointers to Traverse Arrays
� Consider the same WHILE loop:
i = 0; while (A[i] != k) i = i+1;

Where address of A, i, k are in $s0, $s1, $s2, respectively

�We can use a pointer to traverse array A
Pointer is incremented by 4 (faster than indexing)

move $t0, $s0 # $t0 = $s0 = addr A
j cond # test condition

loop: addiu $s1, $s1, 1 # i = i+1
addiu $t0, $t0, 4 # point to next

cond: lw $t1, 0($t0) # $t1 = A[i]
bne $t1, $s2, loop # loop if A[i]!= k

� Only 4 instructions (rather than 6) in loop body

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 52

Copying a String

move $t0, $s0 # $t0 = pointer to source
move $t1, $s1 # $t1 = pointer to target

L1: lb $t2, 0($t0) # load byte into $t2
sb $t2, 0($t1) # store byte into target
addiu $t0, $t0, 1 # increment source pointer
addiu $t1, $t1, 1 # increment target pointer
bne $t2, $zero, L1 # loop until NULL char

The following code copies source string to target string

Address of source in $s0 and address of target in $s1

Strings are terminated with a null character (C strings)

i = 0;
do {target[i]=source[i]; i++;} while (source[i]!=0);

27

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 53

Summing an Integer Array

move $t0, $s0 # $t0 = address A[i]
xor $t1, $t1, $t1 # $t1 = i = 0
xor $s2, $s2, $s2 # $s2 = sum = 0

L1: lw $t2, 0($t0) # $t2 = A[i]
addu $s2, $s2, $t2 # sum = sum + A[i]
addiu $t0, $t0, 4 # point to next A[i]
addiu $t1, $t1, 1 # i++
bne $t1, $s1, L1 # loop if (i != n)

Assume $s0 = array address, $s1 = array length = n

sum = 0;
for (i=0; i<n; i++) sum = sum + A[i];

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 54

Addressing Modes

Op6 Rs5 Rt5 immediate16

Base or Displacement Addressing

Word

Operand is in memory (load/store)

Register = Base address

+ HalfwordByte

Op6 Rs5 Rt5 immediate16

Immediate Addressing

Operand is a constant

Op6 Rs5 Rt5 Rd5 funct6sa5

Register Addressing

Register

Operand is in a register

�Where are the operands?

� How memory addresses are computed?

28

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 55

Branch / Jump Addressing Modes
Used for branching (beq, bne, …)

Word = Target Instruction

Op6 Rs5 Rt5 immediate16

PC-Relative Addressing

PC30 00

+1

Target Instruction Address
PC = PC + 4 × (1 + immediate16) PC30 + immediate16 + 1 00

immediate26PC4 00Target Instruction Address

Word = Target Instruction

immediate26Op6

Pseudo-direct Addressing

PC26

:
00

Used by jump instruction

PC4

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 56

Jump and Branch Limits
� Jump Address Boundary = 226 instructions = 256 MB

� Text segment cannot exceed 226 instructions or 256 MB

� Upper 4 bits of PC are unchanged

� Branch Address Boundary
� Branch instructions use I-Type format (16-bit immediate constant)

� PC-relative addressing:

� Target instruction address = PC + 4×(1 + immediate16)

� Count number of instructions to branch from next instruction

� Positive constant => Forward Branch, Negative => Backward branch

� At most ±215 instructions to branch (most branches are near)

immediate26PC4 00Target Instruction Address

PC30 + immediate16 + 1 00

29

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 57

Next . . .
� Instruction Set Architecture

� Overview of the MIPS Processor

� R-Type Arithmetic, Logical, and Shift Instructions

� I-Type Format and Immediate Constants

� Jump and Branch Instructions

� Translating If Statements and Boolean Expressions

� Load and Store Instructions

� Translating Loops and Traversing Arrays

� Alternative Architecture

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 58

�Design alternative:
� Provide more complex instructions

� Goal is to reduce number of instructions executed

� Danger is a slower cycle time and/or a higher CPI

� Let’s look briefly at IA-32 (Intel Architecture - 32 bits)

� An architecture that is “difficult to explain and impossible to love”

� Developed by several independent groups

� Evolved over more than 20 years

� History illustrates impact of compatibility on the ISA

Alternative Architecture

30

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 59

IA–32 History
1978: Intel 8086 is announced (16-bit architecture)
1980: 8087 floating point coprocessor is added + 60 FP instructions
1982: 80286 increases address space to 24 bits
1985: 80386 extended to 32 bits + new addressing modes + paging
1989-95: 80486, Pentium, Pentium Pro aimed at higher performance
1997: Intel added 57 new “MMX” instructions, Pentium II
1999: Pentium III added another 70 “SSE” instructions

Streaming SIMD Extensions operate on 128-bit registers
2001: Another 144 “SSE2” instructions
2003: AMD increases address space to 64 bits

Widens all registers to 64 bits and other changes (AMD64)
2004: Intel embraces AMD64 (calls it Intel x64) + SSE3 (13 instr.)

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 60

IA-32 Registers & Addressing Modes
� Registers in the 32-bit subset that originated with 80386

� Only 8 GPR Registers, which are not “general purpose”
EAX

ECX

EDX

EBX

ESP

EBP

ESI

EDI

EIP

EFLAGS

CS

SS

DS

ES

FS

GS

$s0=index, $s1=base
sll $t0, $s0, 1|2|3
add $t0, $s1, $t0
lw rt, im16($t0)

Base: any GPR
Index: not ESP
scale value: 0,1,2,3

Base + scaled index
with 8- or 32-bit offset

$s0=index, $s1=base
sll $t0, $s0, 1|2|3
add $t0, $s1, $t0
lw rt, 0($t0)

lw rt, im16(rs)
im16 = 16-bit offset

lw rt, 0(rs)
MIPS equivalent

Base: any GPR
Index: not ESP
scale value: 0,1,2,3

Base + scaled index

Base: not ESP or EBPBase addressing with
8- or 32-bit offset

not ESP or EBPRegister Indirect
RestrictionsMode

� Base + scaled index mode is not found in MIPS
� MIPS immediate offsets are limited to 16 bits
� For 32-bit offsets, lui instruction is needed

31

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 61

Typical IA-32 Instructions
� Data movement instructions

� MOV, PUSH, POP, LEA, …

� Arithmetic and logical instructions
� ADD, SUB, SHL, SHR, ROL, OR, XOR, INC, DEC, CMP, …

� Control flow instructions
� JMP, JZ, JNZ, CALL, RET, LOOP, …

� String instructions
� MOVS, LODS, …

� First operand is a source and destination
� Can be register or memory operand

� Second operand is a source
� Can be register, memory, or an immediate constant

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 62

IA-32 Instruction Formats
� Complexity:

� Instruction formats from 1 to 17 bytes long

� One operand must act as both a source and destination

� One operand can come from memory

� Complex addressing modes
� Base or scaled index with 8 or 32 bit displacement

� Typical IA-32 Instruction Formats:

JE EIP + displacement

JE DisplacementCondi-
tion

4 4 8

CALL

CALL Offset

8 32

MOV EBX, [EDI + 45]

MOV wd Displacementr/m
Postbyte

6 81 1 8

PUSH ESI

PUSH Reg

5 3

ADD EAX, #6765

ADD w ImmediateReg

4 323 1

TEST EDX, #42

ImmediatePostbyteTEST w

7 321 8

32

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 63

Summary of Design Principles
1. Simplicity favors regularity

� Simple instructions dominate the instruction frequency
� So design them to be simple and regular, and make them fast
� Use general-purpose registers uniformly across instructions

� Fix the size of instructions (simplifies fetching & decoding)
� Fix the number of operands per instruction

� Three operands is the natural number for a typical instruction

2. Smaller is faster
� Limit the number of registers for faster access (typically 32)

3. Make the common case fast
� Include constants inside instructions (faster than loading them)
� Design most instructions to be register-to-register

4. Good design demands good compromises
� Having one-size formats is better than variable-size formats, even

though it limits the size of the immediate constants

