

Multiply Example (Refined Version)

Consider: 1100₂ × 1101₂, Product = 10011100₂

✤ 4-bit multiplicand and multiplier are used in this example

✤ 4-bit adder produces a 5-bit sum (with carry)

Itera	ation	Multiplicand	Carry	Product = HI, LO
0	Initialize (LO = Multiplier)	1100		0000 1101
4	LO[0] = 1 => ADD	↓	→0	1100 1101
1	Shift Right Product = (HI, LO)	1100		0110 0110
0	LO[0] = 0 => Do Nothing			
2	Shift Right Product = (HI, LO)	1100		0011 0011
3	LO[0] = 1 => ADD	↓ + -	→0	1111 0011
ა	Shift Right Product = (HI, LO)	1100		0111 1001
4	LO[0] = 1 => ADD	└ → [‡] –	→1	0011 1001
4	Shift Right Product = (HI, LO)	1100		1001 1100
Integer	Multiplication and Division COE 308 – C	Computer Architecture		© Muhamed Mudawar – slide

	Signed Multip	licatior	n Exe	ample
*	Consider: 1100 ₂ (-4) × 11	01 ₂ (-3), Pr	oduct	= 00001100 ₂
*	Multiplicand and HI are si	an-extende	d befo	ore addition
	•	•		
~ •*	Last iteration: add 2's con	ipiement o	ווויויו	plicanu
Itera	ation	Multiplicand	Sign	Product = HI, LO
0	Initialize (LO = Multiplier)	1100 -		- 0000 110 <mark>1</mark>
	LO[0] = 1 => ADD	↓ ↓ + -	→1	1100 1101
1	Shift Product = (HI, LO) right 1 bit	1100		1110 0110
	LO[0] = 0 => Do Nothing			
2	Shift Product = (HI, LO) right 1 bit	1100		- 1111 001 <mark>1</mark>
•	LO[0] = 1 => ADD	└ → ‡ -	→1	1011 0011
3	Shift Product = (HI, LO) right 1 bit	1100 -		1101 1001
	LO[0] = 1 => SUB (ADD 2's compl)	• 0100 +-	→0	0001 1001
4	Shift Product = (HI, LO) right 1 bit			0000 1100
•				

Unsigned D	ivision (Pap	oer & Pencil)
2 .	$10011_{2} = 1$ $11011001_{2} = 2$ 1011	
	10 101 1010 10100 10100	Try to see how big a number can be subtracted, creating a digit of the quotient on each attempt
Dividend = Quotient × Divisor + Remainder 217 = 19 × 11 + 8	-1011 1001 10011 -1011	Binary division is accomplished via shifting and subtraction
Integer Multiplication and Division	$\frac{1000}{2} = 8$	B Remainder

	Division Ex	kample	e (Ver	sion 1)
*	Consider: 1110 ₂ / 001	1 ₂ (4-bit	dividend	& divisor))
*	Quotient = 0100_2 and	Remaind	ler = 001	0,	
	8-bit registers for Rer			`	
Iteration		Remainder	Divisor	Difference	Quotient
0	Initialize	00001110	<mark>0011</mark> 0000		0000
1	1: SRL Div, SLL Q, Difference	00001110	00011000	11110110	0000
	2: Diff < 0 => Do Nothing				
2	1: SRL Div, SLL Q, Difference	00001110	00001100	00000010	0000
	2: Rem = Diff, set Isb Quotient	00000010			0001
_	1: SRL Div, SLL Q, Difference	00000010	00000110	11111100	0010
~	2: Diff < 0 => Do Nothing				
3		00000010	00000011	11111111	0100
3	1: SRL Div, SLL Q, Difference				

Division Example (Refined Version)

Same Example: 1110₂ / 0011₂ (4-bit dividend & divisor)

• Quotient = 0100_2 and Remainder = 0010_2

✤ 4-bit registers for Remainder and Divisor (4-bit ALU)

Itera	ation	Remainder	Quotient	Divisor	Difference
0	Initialize	0000	1110	0011	
4	1: Shift Left, Difference	0001 🗲	- 1100	0011	1110
1	2: Diff < 0 => Do Nothing				
_	1: Shift Left, Difference	0011 🕈	- 1000	0011	0000
2	2: Rem = Diff, set Isb Quotient	0000	100 <mark>1</mark>		
3	1: Shift Left, Difference	0001 🕇	- 0010	0011	1110
S	2: Diff < 0 => Do Nothing				
4	1: Shift Left, Difference	0010 🔸	- 0100	0011	1111
4	2: Diff < 0 => Do Nothing				

Instruct	tion	Meaning			For	mat		
mult R	s, Rt	Hi, Lo = Rs × Rt	op ⁶ = 0	Rs⁵	Rt⁵	0	0	0x18
multu R	s, Rt	Hi, Lo = Rs × Rt	op ⁶ = 0	Rs⁵	Rt⁵	0	0	0x19
div R	s, Rt	Hi, Lo = Rs / Rt	op ⁶ = 0	Rs⁵	Rt⁵	0	0	0x1a
divu R	s, Rt	Hi, Lo = Rs / Rt	op ⁶ = 0	Rs⁵	Rt⁵	0	0	0x1b
mfhi R	d	Rd = Hi	op ⁶ = 0	0	0	Rd⁵	0	0x10
mflo R	d	Rd = Lo	op ⁶ = 0	0	0	Rd⁵	0	0x12
mthi R	S	Hi = Rs	op ⁶ = 0	Rs⁵	0	0	0	0x11
mtlo R	S	Lo = Rs	op ⁶ = 0	Rs⁵	0	0	0	0x13
♦ LC ♦ LC) = 32) = 32	ithmetic: mult, -bit low-order an -bit quotient and	d HI = 32 HI = 32-I	bit hi: bit ren	gh-oro nainde	der of er of di	multip ivisior	olication
		arithmetic: mu						

