Integer Multiplication and Division

COE 308
Computer Architecture
Prof. Muhamed Mudawar
Computer Engineering Department
King Fahd University of Petroleum and Minerals

Presentation Outline

* Unsigned Multiplication
* Signed Multiplication
* Faster Multiplication
* Unsigned Division
* Signed Division
* Multiplication and Division in MIPS

Unsigned Multiplication

* Paper and Pencil Example:

* m-bit multiplicand $\times n$-bit multiplier $=(m+n)$-bit product
* Accomplished via shifting and addition
* Consumes more time and more chip area

Version 1 of Multiplication Hardware

* Initialize Product = 0
* Multiplicand is zero extended

Multiplication Example (Version 1)

* Consider: $1100_{2} \times 1101_{2}$, Product $=10011100_{2}$
* 4-bit multiplicand and multiplier are used in this example

Multiplicand is zero extended because it is unsigned

Iteration		Multiplicand	Multiplier	Product
0	Initialize	00001100	1101	-00000000
1	Multiplier[0] = 1 => ADD			$\xrightarrow{\downarrow} \rightarrow 00001100$
	SLL Multiplicand and SRL Multiplier	00011000	0110	
2	Multiplier[0] = 0 => Do Nothing			-00001100
	SLL Multiplicand and SRL Multiplier	00110000	0011	
3	Multiplier[0] = 1 => ADD			$\xrightarrow{\rightarrow} 00111100$
	SLL Multiplicand and SRL Multiplier	01100000	0001	
4	Multiplier[0] = 1 => ADD			$t+10011100$
	SLL Multiplicand and SRL Multiplier	11000000	0000	

Observation on Version 1 of Multiply

* Hardware in version 1 can be optimized
* Rather than shifting the multiplicand to the left

Instead, shift the product to the right
Has the same net effect and produces the same results

* Reduce Hardware
« Multiplicand register can be reduced to 32 bits only
\diamond We can also reduce the adder size to 32 bits
* One cycle per iteration
\diamond Shifting and addition can be done simultaneously

Version 2 of Multiplication Hardware

* Product $=\mathrm{HI}$ and LO registers
* Product is shifted right
* Reduced 32-bit Multiplicand \& Adder

Multiply Example (Refined Version)

* Consider: $1100_{2} \times 1101_{2}$, Product $=10011100_{2}$
* 4-bit multiplicand and multiplier are used in this example
* 4-bit adder produces a 5-bit sum (with carry)

Iteration		Multiplicand	Carry	Product $=\mathrm{HI}, \mathrm{LO}$
0	Initialize (LO = Multiplier)	1100		-0000 1101
1	LO[0] = 1 => ADD	$\longrightarrow+$	$\rightarrow 0$	11001101
	Shift Right Product = (HI, LO)	1100		01100110
2	LO[0] = 0 => Do Nothing			
	Shift Right Product = (HI, LO)	1100		-00110011
3	LO[0] = 1 => ADD	$\longrightarrow+$	$\rightarrow 0$	11110011
	Shift Right Product = (HI, LO)	1100		-01111001
4	LO[0] = 1 => ADD	$\rightarrow+$	$\rightarrow 1$	00111001
	Shift Right Product = (HI, LO)	1100		10011100

```
    Next ...
* Unsigned Multiplication
* Signed Multiplication
* Faster Multiplication
* Unsigned Division
* Signed Division
* Multiplication and Division in MIPS
```


Signed Multiplication

* So far, we have dealt with unsigned integer multiplication
* Version 1 of Signed Multiplication
\triangleleft Convert multiplier and multiplicand into positive numbers
- If negative then obtain the 2's complement and remember the sign
\triangleleft Perform unsigned multiplication
\diamond Compute the sign of the product
\diamond If product sign < 0 then obtain the 2's complement of the product
* Refined Version:
\diamond Use the refined version of the unsigned multiplication hardware
\diamond When shifting right, extend the sign of the product
\diamond If multiplier is negative, the last step should be a subtract

Signed Multiplication (Pencil \& Paper)

* Case 1: Positive Multiplier

Multiplicand		1100_{2}	-4
Multiplier	\times	0101 2	= +5
Sign-extension		1100	
Product		1100_{2}	$=-20$

* Case 2: Negative Multiplier

Signed Multiplication Hardware

* Similar to Unsigned Multiplier
* ALU produces a 33-bit result

\diamond Multiplicand and HI are sign-extended
\triangleleft Sign is the sign of the result

Multiplicand

sign

First 31 iterations: $\mathrm{HI}=\mathrm{HI}+$ Multiplicand Last iteration: $\mathrm{HI}=\mathrm{HI}-$ Multiplicand

Signed Multiplication Example

* Consider: $1100_{2}(-4) \times 1101_{2}(-3)$, Product $=000011002$
* Multiplicand and HI are sign-extended before addition
* Last iteration: add 2's complement of Multiplicand

Iteration		Multiplicand	Sign	Product $=\mathrm{HI}, \mathrm{LO}$
0	Initialize (LO = Multiplier)	1100		00001101
1	LO[0] = 1 => ADD	$\rightarrow+$	$\rightarrow 1$	11001101
	Shift Product $=(\mathrm{HI}, \mathrm{LO})$ right 1 bit	1100		11100110
2	LO[0] = 0 => Do Nothing			
	Shift Product $=(\mathrm{HI}, \mathrm{LO})$ right 1 bit	1100		11110011
3	LO[0] = 1 => ADD	$\rightarrow+$	$\rightarrow 1$	10110011
	Shift Product $=(\mathrm{HI}, \mathrm{LO})$ right 1 bit	-1100		-11011001
4	LO[0] = 1 => SUB (ADD 2's compl)	± 0100 +	$\rightarrow 0$	00011001
	Shift Product $=(\mathrm{HI}, \mathrm{LO})$ right 1 bit			00001100

Integer Multiplication and Division
COE 308 - Computer Architecture
© Muhamed Mudawar - slide 14

Faster Multiplication Hardware

* 32-bit adder for each bit of the multiplier
$\diamond 31$ adders are needed for a 32-bit multiplier
\diamond AND multiplicand with each bit of multiplier
\diamond Product = accumulated shifted sum
* Each adder produces a 33-bit output
\diamond Most significant bit is a carry bit
\diamond Least significant bit is a product bit
\triangleleft Upper 32 bits go to next adder
* Array multiplier can be optimized
\diamond Carry save adders reduce delays
\diamond Pipelining further improves the speed

Carry Save Adders

* Used when adding multiple numbers (as in multipliers)
* All the bits of a carry save adder work in parallel
\diamond The carry does not propagate as in a ripple-carry adder
\diamond This is why the carry save adder is much faster than ripple-carry
* A carry save adder has 3 inputs and produces two outputs
\diamond It adds 3 numbers and produces partial sum and carry bits

Ripple Carry Adder

Carry Save Adder

Next...

* Unsigned Multiplication
* Signed Multiplication
* Faster Multiplication
* Unsigned Division
* Signed Division
* Multiplication and Division in MIPS

Unsigned Division (Paper \& Pencil)

	$10011_{2}=19$		Quotient 7 Dividend
Divisor $\mathbf{1 0 1 1}_{\mathbf{2}}$	$11011001_{2}=217$		
	$\begin{aligned} & 10 \\ & 101 \\ & 1010 \\ & 10100 \end{aligned}$	Try to see how big a number can be subtracted, creating a digit of the quotient on each attempt	
Dividend =	-1011		
Quotient \times Divisor + Remainder	$\begin{aligned} & 1001 \\ & 10011 \end{aligned}$		Binary division is accomplished via
$217=19 \times 11+8$	-1011		shifting and subtraction
$100)_{2}=8$			Remainder

First Division Algorithm \& Hardware

* Initialize:
\diamond Remainder $=$ Dividend (0-extended)
২ Load Upper 32 bits of Divisor
\diamond Quotient $=0$

Division Example (Version 1)

* Consider: $1110_{2} / 0011_{2}$ (4-bit dividend \& divisor)
* Quotient $=0100_{2}$ and Remainder $=0010_{2}$
* 8-bit registers for Remainder and Divisor (8-bit ALU)

Iteration		Remainder	Divisor	Difference	Quotient
1	Initialize	1: SRL Div, SLL Q, Difference	00001110	00110000	
	2: Diff < 0 => Do Nothing			0000	
$2:$ SRL Div, SLL Q, Difference	00001110	00011000	11110110	0000	
	2: Rem = Diff, set Isb Quotient	00000010			
3	1: SRL Div, SLL Q, Difference	00000010	00000110	11111100	0010
	2: Diff < 0 => Do Nothing			00000010	0000
4	1: SRL Div, SLL Q, Difference	00000010	00000011	11111111	0100
	2: Diff < 0 => Do Nothing				

Observations on Version 1 of Divide

* Version 1 of Division hardware can be optimized
* Instead of shifting divisor right,

Shift the remainder register left

Has the same net effect and produces the same results

* Reduce Hardware:
\checkmark Divisor register can be reduced to 32 bits (instead of 64 bits)
\triangleleft ALU can be reduced to 32 bits (instead of 64 bits)
\diamond Remainder and Quotient registers can be combined

Refined Division Hardware

Division Example (Refined Version)

* Same Example: $1110{ }_{2} / 0011_{2}$ (4-bit dividend \& divisor)
* Quotient $=0100_{2}$ and Remainder $=0010_{2}$
* 4-bit registers for Remainder and Divisor (4-bit ALU)

Iteration		Remainder	Quotient	Divisor	Difference
0	Initialize	0000	1110	0011	
	1: Shift Left, Difference	0001	1100	0011	1110
	2: Diff < 0 => Do Nothing				
2	1: Shift Left, Difference	0011	1000	0011	0000
	2: Rem = Diff, set Isb Quotient	0000	1001		
3	1: Shift Left, Difference	0001	0010	0011	1110
	2: Diff < 0 => Do Nothing				
4	1: Shift Left, Difference	0010	0100	0011	1111
	2: Diff < 0 => Do Nothing				

```
Next . . .
* Unsigned Multiplication
* Signed Multiplication
* Faster Multiplication
* Unsigned Division
* Signed Division
* Multiplication and Division in MIPS
```


Signed Division

* Simplest way is to remember the signs
* Convert the dividend and divisor to positive
\diamond Obtain the 2's complement if they are negative
* Do the unsigned division
* Compute the signs of the quotient and remainder
\diamond Quotient sign = Dividend sign XOR Divisor sign
\triangleleft Remainder sign $=$ Dividend sign
* Negate the quotient and remainder if their sign is negative
\triangleleft Obtain the 2's complement to convert them to negative

Signed Division Examples

1. Positive Dividend and Positive Divisor
\triangleleft Example: $+17 /+3 \quad$ Quotient $=+5$ Remainder $=+2$
2. Positive Dividend and Negative Divisor
\triangleleft Example: $+17 /-3 \quad$ Quotient $=-5 \quad$ Remainder $=+2$
3. Negative Dividend and Positive Divisor
\triangleleft Example: $-17 /+3 \quad$ Quotient $=-5 \quad$ Remainder $=-2$
4. Negative Dividend and Negative Divisor
\diamond Example: -17/-3 Quotient $=+5 \quad$ Remainder $=-2$
The following equation must always hold:
Dividend $=$ Quotient \times Divisor + Remainder

Next...

* Unsigned Multiplication
* Signed Multiplication
* Faster Multiplication
* Unsigned Division
* Signed Division
* Multiplication and Division in MIPS

Multiplication in MIPS

* Two Multiply instructions
\triangleleft mult \$s1,\$s2 Signed multiplication
४ multu \$s1,\$s2 Unsigned multiplication
* 32-bit multiplication produces a 64-bit Product
* Separate pair of 32-bit registers
$\diamond \mathrm{HI}=$ high-order 32-bit
\triangleleft LO = low-order 32-bit
\triangleleft Result of multiplication is always in $\mathrm{HI} \& ~ L O$
* Moving data from HI/LO to MIPS registers

> mfhi Rd (move from HI to Rd)
\diamond mflo Rd (move from LO to Rd)

Division in MIPS

* Two Divide instructions

\triangleleft div	\$s1,\$s2	Signed division
\triangleleft divu	$\$ s 1, \$ s 2$	Unsigned division

* Division produces quotient and remainder
* Separate pair of 32-bit registers
$\triangleleft \mathrm{HI}=32$-bit remainder
\diamond LO = 32-bit quotient
\diamond If divisor is 0 then result is unpredictable
Moving data to HI/LO from MIPS registers

২ mthi Rs (move to Hl from Rs)
$\diamond m t l o$ Rs (move to LO from Rs)

Integer Multiply/Divide Instructions

Instruction	Meaning	Format						
mult	Rs, Rt	$\mathrm{Hi}, \mathrm{Lo}=\mathrm{Rs} \times \mathrm{Rt}$	$\mathrm{op}^{6}=0$	Rs^{5}	Rt^{5}	0	0	0×18
multu Rs, Rt	$\mathrm{Hi}, \mathrm{Lo}=\mathrm{Rs} \times \mathrm{Rt}$	$\mathrm{op}^{6}=0$	Rs^{5}	Rt^{5}	0	0	0×19	
div	Rs, Rt	$\mathrm{Hi}, \mathrm{Lo}=\mathrm{Rs} / \mathrm{Rt}$	$\mathrm{op}^{6}=0$	Rs^{5}	Rt^{5}	0	0	$0 \times 1 \mathrm{a}$
divu	Rs, Rt	$\mathrm{Hi}, \mathrm{Lo}=\mathrm{Rs} / \mathrm{Rt}$	$\mathrm{op}^{6}=0$	Rs^{5}	Rt^{5}	0	0	$0 \times 1 \mathrm{~b}$
mfhi	Rd	$\mathrm{Rd}=\mathrm{Hi}$	$\mathrm{op}^{6}=0$	0	0	Rd^{5}	0	0×10
mflo	Rd	$\mathrm{Rd}=\mathrm{Lo}$	$\mathrm{op}^{6}=0$	0	0	Rd^{5}	0	0×12
mthi	Rs	$\mathrm{Hi}=\mathrm{Rs}$	$\mathrm{op}^{6}=0$	Rs^{5}	0	0	0	0×11
mtlo	Rs	$\mathrm{Lo}=\mathrm{Rs}$	$\mathrm{op}^{6}=0$	Rs^{5}	0	0	0	0×13

* Signed arithmetic: mult, div (Rs and Rt are signed)
$\diamond ~ L O=32$-bit low-order and $\mathrm{HI}=32$-bit high-order of multiplication
$\diamond \mathrm{LO}=32$-bit quotient and $\mathrm{HI}=32$-bit remainder of division
* Unsigned arithmetic: multu, divu (Rs and Rt are unsigned)
* NO arithmetic exception can occur

Integer to String Conversion

Objective: convert an unsigned 32-bit integer to a string

* How to obtain the decimal digits of the number?
\triangleleft Divide the number by 10, Remainder = decimal digit (0 to 9)
২ Convert decimal digit into its ASCII representation ('0' to '9')
\diamond Repeat the division until the quotient becomes zero
\diamond Digits are computed backwards from least to most significant
* Example: convert 2037 to a string
\triangleleft Divide 2037/10 quotient = 203 remainder = 7 char = '7'
\triangleleft Divide 203/10 quotient $=20$ remainder $=3$ char $=$ ' 3 '
\triangleleft Divide 20/10 quotient $=2$ remainder $=0 \quad$ char $=' 0$ '
\diamond Divide $2 / 10 \quad$ quotient $=0 \quad$ remainder $=2 \quad$ char $=$ '2'

```
Integer to String Procedure
#------------------------------------------------------
# int2str: Converts an unsigned integer into a string
# Parameters: $a0 = integer to be converted
$a1 = string pointer (can store 10 digits)
#----------------------------------------------------
int2str:
    move $t0, $a0 # $t0 = dividend = integer value
    li $t1, 10 # $t1 = divisor = 10
    addiu $a1, $a1, 10 # start at end of string
    sb $zero, 0($a1) # store a NULL byte
convert:
    divu $t0, $t1 # LO = quotient, HI = remainder
    mflo $t0 # $t0 = quotient
    mfhi $t2 # $t2 = remainder
    ori $t2, $t2, 0x30 # convert digit to a character
    addiu $a1, $a1, -1 # point to previous char
    sb $t2, 0($a1) # store digit character
    bnez $t0, convert # loop if quotient is not 0
    jr $ra```

