
1

Integer Multiplication

and Division
COE 308

Computer Architecture
Prof. Muhamed Mudawar

Computer Engineering Department
King Fahd University of Petroleum and Minerals

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 2

Presentation Outline

Unsigned Multiplication

Signed Multiplication

Faster Multiplication

Unsigned Division

Signed Division

Multiplication and Division in MIPS

2

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 3

Paper and Pencil Example:
Multiplicand 11002 = 12
Multiplier × 11012 = 13

1100
0000

1100
1100

Product 100111002 = 156

m-bit multiplicand × n-bit multiplier = (m+n)-bit product

Accomplished via shifting and addition

Consumes more time and more chip area

Unsigned Multiplication

Binary multiplication is easy
0 × multiplicand = 0
1 × multiplicand = multiplicand

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 4

Version 1 of Multiplication Hardware
Start

Multiplier[0]?

1a. Product = Product + Multiplicand

2. Shift the Multiplicand Left 1 bit

3. Shift the Multiplier Right 1 bit

32nd Repetition?

Done

= 0= 1

No

Yes

Initialize Product = 0

Multiplicand is zero extended

Multiplicand

64-bit ALU

Control

Multiplier

Product
64 bits

64 bits

write

shift left

add

shift right

Multiplier[0]32 bits

64 bits

3

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 5

Multiplication Example (Version 1)
Consider: 11002 × 11012 , Product = 100111002

4-bit multiplicand and multiplier are used in this example

Multiplicand is zero extended because it is unsigned

000101100000SLL Multiplicand and SRL Multiplier

00001100Multiplier[0] = 0 => Do Nothing
001100110000SLL Multiplicand and SRL Multiplier

00011000 0110SLL Multiplicand and SRL Multiplier

000011000000SLL Multiplicand and SRL Multiplier

00001100Multiplier[0] = 1 => ADD +

00111100Multiplier[0] = 1 => ADD +

10011100Multiplier[0] = 1 => ADD +

2

00001100 000000001101Initialize0

1

3

4

Multiplicand ProductMultiplierIteration

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 6

Observation on Version 1 of Multiply
Hardware in version 1 can be optimized

Rather than shifting the multiplicand to the left

Instead, shift the product to the right

Has the same net effect and produces the same results

Reduce Hardware
Multiplicand register can be reduced to 32 bits only

We can also reduce the adder size to 32 bits

One cycle per iteration
Shifting and addition can be done simultaneously

4

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 7

Product = HI and LO registers

Product is shifted right

Reduced 32-bit Multiplicand & Adder

Version 2 of Multiplication Hardware

= 0

Start

Multiplier[0]?

HI = HI + Multiplicand

32nd Repetition?

Done

= 1

No

Yes

Shift Product = (HI,LO) Right 1 bit
Shift Multiplier Right 1 bit

32-bit ALU

Control
64 bits

32 bits

write

add

Multiplicand

shift right

32 bits

33 bits

HI LO

32 bits
carry

Multiplier
shift right

Multiplier[0]
32 bits

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 8

Eliminate Multiplier Register

Initialize LO = Multiplier

Product = HI and LO registers

Refined Version of Multiply Hardware

= 0

Start

LO[0]?

HI = HI + Multiplicand

32nd Repetition?

Done

= 1

No

Yes

LO=Multiplier

Shift Product = (HI,LO) Right 1 bit32-bit ALU

Control
64 bits

32 bits

write

add

LO[0]

Multiplicand

shift right

32 bits

33 bits

HI LO

32 bits
carry

5

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 9

Multiply Example (Refined Version)
Consider: 11002 × 11012 , Product = 100111002

4-bit multiplicand and multiplier are used in this example

4-bit adder produces a 5-bit sum (with carry)

1 1 0 0Shift Right Product = (HI, LO) 0 1 1 1 1 0 0 1

LO[0] = 0 => Do Nothing
1 1 0 0Shift Right Product = (HI, LO) 0 0 1 1 0 0 1 1

1 1 0 0Shift Right Product = (HI, LO) 0 1 1 0 0 1 1 0

1 1 0 0Shift Right Product = (HI, LO) 1 0 0 1 1 1 0 0

2

1 1 0 0 0 0 0 0 1 1 0 1Initialize (LO = Multiplier)0

1

3

4

Multiplicand Product = HI, LOCarryIteration

0 1 1 0 0 1 1 0 1LO[0] = 1 => ADD +

0 1 1 1 1 0 0 1 1LO[0] = 1 => ADD +

1 0 0 1 1 1 0 0 1LO[0] = 1 => ADD +

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 10

Next . . .

Unsigned Multiplication

Signed Multiplication

Faster Multiplication

Unsigned Division

Signed Division

Multiplication and Division in MIPS

6

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 11

Signed Multiplication
So far, we have dealt with unsigned integer multiplication

Version 1 of Signed Multiplication
Convert multiplier and multiplicand into positive numbers

If negative then obtain the 2's complement and remember the sign

Perform unsigned multiplication

Compute the sign of the product

If product sign < 0 then obtain the 2's complement of the product

Refined Version:
Use the refined version of the unsigned multiplication hardware

When shifting right, extend the sign of the product

If multiplier is negative, the last step should be a subtract

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 12

Signed Multiplication (Pencil & Paper)
Case 1: Positive Multiplier
Multiplicand 11002 = -4
Multiplier × 01012 = +5

11111100
111100

Product 111011002 = -20

Case 2: Negative Multiplier
Multiplicand 11002 = -4
Multiplier × 11012 = -3

11111100
111100
00100 (2's complement of 1100)

Product 000011002 = +12

Sign-extension

Sign-extension

7

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 13

Similar to Unsigned Multiplier

ALU produces a 33-bit result
Multiplicand and HI are sign-extended

Sign is the sign of the result

Signed Multiplication Hardware

= 0

Start

LO[0]?

First 31 iterations: HI = HI + Multiplicand
Last iteration: HI = HI – Multiplicand

32nd Repetition?

Done

= 1

No

Yes

LO=Multiplier, HI=0

Shift Right Product = (HI, LO) 1 bit33-bit ALU

Control
64 bits

32 bits

write

add, sub

LO[0]

Multiplicand

shift right

32 bits

33 bits

HI LO

32 bits
sign

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 14

Signed Multiplication Example
Consider: 11002 (-4) × 11012 (-3), Product = 000011002

Multiplicand and HI are sign-extended before addition

Last iteration: add 2's complement of Multiplicand

1 1 0 0Shift Product = (HI, LO) right 1 bit 1 1 0 1 1 0 0 1

LO[0] = 0 => Do Nothing
1 1 0 0Shift Product = (HI, LO) right 1 bit 1 1 1 1 0 0 1 1

1 1 0 0Shift Product = (HI, LO) right 1 bit 1 1 1 0 0 1 1 0

Shift Product = (HI, LO) right 1 bit 0 0 0 0 1 1 0 0

2

1 1 0 0 0 0 0 0 1 1 0 1Initialize (LO = Multiplier)0

1

3

4

Multiplicand Product = HI, LOSignIteration

1 1 1 0 0 1 1 0 1LO[0] = 1 => ADD +

1 1 0 1 1 0 0 1 1LO[0] = 1 => ADD +

0 1 0 0 0 0 0 0 1 1 0 0 1LO[0] = 1 => SUB (ADD 2's compl) +

8

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 15

Next . . .

Unsigned Multiplication

Signed Multiplication

Faster Multiplication

Unsigned Division

Signed Division

Multiplication and Division in MIPS

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 16

Faster Multiplication Hardware
32-bit adder for each bit of the multiplier

31 adders are needed for a 32-bit multiplier

AND multiplicand with each bit of multiplier

Product = accumulated shifted sum

Each adder produces a 33-bit output
Most significant bit is a carry bit

Least significant bit is a product bit

Upper 32 bits go to next adder

Array multiplier can be optimized
Carry save adders reduce delays

Pipelining further improves the speed

32-bit

A
B1

32 bits

A
B0

32-bit

A
B2

32 bits 32 bits 1

33 bits

32 bits 1

33 bits

32-bit

A
B3

32 bits

32 bits 1

33 bits

32-bit

A
B31

32 bits

32 bits 1 bit

33 bits

P1P2P3P31P63..32 . .

32 bits

. . .

P0

1

9

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 17

Carry Save Adders
Used when adding multiple numbers (as in multipliers)

All the bits of a carry save adder work in parallel
The carry does not propagate as in a ripple-carry adder

This is why the carry save adder is much faster than ripple-carry

A carry save adder has 3 inputs and produces two outputs
It adds 3 numbers and produces partial sum and carry bits

Ripple Carry Adder

+

a0 b0

s0

+

a1 b1

s1

+

a31b31

s31

. . .cout cin

Carry Save Adder

. . .+

a31b31

s'31c'31

c31

+

a1 b1

s'1c'1

c1

+

a0 b0

s'0c'0

c0

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 18

Consider Adding: S = A + B + C + D

++++

++++

+++

d0d1d2d3

a0a1a2a3 b0b1b2b3

+

s0s1s2s3s4s5

c0c1c2c3

Ripple Carry Adder

Ripple Carry Adder

Ripple Carry Adder

A B

C

S

D

Carry Save Adder

Ripple Carry Adder

A B C

D

S

Carry Save Adder

++++

++++

++++

d0d1d2d3

c0c1c2c3

a0a1a2a3 b0b1b2b3

+

s0s1s2s3s4s5

10

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 19

Next . . .

Unsigned Multiplication

Signed Multiplication

Faster Multiplication

Unsigned Division

Signed Division

Multiplication and Division in MIPS

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 20

Try to see how big a
number can be

subtracted, creating a
digit of the quotient on

each attempt

= 19 Quotient
Divisor 10112 110110012 = 217 Dividend

-1011

10
101
1010
10100
-1011

1001
10011
-1011

10002 = 8 Remainder

Unsigned Division (Paper & Pencil)

Binary division is
accomplished via

shifting and subtraction

Dividend =
Quotient × Divisor

+ Remainder
217 = 19 × 11 + 8

100112

11

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 21

First Division Algorithm & Hardware
Initialize:

Remainder = Dividend (0-extended)
Load Upper 32 bits of Divisor
Quotient = 0

Start

Difference?

2. Remainder = Difference
Set least significant bit of Quotient

32nd Repetition?

Done

< 0≥ 0

No

Yes

1. Shift the Divisor Right 1 bit
Shift the Quotient Left 1 bit
Difference = Remainder – Divisor

Divisor

64-bit ALU

Control

Quotient

Remainder
64 bits

64 bits

write

shift right

sub

shift left

32 bits

Difference
sign

set lsb

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 22

2: Diff < 0 => Do Nothing

Division Example (Version 1)
Consider: 11102 / 00112 (4-bit dividend & divisor)

Quotient = 01002 and Remainder = 00102

8-bit registers for Remainder and Divisor (8-bit ALU)

2: Rem = Diff, set lsb Quotient 00000010 0001

2: Diff < 0 => Do Nothing

2: Diff < 0 => Do Nothing

2

00001110 000000110000Initialize0

1

3

4

Remainder QuotientDivisorIteration Difference

00001: SRL Div, SLL Q, Difference 00001110 00011000 11110110

00001: SRL Div, SLL Q, Difference 00001110 00001100 00000010

00101: SRL Div, SLL Q, Difference 00000010 00000110 11111100

01001: SRL Div, SLL Q, Difference 00000010 00000011 11111111

12

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 23

Observations on Version 1 of Divide
Version 1 of Division hardware can be optimized

Instead of shifting divisor right,

Shift the remainder register left

Has the same net effect and produces the same results

Reduce Hardware:
Divisor register can be reduced to 32 bits (instead of 64 bits)

ALU can be reduced to 32 bits (instead of 64 bits)

Remainder and Quotient registers can be combined

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 24

Refined Division Hardware
Observation:

Shifting remainder left does the
same as shifting the divisor right

Initialize:
Quotient = Dividend, Remainder = 0

Start

Difference?

2. Remainder = Difference
Set least significant bit of Quotient

32nd Repetition?

Done

< 0≥ 0

No

Yes

1. Shift (Remainder, Quotient) Left
Difference = Remainder – Divisor

shift left

Divisor

32-bit ALU

Quotient

32 bits

write

sub

32 bits

Difference
sign

set lsb

Remainder
32 bits

Control

13

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 25

2: Diff < 0 => Do Nothing

Division Example (Refined Version)
Same Example: 11102 / 00112 (4-bit dividend & divisor)

Quotient = 01002 and Remainder = 00102

4-bit registers for Remainder and Divisor (4-bit ALU)

2: Rem = Diff, set lsb Quotient 1 0 0 10 0 0 0

2: Diff < 0 => Do Nothing

2: Diff < 0 => Do Nothing

2

0 0 0 0 1 1 1 0Initialize0

1

3

4

Remainder DifferenceQuotientIteration
0 0 1 1
Divisor

1 1 1 01: Shift Left, Difference 0 0 0 1 1 1 0 0 0 0 1 1

0 0 0 01: Shift Left, Difference 0 0 1 1 1 0 0 0 0 0 1 1

1 1 1 01: Shift Left, Difference 0 0 0 1 0 0 1 0 0 0 1 1

1 1 1 11: Shift Left, Difference 0 0 1 0 0 1 0 0 0 0 1 1

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 26

Next . . .

Unsigned Multiplication

Signed Multiplication

Faster Multiplication

Unsigned Division

Signed Division

Multiplication and Division in MIPS

14

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 27

Signed Division
Simplest way is to remember the signs

Convert the dividend and divisor to positive
Obtain the 2's complement if they are negative

Do the unsigned division

Compute the signs of the quotient and remainder
Quotient sign = Dividend sign XOR Divisor sign

Remainder sign = Dividend sign

Negate the quotient and remainder if their sign is negative
Obtain the 2's complement to convert them to negative

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 28

Signed Division Examples
1. Positive Dividend and Positive Divisor

Example: +17 / +3 Quotient = +5 Remainder = +2

2. Positive Dividend and Negative Divisor
Example: +17 / –3 Quotient = –5 Remainder = +2

3. Negative Dividend and Positive Divisor
Example: –17 / +3 Quotient = –5 Remainder = –2

4. Negative Dividend and Negative Divisor
Example: –17 / –3 Quotient = +5 Remainder = –2

The following equation must always hold:

Dividend = Quotient × Divisor + Remainder

15

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 29

Next . . .

Unsigned Multiplication

Signed Multiplication

Faster Multiplication

Unsigned Division

Signed Division

Multiplication and Division in MIPS

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 30

Multiplication in MIPS
Two Multiply instructions

mult $s1,$s2 Signed multiplication

multu $s1,$s2 Unsigned multiplication

32-bit multiplication produces a 64-bit Product

Separate pair of 32-bit registers
HI = high-order 32-bit

LO = low-order 32-bit
Result of multiplication is always in HI & LO

Moving data from HI/LO to MIPS registers
mfhi Rd (move from HI to Rd)

mflo Rd (move from LO to Rd)

Multiply

Divide

$0

HI LO

$1

..
$31

16

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 31

Division in MIPS
Two Divide instructions

div $s1,$s2 Signed division

divu $s1,$s2 Unsigned division

Division produces quotient and remainder

Separate pair of 32-bit registers
HI = 32-bit remainder

LO = 32-bit quotient
If divisor is 0 then result is unpredictable

Moving data to HI/LO from MIPS registers
mthi Rs (move to HI from Rs)

mtlo Rs (move to LO from Rs)

Multiply

Divide

$0

HI LO

$1

..
$31

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 32

Integer Multiply/Divide Instructions

0x100Rd500op6 = 0Rd = Himfhi Rd
0x120Rd500op6 = 0Rd = Lomflo Rd
0x11000Rs5op6 = 0Hi = Rsmthi Rs
0x13000Rs5op6 = 0Lo = Rsmtlo Rs

0x1b
0x1a
0x19
0x18

0
0
0
0

0
0
0
0

Rt5
Rt5
Rt5
Rt5

Rs5
Rs5
Rs5
Rs5

op6 = 0Hi, Lo = Rs / Rtdivu Rs, Rt

op6 = 0Hi, Lo = Rs × Rtmultu Rs, Rt
op6 = 0Hi, Lo = Rs × Rtmult Rs, Rt

op6 = 0Hi, Lo = Rs / Rtdiv Rs, Rt

FormatMeaningInstruction

Signed arithmetic: mult, div (Rs and Rt are signed)
LO = 32-bit low-order and HI = 32-bit high-order of multiplication

LO = 32-bit quotient and HI = 32-bit remainder of division

Unsigned arithmetic: multu, divu (Rs and Rt are unsigned)

NO arithmetic exception can occur

17

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 33

Integer to String Conversion
Objective: convert an unsigned 32-bit integer to a string

How to obtain the decimal digits of the number?
Divide the number by 10, Remainder = decimal digit (0 to 9)

Convert decimal digit into its ASCII representation ('0' to '9')

Repeat the division until the quotient becomes zero

Digits are computed backwards from least to most significant

Example: convert 2037 to a string
Divide 2037/10 quotient = 203 remainder = 7 char = '7'

Divide 203/10 quotient = 20 remainder = 3 char = '3'

Divide 20/10 quotient = 2 remainder = 0 char = '0'

Divide 2/10 quotient = 0 remainder = 2 char = '2'

Integer Multiplication and Division COE 308 – Computer Architecture © Muhamed Mudawar – slide 34

Integer to String Procedure
#--
int2str: Converts an unsigned integer into a string
Parameters: $a0 = integer to be converted
$a1 = string pointer (can store 10 digits)
#--
int2str:

move $t0, $a0 # $t0 = dividend = integer value
li $t1, 10 # $t1 = divisor = 10
addiu $a1, $a1, 10 # start at end of string
sb $zero, 0($a1) # store a NULL byte

convert:
divu $t0, $t1 # LO = quotient, HI = remainder
mflo $t0 # $t0 = quotient
mfhi $t2 # $t2 = remainder
ori $t2, $t2, 0x30 # convert digit to a character
addiu $a1, $a1, -1 # point to previous char
sb $t2, 0($a1) # store digit character
bnez $t0, convert # loop if quotient is not 0
jr $ra

