Integer Multiplication

and Division

COE 308
Computer Architecture
Prof. Muhamed Mudawar

Computer Engineering Department
King Fahd University of Petroleum and Minerals

Presentation Outline

* Unsigned Multiplication
% Signed Multiplication
+ Faster Multiplication

% Unsigned Division

+ Signed Division

+¢ Multiplication and Division in MIPS

Integer Multiplication and Division COE 308 — Computer Architecture © Muhamed Mudawar — slide 2

Unsigned Multiplication

« Paper and Pencil Example:

Multiplicand 1100, = 12
Multiplier x 1101, = 13
1100 . ——
0000 Binary r.m.JItlpllcatlon is easy
1100 0 x muIt!pI!cand =0 N
1100 1 x multiplicand = multiplicand
Product 10011100, = 156

“+ m-bit multiplicand x n-bit multiplier = (m+n)-bit product
% Accomplished via shifting and addition

%+ Consumes more time and more chip area

Integer Multiplication and Division COE 308 — Computer Architecture © Muhamed Mudawar — slide 3

Version 1 of Multiplication Hardware
** Initialize Product = 0 Csat)

+« Multiplicand is zero extended

€«

shift left
| Muttipicand [&
|1a. Product = Product + Multiplicand|
64 bits |
v v
~ add | 2. Shift the Multiplicand Left 1 bit |
64-bit ALU . Shift the Multiplicand Le; i
64 bits
write £ | 3. shift the Multiplier Right 1 bit |
| Product Control
I 64bits
I 32 Repetition?
——> shift right
Multiplier Yes
32 bits Multiplier[0]

Integer Multiplication and Division COE 308 — Computer Architecture © Muhamed Mudawar — slide 4

Multiplication Example (Version 1)

% Consider: 1100, x 1101, , Product = 10011100,
¢ 4-bit multiplicand and multiplier are used in this example

¢ Multiplicand is zero extended because it is unsigned

Iteration Multiplicand | Multiplier Product
0 | Initialize 00001100 1101 — 00000000
| | Muttiplier[0] = 1 => ADD ' ¥»00001100
SLL Multiplicand and SRL Multiplier 00011000 0110

B Multiplier[0] = 0 => Do Nothing — 00001100
SLL Multiplicand and SRL Multiplier 00110000 0011

3 Multiplier[0] = 1 => ADD ' +»00111100
SLL Multiplicand and SRL Multiplier 01100000 0001

A Multiplier[0] = 1 => ADD ' +» 10011100
SLL Multiplicand and SRL Multiplier 11000000 0000

Integer Multiplication and Division COE 308 — Computer Architecture © Muhamed Mudawar — slide 5

Observation on Version 1 of Multiply

¢+ Hardware in version 1 can be optimized
% Rather than shifting the multiplicand to the left
Instead, shift the product to the right
Has the same net effect and produces the same results

% Reduce Hardware
< Multiplicand register can be reduced to 32 bits only

<> We can also reduce the adder size to 32 bits

+ One cycle per iteration

< Shifting and addition can be done simultaneously

Integer Multiplication and Division COE 308 — Computer Architecture © Muhamed Mudawar — slide 6

Version 2 of Multiplication Hardware

% Product = HI and LO registers
¢ Product is shifted right

+¢ Reduced 32-bit Multiplicand & Adder

Multiplicand

32 bits 32 bits

=1

(Start)

Multiplier[0]?

| HI = HI + Multiplicand |

shift right

write

shift right
Multiplier
32 bits

Multiplier[0]

Integer Multiplication and Division COE 308 — Computer Architecture

!

Shift
Shift

Product = (HI,LO) Right 1 bit
Multiplier Right 1 bit

© Muhamed Mudawar — slide 7

Refined Version of Multiply Hardware

¢ Eliminate Multiplier Register
+¢ Initialize LO = Multiplier

“ Product = HIl and LO registers

Multiplicand

LO=Multiplier

32 bits 32 bits | HI = HI + Multiplicand

shift right

I 64 bits

Lo[0]

Integer Multiplication and Division COE 308 — Computer Architecture

No

32n Repetition?

© Muhamed Mudawar — slide 8

Multiply Example (Refined Version)

% Consider: 1100, x 1101, , Product = 10011100,
¢ 4-bit multiplicand and multiplier are used in this example

¢ 4-bit adder produces a 5-bit sum (with carry)

Iteration Multiplicand | Carry | Product = HI, LO
0 | Initialize (LO = Multiplier) 1100 0000 1101
, | Lol0] = 1=>ADD Lol >0 [1100J1101
Shift Right Product = (HI, LO) 1100 0110 0110
5 LO[0] = 0 => Do Nothing
Shift Right Product = (HI, LO) 1100 0011 0011
5 | LOI0] = 1=>ADD LIl (o 1111)0011
Shift Right Product = (HI, LO) 1100 | 0111 1001
, | LoM01=1=>ADD Lol [0011)1001
Shift Right Product = (HI, LO) 1100 1001 1100

Integer Multiplication and Division

COE 308 — Computer Architecture

© Muhamed Mudawar — slide 9

Integer Multiplication and Division

Next . ..

+» Unsigned Multiplication

% Signed Multiplication

+ Faster Multiplication

% Unsigned Division

+ Signed Division

+¢ Multiplication and Division in MIPS

COE 308 — Computer Architecture

© Muhamed Mudawar — slide 10

Signed Multiplication

+ So far, we have dealt with unsigned integer multiplication

¢ Version 1 of Signed Multiplication
<~ Convert multiplier and multiplicand into positive numbers
= If negative then obtain the 2's complement and remember the sign
< Perform unsigned multiplication
<~ Compute the sign of the product

< If product sign < 0 then obtain the 2's complement of the product

% Refined Version:
< Use the refined version of the unsigned multiplication hardware
< When shifting right, extend the sign of the product

< If multiplier is negative, the last step should be a subtract

Integer Multiplication and Division COE 308 — Computer Architecture © Muhamed Mudawar - slide 11

Signed Multiplication (Pencil & Paper)

+» Case 1: Positive Multiplier

Multiplicand 1100, = -4
Multiplier X 0101, = +5
Sign-extension { 11111100
(111100
Product 11101100, = -20
+« Case 2: Negative Multiplier
Multiplicand 1100, = -4
Multiplier X 1101, = -3
Sign-extension { iiééoo

00100 (2°s complement of 1100)
Product 00001100, = +12

Integer Multiplication and Division COE 308 — Computer Architecture © Muhamed Mudawar - slide 12

Signhed Multiplication Hardware

% Similar to Unsigned Multiplier
* ALU produces a 33-bit result | LO=Multiplier, HI=0 |

< Multiplicand and HI are sign-extended

<~ Sign is the sign of the result

Multiplicand First 31 iterations: HI = HI + Multiplicand

32 bits 32 bits Last iteration: HI = HI — Multiplicand

[
i
[shift Right Product = (HI, LO) 1 bit

No
32n Repetition?

add, sub

LO 7 Yes
LO[0]
Integer Multiplication and Division COE 308 — Computer Architecture © Muhamed Mudawar — slide 13

Signed Multiplication Example
% Consider: 1100, (-4) x 1101, (-3), Product = 00001100,

+« Multiplicand and HI are sign-extended before addition

+» Last iteration: add 2's complement of Multiplicand

Iteration Multiplicand | Sign | Product = HI, LO
0 | Initialize (LO = Multiplier) 1100 | 0000 1101
, | Lol1=1=>ADD LoXts(1 [1100)1101
Shift Product = (HI, LO) right 1 bit 1100 1110 0110
5 LO[0] = 0 => Do Nothing
Shift Product = (HI, LO) right 1 bit 1100 1111 0011
5 | LOI0] = 1=>ADD LIl 1011)0011
Shift Product = (HI, LO) right 1 bit 1100 1101 1001
, [LOI01 = 1 => SUB (ADD 2's compl) 0100 ¥+-+(0_ | 0001)1001
Shift Product = (HI, LO) right 1 bit 0000 1100

Integer Multiplication and Division COE 308 — Computer Architecture © Muhamed Mudawar — slide 14

Next . ..

+» Unsigned Multiplication
% Signed Multiplication
¢ Faster Multiplication

% Unsigned Division

+ Signed Division

+¢ Multiplication and Division in MIPS

Integer Multiplication and Division COE 308 — Computer Architecture © Muhamed Mudawar — slide 15

Faster Multiplication Hardware

A

. . T A
¢ 32-bit adder for each bit of the multiplier Bi Bo
< 31 adders are needed for a 32-bit multiplier * b@ 1
RT . . T A 32-bit
< AND multiplicand with each bit of multiplier B, 33bis
<~ Product = accumulated shifted sum % b%/ s2bits 11
32-bit

A

+» Each adder produces a 33-bit output B 53 bits
<> M t . f tbt . bt 32 bits 32 bits 1
ost significant bit is a carry bi 32-&7
< Least significant bit is a product bit 33 bits
A

<~ Upper 32 bits go to next adder Bas A
. . . . 32 bits 32 bits
+ Array multiplier can be optimized >

33 bits

32 bits }Hait
P63..32 P31 . P3 P2 P1 PO

Integer Multiplication and Division COE 308 — Computer Architecture © Muhamed Mudawar — slide 16

< Carry save adders reduce delays

< Pipelining further improves the speed

Carry Save Adders

% Used when adding multiple numbers (as in multipliers)

% All the bits of a carry save adder work in parallel

< The carry does not propagate as in a ripple-carry adder

< This is why the carry save adder is much faster than ripple-carry
+« A carry save adder has 3 inputs and produces two outputs

< It adds 3 numbers and produces partial sum and carry bits

a31bg; a; by ag by a31D31C3 a; by ¢y ap by G

Ripple Carry Adder Carry Save Adder

Integer Multiplication and Division COE 308 — Computer Architecture © Muhamed Mudawar - slide 17

Consider Adding: S=A+B+C+D

a; by a, b, a; by a by a3 byc; @, by ¢ aybycy a by

A B A B C
c ¥ 4 b | 2N B
1 | Ripple Carry Adder | 1 | Carry Save Adder |
| IR’
i | Ripple Carry Adder | | Carry Save Adder |
v+ 3
| Ripple Carry Adder | | Ripple Carry Adder |

Is ¥s

Integer Multiplication and Division COE 308 — Computer Architecture © Muhamed Mudawar - slide 18

Next . ..

+» Unsigned Multiplication
% Signed Multiplication
+ Faster Multiplication

% Unsigned Division

+ Signed Division

+¢ Multiplication and Division in MIPS

Integer Multiplication and Division COE 308 — Computer Architecture © Muhamed Mudawar - slide 19

Unsigned Division (Paper & Pencil)

10011, = 19 Quotient
Divisor 1011,) 11011001, = 217 Dividend

-1011} | |
103 Try to see how big a
101 | number can be
S subtracted, creating a
1010% i digit of the quotient on
10100 each attempt
Dividend = -1011
Quotient x Divisor 1001i Binary division is
+ Remainder 10011 accomplished via
shifting and subtraction
217=19x 11 +8 -1011 9

1000, = 8 Remainder

Integer Multiplication and Division COE 308 — Computer Architecture © Muhamed Mudawar — slide 20

10

First Division Algorithm & Hardware
< Initialize: Cstart)

< Remainder = Dividend (0-extended)

<+ Load Upper 32 bits of Divisor 1. Shift the Divisor Right 1 bit
< Quotient=0 Shift the Quotient Left 1 bit
Difference = Remainder — Divisor

—_ shift right
| Divisor

ﬁ ‘ 64 bits

V
64-bit ALU

0 <
Difference?

2. Remainder = Difference
Set least significant bit of Quotient

Difference

| Remainder

é 64 bits

32nd Repetition?

< i
shift left Yes
Quotient Done
32 bits set Isb
Integer Multiplication and Division COE 308 — Computer Architecture © Muhamed Mudawar - slide 21

Division Example (Version 1)
% Consider: 1110, / 0011, (4-bit dividend & divisor)
% Quotient = 0100, and Remainder = 0010,
¢ 8-bit registers for Remainder and Divisor (8-bit ALU)

Iteration Remainder| Divisor | Difference | Quotient
0 | Initialize 00001110 | 00110000 0000
1: SRL Div, SLL Q, Difference| 00001110 | 00011000 | 11110110 0000
! 2: Diff < 0 => Do Nothing
1: SRL Div, SLL Q, Difference| 00001110 | 00001100 | 00000010 0000
2 2: Rem = Diff, set Isb Quotient| 00000010 0001
1: SRL Div, SLL Q, Difference| 00000010 | 00000110 | 11111100 0010
3 2: Diff < 0 => Do Nothing
1: SRL Div, SLL Q, Difference| 00000010 | 00000011 | 11111111 0100
4 2: Diff < 0 => Do Nothing
Integer Multiplication and Division COE 308 — Computer Architecture © Muhamed Mudawar - slide 22

11

Observations on Version 1 of Divide

¢ Version 1 of Division hardware can be optimized
+ Instead of shifting divisor right,
Shift the remainder register left
Has the same net effect and produces the same results

% Reduce Hardware:
<~ Divisor register can be reduced to 32 bits (instead of 64 bits)
< ALU can be reduced to 32 bits (instead of 64 bits)

< Remainder and Quotient registers can be combined

Integer Multiplication and Division COE 308 — Computer Architecture © Muhamed Mudawar - slide 23

Refined Division Hardware
% Observation: Cstart)

< Shifting remainder left does the
same as shifting the divisor right

1. Shift (Remainder, Quotient) Left
Difference = Remainder — Divisor

20 <
Difference?

Divisor) .
2. Remainder = Difference

32 bits Set least significant bit of Quotient

% Initialize:
<> Quotient = Dividend, Remainder =0

32-bit ALU

Difference

32nd Repetition?

- - Yes
| Remalnder| Quotient
Done
32 bits | 32 bits
set Ish
Integer Multiplication and Division COE 308 — Computer Architecture © Muhamed Mudawar — slide 24

12

Division Example (Refined Version)
% Same Example: 1110,/ 0011, (4-bit dividend & divisor)
% Quotient = 0100, and Remainder = 0010,
¢ 4-bit registers for Remainder and Divisor (4-bit ALU)

Iteration Remainder| Quotient Divisor |Difference
0 | Initialize 0000 1110 0011
1: Shift Left, Difference 0001 < 1100 0011 17110
! 2: Diff < 0 => Do Nothing
1: Shift Left, Difference 0011 <« 1000 0011 0000
2 2: Rem = Diff, set Isb Quotientf 0000 1001
1: Shift Left, Difference 0001 <~ 0010 0011 1110
3 2: Diff < 0 => Do Nothing
1: Shift Left, Difference 0010 «— 0100 0011 1111
4 2: Diff < 0 => Do Nothing

Integer Multiplication and Division COE 308 — Computer Architecture © Muhamed Mudawar — slide 25

Next . ..

+» Unsigned Multiplication
% Signed Multiplication
+ Faster Multiplication

% Unsigned Division

++ Signed Division

+¢ Multiplication and Division in MIPS

Integer Multiplication and Division COE 308 — Computer Architecture © Muhamed Mudawar — slide 26

13

Signed Division
< Simplest way is to remember the signs
¢ Convert the dividend and divisor to positive
< Obtain the 2's complement if they are negative
+ Do the unsigned division
% Compute the signs of the quotient and remainder

<> Quotient sign = Dividend sign XOR Divisor sign

< Remainder sign = Dividend sign

“ Negate the quotient and remainder if their sign is negative

< Obtain the 2's complement to convert them to negative

Integer Multiplication and Division COE 308 — Computer Architecture © Muhamed Mudawar - slide 27

Signed Division Examples

1. Positive Dividend and Positive Divisor

< Example: +17 / +3 Quotient =+5 Remainder = +2

2. Positive Dividend and Negative Divisor
< Example: +17 /-3 Quotient =-5 Remainder = +2

3. Negative Dividend and Positive Divisor
< Example: —17 / +3 Quotient =-5 Remainder = -2

4. Negative Dividend and Negative Divisor
< Example: -17 /-3 Quotient =+5 Remainder = -2

The following equation must always hold:

Dividend = Quotient x Divisor + Remainder

Integer Multiplication and Division COE 308 — Computer Architecture © Muhamed Mudawar — slide 28

14

Next . ..

+» Unsigned Multiplication
% Signed Multiplication
+ Faster Multiplication

% Unsigned Division

+ Signed Division

 Multiplication and Division in MIPS

Integer Multiplication and Division COE 308 — Computer Architecture © Muhamed Mudawar - slide 29

Multiplication in MIPS

+«» Two Multiply instructions

< mult $s1,$s2 Signed multiplication
< multu $s1,$s2 Unsigned multiplication
¢+ 32-bit multiplication produces a 64-bit Product %
« Separate pair of 32-bit registers $.l
<+ Hl = high-order 32-bit $31
< LO =low-order 32-bit Multiply
< Result of multiplication is always in HI & LO Divide

% Moving data from HI/LO to MIPS registers
< mfhi Rd (move from HI to Rd)
< mflo Rd (move from LO to Rd)

Integer Multiplication and Division COE 308 — Computer Architecture © Muhamed Mudawar — slide 30

Division in MIPS

+» Two Divide instructions

< div $s1,$s2 Signed division
< divu $s1,$s2 Unsigned division
+¢ Division produces quotient and remainder 5

$1

« Separate pair of 32-bit registers

< HI = 32-bit remainder $31
< LO = 32-bit quotient Multiply
< If divisor is 0 then result is unpredictable Divide

% Moving data to HI/LO from MIPS registers
< mthi Rs (move to HI from Rs)
< mtlo Rs (move to LO from Rs)

Integer Multiplication and Division COE 308 — Computer Architecture © Muhamed Mudawar - slide 31

Integer Multiply/Divide Instructions

Instruction | Meaning | Format

mult Rs, Rt | Hi,Lo=Rs xRt | opf=0| Rs5 | Rt5 0 0 0x18
multu Rs, Rt | Hi, Lo=Rs xRt | op®=0| Rs® | Rt5 0 0 0x19
divie Rs,Rt| Hi,Lo=Rs/Rt |op®=0| Rs® | Rt5 0 0 0x1a
divu Rs,Rt | Hi,Lo=Rs/Rt |op®=0| Rs® | Rt5 0 0 Ox1b
mfhi Rd Rd = Hi opf=0| O 0 |Rd®| O 0x10
mflo Rd Rd = Lo opé=0| O 0 |Rd®| O 0x12
mthi Rs Hi =Rs opé=0| Rs® | O 0 0 0x11
mtlo Rs Lo =Rs opé=0| Rs® | O 0 0 0x13

+ Signed arithmetic: mult, div (Rs and Rt are signed)
< LO = 32-bit low-order and HI = 32-bit high-order of multiplication
< LO = 32-bit quotient and HI = 32-bit remainder of division

+ Unsigned arithmetic: multu, divu (Rs and Rt are unsigned)

+ NO arithmetic exception can occur

Integer Multiplication and Division COE 308 — Computer Architecture © Muhamed Mudawar - slide 32

Integer to String Conversion

+« Objective: convert an unsigned 32-bit integer to a string

+ How to obtain the decimal digits of the number?
< Divide the number by 10, Remainder = decimal digit (0 to 9)
< Convert decimal digit into its ASCII representation ('0' to '9")
< Repeat the division until the quotient becomes zero

<~ Digits are computed backwards from least to most significant

s Example: convert 2037 to a string
< Divide 2037/10 quotient =203 remainder=7 char="7'
< Divide 203/10 quotient=20 remainder=3 char="3'
< Divide 20/10 quotient = 2 remainder =0 char ="0'
<~ Divide 2/10 quotient=0 remainder =2 char="2'

Integer Multiplication and Division COE 308 — Computer Architecture © Muhamed Mudawar - slide 33

Integer to String Procedure

gy sy gy S
int2str: Converts an unsigned integer into a string
Parameters: $a0 = integer to be converted
$al = string pointer (can store 10 digits)
gy gy S S
int2str:
move $t0, $a0 # $t0 = dividend = integer value
li $t1, 10 # $tl1 = divisor = 10
addiu $al, $al, 10 # start at end of string
sb $zero, 0(%al) # store a NULL byte
convert:
divu $t0, $ti1 # LO = quotient, Hl = remainder
mflo $t0 # $t0 = quotient
mfhi $t2 # $t2 = remainder
ori $t2, $t2, 0x30 # convert digit to a character
addiu $al, $a1l, -1 # point to previous char
sb $t2, 0(%$al) # store digit character
bnez $t0, convert # loop if quotient is not O

jr $ra

Integer Multiplication and Division COE 308 — Computer Architecture © Muhamed Mudawar — slide 34

17

