Floating Point

COE 308

Computer Architecture
Prof. Muhamed Mudawar

Computer Engineering Department
King Fahd University of Petroleum and Minerals

Presentation Outline

- Floating-Point Numbers
- ❖ IEEE 754 Floating-Point Standard
- Floating-Point Addition and Subtraction
- Floating-Point Multiplication
- Extra Bits and Rounding
- ❖ MIPS Floating-Point Instructions

Floating Point

COE~308-Computer~Architecture

The World is Not Just Integers

- Programming languages support numbers with fraction
 - ♦ Called floating-point numbers
 - ♦ Examples:
 - $3.14159265...(\pi)$
 - 2.71828... (e)
 - 0.00000001 or 1.0×10^{-9} (seconds in a nanosecond)
 - 86,400,000,000,000 or 8.64×10^{13} (nanoseconds in a day)
 - last number is a large integer that cannot fit in a 32-bit integer
- We use a scientific notation to represent
 - ♦ Very small numbers (e.g. 1.0 × 10⁻⁹)
 - ♦ Very large numbers (e.g. 8.64 × 10¹³)
 - ♦ Scientific notation: $\pm d. f_1 f_2 f_3 f_4 ... \times 10^{\pm e_1 e_2 e_3}$

Floating Point

COE 308 – Computer Architecture

© Muhamed Mudawar – slide 3

Floating-Point Numbers

- Examples of floating-point numbers in base 10 ...
 - ♦ 5.341×10³, 0.05341×10⁵, -2.013×10⁻¹, -201.3×10⁻³
- ★ Examples of floating-point numbers in base 2 ...
 - \diamond 1.00101×2²³, 0.0100101×2²⁵, -1.101101×2⁻³, -1101.101×2⁻⁶
 - ♦ Exponents are kept in decimal for clarity
- binary point -
- \Rightarrow The binary number $(1101.101)_2 = 2^3 + 2^2 + 2^0 + 2^{-1} + 2^{-3} = 13.625$
- Floating-point numbers should be normalized
 - ♦ Exactly one non-zero digit should appear before the point
 - In a decimal number, this digit can be from 1 to 9
 - In a binary number, this digit should be 1
 - ♦ Normalized FP Numbers: 5.341×10³ and –1.101101×2-³
 - ♦ NOT Normalized: 0.05341×10⁵ and -1101.101×2⁻⁶

Floating Point

COE 308 – Computer Architecture

Floating-Point Representation

- ❖ A floating-point number is represented by the triple
 - ♦ S is the Sign bit (0 is positive and 1 is negative)
 - Representation is called sign and magnitude
 - - Very large numbers have large positive exponents
 - Very small close-to-zero numbers have negative exponents
 - More bits in exponent field increases range of values
 - → F is the Fraction field (fraction after binary point)
 - More bits in fraction field improves the precision of FP numbers

Value of a floating-point number = $(-1)^{S} \times val(F) \times 2^{val(E)}$

 $Floating \ Point \\ COE \ 308-Computer Architecture \\ @ \ Muhamed \ Mudawar-slide \ 5$

Next...

- Floating-Point Numbers
- ❖ IEEE 754 Floating-Point Standard
- Floating-Point Addition and Subtraction
- Floating-Point Multiplication
- Extra Bits and Rounding
- MIPS Floating-Point Instructions

Floating Point $COE\ 308$ - Computer Architecture © Muhamed Mudawar - slide 6

IEEE 754 Floating-Point Standard

- ❖ Found in virtually every computer invented since 1980
 - ♦ Simplified porting of floating-point numbers
 - Unified the development of floating-point algorithms
 - ♦ Increased the accuracy of floating-point numbers
- Single Precision Floating Point Numbers (32 bits)

S Exponent⁸ Fraction²³

- ❖ Double Precision Floating Point Numbers (64 bits)

S Exponent¹¹ Fraction⁵² (continued)

Floating Point

COE 308 - Computer Architecture

© Muhamed Mudawar – slide 7

Normalized Floating Point Numbers

❖ For a normalized floating point number (S, E, F)

S E $F = f_1 f_2 f_3 f_4 \dots$

- Significand is equal to $(1.F)_2 = (1.f_1f_2f_3f_4...)_2$
 - ♦ IEEE 754 assumes hidden 1. (not stored) for normalized numbers
 - ♦ Significand is 1 bit longer than fraction
- Value of a Normalized Floating Point Number is

 $\begin{aligned} &(-1)^{S} \times (1.F)_{2} \times 2^{\text{val}(E)} \\ &(-1)^{S} \times (1.f_{1}f_{2}f_{3}f_{4}\dots)_{2} \times 2^{\text{val}(E)} \\ &(-1)^{S} \times (1+f_{1}\times 2^{-1}+f_{2}\times 2^{-2}+f_{3}\times 2^{-3}+f_{4}\times 2^{-4}\dots)_{2} \times 2^{\text{val}(E)} \end{aligned}$

 $(-1)^S$ is 1 when S is 0 (positive), and -1 when S is 1 (negative)

Floating Poi

COE 308 – Computer Architecture

Biased Exponent Representation

- ❖ How to represent a signed exponent? Choices are ...
 - ♦ Sign + magnitude representation for the exponent
 - ♦ Two's complement representation
 - ♦ Biased representation
- ❖ IEEE 754 uses biased representation for the exponent
 - \Rightarrow Value of exponent = val(E) = E Bias (Bias is a constant)
- ❖ Recall that exponent field is 8 bits for single precision
 - ♦ E can be in the range 0 to 255
 - \Rightarrow E = 0 and E = 255 are reserved for special use (discussed later)
 - \Rightarrow E = 1 to 254 are used for normalized floating point numbers
 - ♦ Bias = 127 (half of 254), val(E) = E 127
 - \Rightarrow val(E=1) = -126, val(E=127) = 0, val(E=254) = 127

Floating Point

COE 308 - Computer Architecture

© Muhamed Mudawar – slide 9

Biased Exponent - Cont'd

- ❖ For double precision, exponent field is 11 bits
 - ♦ E can be in the range 0 to 2047
 - \Rightarrow E = 0 and E = 2047 are reserved for special use
 - \Rightarrow E = 1 to 2046 are used for normalized floating point numbers
 - \Rightarrow Bias = 1023 (half of 2046), val(E) = E 1023
 - \Rightarrow val(E=1) = -1022, val(E=1023) = 0, val(E=2046) = 1023
- ❖ Value of a Normalized Floating Point Number is

$$(-1)^{S} \times (1.F)_{2} \times 2^{E-Bias}$$

 $(-1)^{S} \times (1.f_{1}f_{2}f_{3}f_{4}...)_{2} \times 2^{E-Bias}$
 $(-1)^{S} \times (1 + f_{1} \times 2^{-1} + f_{2} \times 2^{-2} + f_{3} \times 2^{-3} + f_{4} \times 2^{-4}...)_{2} \times 2^{E-Bias}$

Floating Point

COE 308 - Computer Architecture

Examples of Single Precision Float

- Solution:
 - ♦ Sign = 1 is negative
 - \Rightarrow Exponent = (011111100)₂ = 124, E bias = 124 127 = -3
 - \Rightarrow Significand = (1.0100 ... 0)₂ = 1 + 2⁻² = 1.25 (1. is implicit)
 - ♦ Value in decimal = $-1.25 \times 2^{-3} = -0.15625$
- What is the decimal value of?
 - 0100000100100110000000000000000000
- Solution:

implicit 🥎

 \Rightarrow Value in decimal = +(1.01001100 ... 0)₂ × 2¹³⁰⁻¹²⁷ = (1.01001100 ... 0)₂ × 2³ = (1010.01100 ... 0)₂ = 10.375

Floating Point

COE 308 – Computer Architecture

© Muhamed Mudawar – slide 11

Examples of Double Precision Float

❖ What is the decimal value of this Double Precision float ?

- ❖ Solution:
 - \Rightarrow Value of exponent = $(10000000101)_2$ Bias = 1029 1023 = 6
 - \Rightarrow Value of double float = (1.00101010 ... 0)₂ × 2⁶ (1. is implicit) = (1001010.10 ... 0)₂ = 74.5
- ❖ What is the decimal value of ?

❖ Do it yourself! (answer should be $-1.5 \times 2^{-7} = -0.01171875$)

Floating Point

COE 308 – Computer Architecture

Converting FP Decimal to Binary

- ❖ Convert –0.8125 to binary in single and double precision
- Solution:
 - → Fraction bits can be obtained using multiplication by 2
 - $0.8125 \times 2 = 1.625$
 - 0.625 × 2 = 1.25
 - 0.25 × 2 = 0.5
 - 0.5 × 2 = 1.0
 - Stop when fractional part is 0
 - ♦ Fraction = $(0.1101)_2$ = $(1.101)_2 \times 2^{(1)}$ (Normalized)

Precision

 $0.8125 = (0.1101)_2 = \frac{1}{2} + \frac{1}{4} + \frac{1}{16} = \frac{13}{16}$

Double Precision

Floating Point

 $COE\ 308-Computer\ Architecture$

© Muhamed Mudawar – slide 13

Largest Normalized Float

- What is the Largest normalized float?
- Solution for Single Precision:

01111111011111111111111111111111111111

- → Exponent bias = 254 127 = 127 (largest exponent for SP)
- \Rightarrow Significand = (1.111 ... 1)₂ = almost 2
- ♦ Value in decimal ≈ 2 × 2¹²⁷ ≈ 2¹²⁸ ≈ 3.4028 ... × 10³⁸
- Solution for Double Precision:

 - ♦ Value in decimal ≈ 2 × 2¹⁰²³ ≈ 2¹⁰²⁴ ≈ 1.79769 ... × 10³⁰⁸
- Overflow: exponent is too large to fit in the exponent field

Floating Point

COE 308 – Computer Architecture

Smallest Normalized Float

- What is the smallest (in absolute value) normalized float?
- Solution for Single Precision:

0000000100000000000000000000000000

- \Rightarrow Significand = $(1.000 ... 0)_2 = 1$
- \Rightarrow Value in decimal = 1 × 2⁻¹²⁶ = 1.17549 ... × 10⁻³⁸
- ❖ Solution for Double Precision:

- \Rightarrow Value in decimal = 1 × 2⁻¹⁰²² = 2.22507 ... × 10⁻³⁰⁸
- Underflow: exponent is too small to fit in exponent field

Floating Point

COE 308 – Computer Architecture

© Muhamed Mudawar – slide 15

Zero, Infinity, and NaN

- Zero
 - \Rightarrow Exponent field E = 0 and fraction F = 0
 - → +0 and –0 are possible according to sign bit S
- Infinity
 - \Rightarrow Infinity is a special value represented with maximum E and F = 0
 - For single precision with 8-bit exponent: maximum *E* = 255
 - For double precision with 11-bit exponent: maximum *E* = 2047
 - ♦ Infinity can result from overflow or division by zero
 - \Rightarrow + ∞ and - ∞ are possible according to sign bit S
- NaN (Not a Number)
 - \Rightarrow NaN is a special value represented with maximum E and $F \neq 0$
 - ♦ Result from exceptional situations, such as 0/0 or sqrt(negative)
 - ♦ Operation on a NaN results is NaN: Op(X, NaN) = NaN

Floating Point

COE 308 – Computer Architecture

Denormalized Numbers

- ❖ IEEE standard uses denormalized numbers to ...
 - ♦ Fill the gap between 0 and the smallest normalized float
 - ♦ Provide gradual underflow to zero
- Denormalized: exponent field E is 0 and fraction $F \neq 0$
 - ♦ Implicit 1. before the fraction now becomes 0. (not normalized)
- ❖ Value of denormalized number (S, 0, F)

Single precision: $(-1)^S \times (0.F)_2 \times 2^{-126}$ Double precision: $(-1)^S \times (0.F)_2 \times 2^{-1022}$

Floating-Point Comparison

- ❖ IEEE 754 floating point numbers are ordered
 - ♦ Because exponent uses a biased representation ...
 - Exponent value and its binary representation have same ordering
 - ♦ Placing exponent before the fraction field orders the magnitude
 - Larger exponent ⇒ larger magnitude
 - For equal exponents, Larger fraction ⇒ larger magnitude
 - $0 < (0.F)_2 \times 2^{E_{min}} < (1.F)_2 \times 2^{E-Bias} < \infty (E_{min} = 1 Bias)$
- ♦ Because sign bit is most significant ⇒ quick test of signed <</p>
- Integer comparator can compare magnitudes

Floating Point

COE 308 – Computer Architecture

Summary of IEEE 754 Encoding

Single-Precision	Exponent = 8	Fraction = 23	Value
Normalized Number	1 to 254	Anything	$\pm (1.F)_2 \times 2^{E-127}$
Denormalized Number	0	nonzero	$\pm (0.F)_2 \times 2^{-126}$
Zero	0	0	± 0
Infinity	255	0	± ∞
NaN	255	nonzero	NaN

Double-Precision	Exponent = 11	Fraction = 52	Value
Normalized Number	1 to 2046	Anything	$\pm (1.F)_2 \times 2^{E-1023}$
Denormalized Number	0	nonzero	$\pm (0.F)_2 \times 2^{-1022}$
Zero	0	0	± 0
Infinity	2047	0	± ∞
NaN	2047	nonzero	NaN

Floating Point COE 308 – Computer Architecture © Muhamed Mudawar – slide 19

Next ...

- Floating-Point Numbers
- ❖ IEEE 754 Floating-Point Standard
- Floating-Point Addition and Subtraction
- Floating-Point Multiplication
- Extra Bits and Rounding
- ❖ MIPS Floating-Point Instructions

Floating Point COE 308 – Computer Architecture © Muhamed Mudawar – slide 20

Floating Point Addition Example

- ❖ Consider adding: $(1.111)_2 \times 2^{-1} + (1.011)_2 \times 2^{-3}$
 - ♦ For simplicity, we assume 4 bits of precision (or 3 bits of fraction)
- Cannot add significands ... Why?
 - ♦ Because exponents are not equal
- How to make exponents equal?
 - Shift the significand of the lesser exponent right until its exponent matches the larger number
- $(1.011)_2 \times 2^{-3} = (0.1011)_2 \times 2^{-2} = (0.01011)_2 \times 2^{-1}$
 - ♦ Difference between the two exponents = -1 (-3) = 2
 - ♦ So, shift right by 2 bits
- Now, add the significands:

 $\begin{array}{c} + 1.111 \\ 0.01011 \\ \hline Carry \rightarrow 10.00111 \end{array}$

Floating Point

COE 308 - Computer Architecture

© Muhamed Mudawar – slide 21

Addition Example - cont'd

- ❖ So, $(1.111)_2 \times 2^{-1} + (1.011)_2 \times 2^{-3} = (10.00111)_2 \times 2^{-1}$
- ❖ However, result $(10.00111)_2 \times 2^{-1}$ is NOT normalized
- Normalize result: $(10.00111)_2 \times 2^{-1} = (1.000111)_2 \times 2^0$
 - ♦ In this example, we have a carry
 - ♦ So, shift right by 1 bit and increment the exponent
- * Round the significand to fit in appropriate number of bits
 - ♦ We assumed 4 bits of precision or 3 bits of fraction
- ❖ Round to nearest: $(1.000111)_2 \approx (1.001)_2$
 - → Renormalize if rounding generates a carry
- + 1.000 111 1.001
- Detect overflow / underflow
 - ♦ If exponent becomes too large (overflow) or too small (underflow)

Floating Point

COE 308 - Computer Architecture

Floating Point Subtraction Example

- Consider: $(1.000)_2 \times 2^{-3} (1.000)_2 \times 2^2$
 - ♦ We assume again: 4 bits of precision (or 3 bits of fraction)
- Shift significand of the lesser exponent right
 - \Rightarrow Difference between the two exponents = 2 (-3) = 5
 - \Rightarrow Shift right by 5 bits: $(1.000)_2 \times 2^{-3} = (0.00001000)_2 \times 2^2$
- Convert subtraction into addition to 2's complement

```
Sign + 0.00001 \times 2<sup>2</sup> - 1.00000 \times 2<sup>2</sup> 0 0.00001 \times 2<sup>2</sup> 0 0.00001 \times 2<sup>2</sup> 0 1.00000 \times 2<sup>2</sup> 0 1.00000 \times 2<sup>2</sup> 0 1.00000 \times 2<sup>2</sup> 0 1.00001 \times 2<sup>2</sup> 0 1.11111 \times 2<sup>2</sup> 0 1.11111 \times 2<sup>2</sup> 0 1.11111 \times 2<sup>2</sup> 0 1.11111 \times 2<sup>3</sup> 0 1.11111 \times 2<sup>4</sup> 0 1.11111 \times 2<sup>4</sup> 0 1.11111 \times 2<sup>5</sup> 0 1.11111 \times 2<sup>6</sup> 0 1.11111 \times 2<sup>7</sup> 0 1.11111 \times 2<sup>8</sup> 0 1.11111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.11111 0 1.1111 0 1.1111 0 1.1111 0 1.1111 0 1.1
```

Subtraction Example - cont'd

- ❖ So, $(1.000)_2 \times 2^{-3} (1.000)_2 \times 2^2 = -0.11111_2 \times 2^2$
- Normalize result: $-0.11111_2 \times 2^2 = -1.1111_2 \times 2^1$
 - ♦ For subtraction, we can have leading zeros
 - \diamond Count number z of leading zeros (in this case z = 1)
 - ♦ Shift left and decrement exponent by z
- Round the significand to fit in appropriate number of bits
 - ♦ We assumed 4 bits of precision or 3 bits of fraction
- ❖ Round to nearest: $(1.1111)_2 \approx (10.000)_2$
- ❖ Renormalize: rounding generated a carry $-1.1111_2 \times 2^1 \approx -10.000_2 \times 2^1 = -1.000_2 \times 2^2$
- 1.111 1 + 1 10.000

♦ Result would have been accurate if more fraction bits are used

Floating Point COE 308 – Computer Architecture © Muhamed Mudawar – slide 24

Next...

- Floating-Point Numbers
- ❖ IEEE 754 Floating-Point Standard
- Floating-Point Addition and Subtraction
- Floating-Point Multiplication
- Extra Bits and Rounding
- MIPS Floating-Point Instructions

Floating Point

COE 308 – Computer Architecture

© Muhamed Mudawar – slide 27

Floating Point Multiplication Example

- ❖ Consider multiplying: $1.010_2 \times 2^{-1}$ by $-1.110_2 \times 2^{-2}$
 - ♦ As before, we assume 4 bits of precision (or 3 bits of fraction)
- Unlike addition, we add the exponents of the operands
 - \Rightarrow Result exponent value = (-1) + (-2) = -3
- ❖ Using the biased representation: $E_Z = E_X + E_Y Bias$

$$\Rightarrow E_X = (-1) + 127 = 126$$
 (*Bias* = 127 for SP)

$$\Leftrightarrow E_Y = (-2) + 127 = 125$$

$$\Rightarrow$$
 $E_7 = 126 + 125 - 127 = 124 (value = -3)$

Now, multiply the significands:

$$(1.010)_2 \times (1.110)_2 = (10.001100)_2$$

Floating Point

3-bit fraction 3-bit fraction

6-bit fraction

1.110 0000 1010 1010 1010 10001100

1.010

COE 308 - Computer Architecture

Multiplication Example - cont'd

- ❖ Since sign $S_X \neq S_Y$, sign of product $S_Z = 1$ (negative)
- **\$** So, $1.010_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} = -10.001100_2 \times 2^{-3}$
- ❖ However, result: -10. 001100₂ × 2⁻³ is NOT normalized
- Normalize: 10. $001100_2 \times 2^{-3} = 1.0001100_2 \times 2^{-2}$
 - ♦ Shift right by 1 bit and increment the exponent
 - ♦ At most 1 bit can be shifted right ... Why?
- Round the significand to nearest:

 $1.0001100_2 \approx 1.001_2$ (3-bit fraction) Result $\approx -1.001_2 \times 2^{-2}$ (normalized) 1.000 1100 + 1 1.001

- Detect overflow / underflow
 - No overflow / underflow because exponent is within range

Floating Point COE 308 – Computer Architecture © Muhamed Mudawar – slide 29

Floating Point Multiplication **Biased Exponent Addition** $E_Z = E_X + E_Y - Bias$ Add the biased exponents of the two numbers, subtracting the bias from the sum to get the new biased exponent Result sign $S_7 = S_x \mathbf{xor} S_y \mathbf{can}$ 2. Multiply the significands. Set the result sign to positive if be computed independently operands have same sign, and negative otherwise Since the operand significands 3. Normalize the product if necessary, shifting its significand $1.F_{\times}$ and $1.F_{\vee}$ are ≥ 1 and < 2, right and incrementing the exponent their product is ≥ 1 and < 4. To normalize product, we need 4. Round the significand to the appropriate number of bits, to shift right by 1 bit only and and renormalize if rounding generates a carry increment exponent Rounding either truncates Overflow or Exception fraction, or adds a 1 to least underflow? significant fraction bit no Done Floating Point COE 308 – Computer Architecture © Muhamed Mudawar – slide 30

Next...

- Floating-Point Numbers
- ❖ IEEE 754 Floating-Point Standard
- Floating-Point Addition and Subtraction
- Floating-Point Multiplication
- Extra Bits and Rounding
- MIPS Floating-Point Instructions

Floating Point

COE 308 - Computer Architecture

© Muhamed Mudawar – slide 31

Extra Bits to Maintain Precision

- Floating-point numbers are approximations for ...
 - ♦ Real numbers that they cannot represent
- ❖ Infinite variety of real numbers exist between 1.0 and 2.0
 - ♦ However, exactly 223 fractions can be represented in SP, and
 - ♦ Exactly 2⁵² fractions can be represented in DP (double precision)
- Extra bits are generated in intermediate results when ...
 - ♦ Shifting and adding/subtracting a p-bit significand
 - ♦ Multiplying two p-bit significands (product can be 2p bits)
- But when packing result fraction, extra bits are discarded
- We only need few extra bits in an intermediate result
 - ♦ Minimizing hardware but without compromising precision

Floating Point

COE 308 – Computer Architecture

Guard Bit

- Guard bit: guards against loss of a significant bit
 - ♦ Only one guard bit is needed to maintain accuracy of result
 - ♦ Shifted left (if needed) during normalization as last fraction bit
- Example on the need of a guard bit:

```
1.00000000101100010001101 \times 2<sup>5</sup>
- 1.0000000000000010011010 \times 2<sup>-2</sup> (subtraction)
```

```
1.00000000101100010001101 × 2<sup>5</sup>
```

- - 1.00000000101100010001101 × 25 Guard bit do not discard
- 1 1.111111011111111111111111 (1, 100110 × 2⁵ (2's complement)
- 0 0.1111111010110001001011 $(\widehat{1})$ 100110 × 2⁵ (add significands)
- + 1.111111010110001000101111 100010 × 24 (normalized)

Floating Point

COE 308 - Computer Architecture

© Muhamed Mudawar – slide 33

Round and Sticky Bits

- Two extra bits are needed for rounding
 - ♦ Just after normalizing a result significand
 - ♦ Round bit: appears just after the normalized significand
 - ♦ Sticky bit: appears after the round bit (OR of all additional bits)
 - ♦ Reduce the hardware and still achieve accurate arithmetic
 - ♦ As if result significand was computed exactly and rounded
- Consider the same example of previous slide:

- 1 1.1111110111111111111111 1 1 (00110) × 2⁵ (2's complement)
- 0 0.11111111010110001001011 $(\widehat{1})$ 1 $(\widehat{1})$ × 2⁵ (sum)
- + 1.1111110101100010010111 1 $\langle \widehat{1} \rangle$ $\langle \widehat{1} \rangle$ × 2⁴ (normalized)

Round bit -- 1 -- Sticky bit

Floating Point

COE 308 - Computer Architecture

Four Rounding Modes

- ❖ Normalized result has the form: 1. f₁ f₂ ... f₁ r s
 - \diamond The round bit r and sticky bit s appear after the last fraction bit f_i
- IEEE 754 standard specifies four modes of rounding
- * Round to Nearest Even: default rounding mode
 - \Rightarrow Increment result if: r = "11" or (r = "10") and $f_i = "1"$
 - ♦ Otherwise, truncate result significand to 1. f₁ f₂ ... f_l
- ❖ Round toward +∞: result is rounded up
 - \Rightarrow Increment result if sign is positive and r or s = '1'
- ❖ Round toward -∞: result is rounded down
 - ♦ Increment result if sign is negative and r or s = '1'
- Round toward 0: always truncate result

Floating Point

 $COE\ 308-Computer\ Architecture$

© Muhamed Mudawar – slide 35

Example on Rounding

- ❖ Round following result using IEEE 754 rounding modes:
- ❖ Round to Nearest Even:

 **Round Bit → L Sticky
 **Bit
 - \Rightarrow Truncate result since r = 0
 - ♦ Truncated Result: -1.11111111111111111111 x 2⁻⁷
- ❖ Round towards +∞: Truncate result since negative
- ❖ Round towards $-\infty$: Increment since negative and s = '1'

 - ♦ Renormalize and increment exponent (because of carry)
- ❖ Round towards 0: Truncate always

Floating Point

COE 308 – Computer Architecture

Advantages of IEEE 754 Standard

- Used predominantly by the industry
- Encoding of exponent and fraction simplifies comparison
 - ♦ Integer comparator used to compare magnitude of FP numbers
- ❖ Includes special exceptional values: NaN and ±∞
 - ♦ Special rules are used such as:
 - 0/0 is NaN, sqrt(-1) is NaN, 1/0 is ∞, and 1/∞ is 0
 - ♦ Computation may continue in the face of exceptional conditions
- Denormalized numbers to fill the gap
 - ♦ Between smallest normalized number 1.0 × 2^{Emin} and zero
 - \diamond Denormalized numbers, values $0.F \times 2^{E_{min}}$, are closer to zero
 - Gradual underflow to zero

Floating Point

COE 308 - Computer Architecture

© Muhamed Mudawar – slide 37

Floating Point Complexities

- Operations are somewhat more complicated
- In addition to overflow we can have underflow
- Accuracy can be a big problem
 - → Extra bits to maintain precision: guard, round, and sticky
 - → Four rounding modes
 - ♦ Division by zero yields Infinity
 - → Zero divide by zero yields Not-a-Number
 - ♦ Other complexities
- Implementing the standard can be tricky
 - ♦ See text for description of 80x86 and Pentium bug!
- ❖ Not using the standard can be even worse

Floating Point

COE 308 – Computer Architecture

Next...

- Floating-Point Numbers
- ❖ IEEE 754 Floating-Point Standard
- Floating-Point Addition and Subtraction
- Floating-Point Multiplication
- Extra Bits and Rounding
- MIPS Floating-Point Instructions

Floating Point

COE 308 – Computer Architecture

© Muhamed Mudawar – slide 39

MIPS Floating Point Coprocessor

- ❖ Called Coprocessor 1 or the Floating Point Unit (FPU)
- ❖ 32 separate floating point registers: \$f0, \$f1, ..., \$f31
- ❖ FP registers are 32 bits for single precision numbers
- ❖ Even-odd register pair form a double precision register
- Separate FP instructions for single/double precision
 - ♦ Single precision: add.s, sub.s, mul.s, div.s (.s extension)
 - ♦ Double precision: add.d, sub.d, mul.d, div.d (.d extension)
- ❖ FP instructions are more complex than the integer ones
 - ♦ Take more cycles to execute

Floating Point

COE 308 – Computer Architecture

FP Arithmetic Instructions

Instruction	Meaning	Format					
add.s fd, fs, ft	(fd) = (fs) + (ft)	0x11	0	ft ⁵	fs ⁵	fd ⁵	0
add.d fd, fs, ft	(fd) = (fs) + (ft)	0x11	1	ft ⁵	fs ⁵	fd ⁵	0
sub.s fd, fs, ft	(fd) = (fs) - (ft)	0x11	0	ft ⁵	fs ⁵	fd ⁵	1
sub.d fd, fs, ft	(fd) = (fs) - (ft)	0x11	1	ft ⁵	fs ⁵	fd ⁵	1
mul.s fd, fs, ft	$(fd) = (fs) \times (ft)$	0x11	0	ft ⁵	fs ⁵	fd ⁵	2
mul.d fd, fs, ft	$(fd) = (fs) \times (ft)$	0x11	1	ft ⁵	fs ⁵	fd ⁵	2
div.s fd, fs, ft	(fd) = (fs) / (ft)	0x11	0	ft ⁵	fs ⁵	fd ⁵	3
div.d fd, fs, ft	(fd) = (fs) / (ft)	0x11	1	ft ⁵	fs ⁵	fd ⁵	3
sqrt.s fd, fs	(fd) = sqrt (fs)	0x11	0	0	fs ⁵	fd ⁵	4
sqrt.d fd, fs	(fd) = sqrt (fs)	0x11	1	0	fs ⁵	fd ⁵	4
abs.s fd, fs	(fd) = abs (fs)	0x11	0	0	fs ⁵	fd ⁵	5
abs.d fd, fs	(fd) = abs (fs)	0x11	1	0	fs ⁵	fd ⁵	5
neg.s fd, fs	(fd) = -(fs)	0x11	0	0	fs ⁵	fd ⁵	7
neg.d fd, fs	(fd) = - (fs)	0x11	1	0	fs ⁵	fd ⁵	7

 $COE\ 308-Computer\ Architecture$

FP Load/Store Instructions

Separate floating point load/store instructions

♦ lwc1: load word coprocessor 1

Floating Point

♦ Idc1: load double coprocessor 1

General purpose register is used as the base register

© Muhamed Mudawar – slide 41

Instruction		Meaning	Format			at
lwc1	\$f2, 40(\$t0)	(\$f2) = Mem[(\$t0)+40]	0x31	\$t0	\$f2	$im^{16} = 40$
ldc1	\$f2, 40(\$t0)	(\$f2) = Mem[(\$t0)+40]	0x35	\$t0	\$f2	$im^{16} = 40$
swc1	\$f2, 40(\$t0)	Mem[(\$t0)+40] = (\$f2)	0x39	\$t0	\$f2	$im^{16} = 40$
sdc1	\$f2, 40(\$t0)	Mem[(\$t0)+40] = (\$f2)	0x3d	\$t0	\$f2	im ¹⁶ = 40

❖ Better names can be used for the above instructions

♦ I.s = lwc1 (load FP single),
I.d = Idc1 (load FP double)

 \Rightarrow s.s = swc1 (store FP single), s.d = sdc1 (store FP double)

Floating Point COE 308 - Computer Architecture © Muhamed Mudawar - slide 42

FP Data Movement Instructions

- Moving data between general purpose and FP registers
 - → mfc1: move from coprocessor 1 (to general purpose register)
 - ♦ mtc1: move to coprocessor 1 (from general purpose register)
- Moving data between FP registers

 - → mov.d: move double precision float = even/odd pair of registers

Instruc	ction	Meaning	Format					
mfc1	\$t0, \$f2	(\$t0) = (\$f2)	0x11	0	\$t0	\$f2	0	0
mtc1	\$t0, \$f2	(\$f2) = (\$t0)	0x11	4	\$t0	\$f2	0	0
mov.s	\$f4, \$f2	(\$f4) = (\$f2)	0x11	0	0	\$f2	\$f4	6
mov.d	\$f4, \$f2	(\$f4) = (\$f2)	0x11	1	0	\$f2	\$f4	6

Floating Point COE 308 - Computer Architecture © Muhamed Mudawar - slide 43

FP Convert Instructions

- Convert instruction: cvt.x.y
 - ♦ Convert to destination format x from source format y
- Supported formats
 - ♦ Single precision float = .s (single precision float in FP register)
 - ♦ Double precision float = .d (double float in even-odd FP register)
 - ♦ Signed integer word = .w (signed integer in FP register)

Instruction	Meaning	Format					
cvt.s.w fd, fs	to single from integer	0x11	0	0	fs ⁵	fd ⁵	0x20
cvt.s.d fd, fs	to single from double	0x11	1	0	fs ⁵	fd ⁵	0x20
cvt.d.w fd, fs	to double from integer	0x11	0	0	fs ⁵	fd ⁵	0x21
cvt.d.s fd, fs	to double from single	0x11	1	0	fs ⁵	fd ⁵	0x21
cvt.w.s fd, fs	to integer from single	0x11	0	0	fs ⁵	fd ⁵	0x24
cvt.w.d fd, fs	to integer from double	0x11	1	0	fs ⁵	fd ⁵	0x24

Floating Point COE 308 - Computer Architecture © Muhamed Mudawar - slide 44

FP Compare and Branch Instructions

- FP unit (co-processor 1) has a condition flag
 - ♦ Set to 0 (false) or 1 (true) by any comparison instruction
- Three comparisons: equal, less than, less than or equal
- Two branch instructions based on the condition flag

Instru	ction	Meaning	Format					
c.eq.s	fs, ft	cflag = ((fs) == (ft))	0x11	0	ft ⁵	fs ⁵	0	0x32
c.eq.d	fs, ft	cflag = ((fs) == (ft))	0x11	1	ft ⁵	fs ⁵	0	0x32
c.lt.s	fs, ft	cflag = ((fs) < (ft))	0x11	0	ft ⁵	fs ⁵	0	0x3c
c.lt.d	fs, ft	cflag = ((fs) < (ft))	0x11	1	ft ⁵	fs ⁵	0	0x3c
c.le.s	fs, ft	cflag = ((fs) <= (ft))	0x11	0	ft ⁵	fs ⁵	0	0x3e
c.le.d	fs, ft	cflag = ((fs) <= (ft))	0x11	1	ft ⁵	fs ⁵	0	0x3e
bc1f	Label	branch if (cflag == 0)	0x11	8	0	im ¹⁶		
bc1t	Label	branch if (cflag == 1)	0x11	8	1		im ¹⁶	

Floating Point COE 308 – Computer Architecture © Muhamed Mudawar – slide 45

Example 1: Area of a Circle

```
.data
  pi:
           .double
                             3.1415926535897924
           .asciiz
                             "Circle Area = "
  msg:
.text
main:
        $f2, pi
                             # $f2,3 = pi
  ldc1
          $v0, 7
                             # read double (radius)
  syscall
                             # $f0,1 = radius
  mul.d $f12, $f0, $f0 # $f12,13 = radius*radius
  mul.d $f12, $f2, $f12 # $f12,13 = area
          $a0, msg
  la
  li
          $v0, 4
                             # print string (msg)
  syscall
          $v0, 3
                             # print double (area)
  syscall
                             # print $f12,13
Floating Point
                     COE 308 - Computer Architecture
                                             © Muhamed Mudawar – slide 46
```

Example 2: Matrix Multiplication

```
void mm (int n, double x[n][n], y[n][n], z[n][n]) {
  for (int i=0; i!=n; i=i+1)
    for (int j=0; j!=n; j=j+1) {
      double sum = 0.0;
      for (int k=0; k!=n; k=k+1)
            sum = sum + y[i][k] * z[k][j];
      x[i][j] = sum;
    }
}
```

- ❖ Matrices x, y, and z are n×n double precision float
- ❖ Matrix size is passed in \$a0 = n
- ❖ Array addresses are passed in \$a1, \$a2, and \$a3
- What is the MIPS assembly code for the procedure?

Floating Point

COE 308 - Computer Architecture

© Muhamed Mudawar – slide 47

Matrix Multiplication Procedure - 1/3

Initialize Loop Variables

```
mm: addu $t1, $0, $0  # $t1 = i = 0; for 1st loop
L1: addu $t2, $0, $0  # $t2 = j = 0; for 2nd loop
L2: addu $t3, $0, $0  # $t3 = k = 0; for 3nd loop
    sub.d $f0, $f0, $f0 # $f0 = sum = 0.0
```

- ❖ Calculate address of y[i][k] and load it into \$£2,\$£3
- ❖ Skip i rows (i×n) and add k elements

```
L3: multu $t1, $a0  # i*size(row) = i*n

mflo $t4  # $t4 = i*n

addu $t4, $t4, $t3  # $t4 = i*n + k

sll $t4, $t4, 3  # $t4 = (i*n + k)*8

addu $t4, $a2, $t4  # $t4 = address of y[i][k]

ldc1 $f2, 0($t4)  # $f2 = y[i][k]
```

Floating Point

COE 308 - Computer Architecture

Matrix Multiplication Procedure - 2/3

- ❖ Similarly, calculate address and load value of z[k][j]
- ❖ Skip k rows (k×n) and add j elements

```
multu $t3, $a0  # k*size(row) = k*n

mflo $t5  # $t5 = k*n

addu $t5, $t5, $t2  # $t5 = k*n + j

sll $t5, $t5, 3  # $t5 = (k*n + j)*8

addu $t5, $a3, $t5  # $t5 = address of z[k][j]

ldcl $f4, 0($t5)  # $f4 = z[k][j]
```

❖ Now, multiply y[i][k] by z[k][j] and add it to \$f0

```
mul.d $f6, $f2, $f4  # $f6 = y[i][k]*z[k][j]
add.d $f0, $f0, $f6  # $f0 = sum
addiu $t3, $t3, 1  # k = k + 1
bne $t3, $a0, L3  # loop back if (k != n)
```

Floating Point

COE 308 - Computer Architecture

© Muhamed Mudawar – slide 49

Matrix Multiplication Procedure - 3/3

```
❖ Calculate address of x[i][j] and store sum
```

```
multu $t1, $a0  # i*size(row) = i*n

mflo $t6  # $t6 = i*n

addu $t6, $t6, $t2  # $t6 = i*n + j

sll $t6, $t6, 3  # $t6 = (i*n + j)*8

addu $t6, $a1, $t6  # $t6 = address of x[i][j]

sdc1 $f0, 0($t6)  # x[i][j] = sum
```

❖ Repeat outer loops: L2 (for j = ...) and L1 (for i = ...)

```
addiu $t2, $t2, 1  # j = j + 1
bne $t2, $a0, L2  # loop L2 if (j != n)
addiu $t1, $t1, 1  # i = i + 1
bne $t1, $a0, L1  # loop L1 if (i != n)
```

❖ Return:

jr \$ra # return

Floating Point

COE 308 – Computer Architecture