Floating Point

COE 308
Computer Architecture
Prof. Muhamed Mudawar
Computer Engineering Department
King Fahd University of Petroleum and Minerals

Presentation Outline

* Floating-Point Numbers
* IEEE 754 Floating-Point Standard
* Floating-Point Addition and Subtraction
* Floating-Point Multiplication
* Extra Bits and Rounding
* MIPS Floating-Point Instructions

The World is Not Just Integers

* Programming languages support numbers with fraction
\diamond Called floating-point numbers
\triangleleft Examples:
3.14159265... (π)
2.71828... (e)
0.000000001 or 1.0×10^{-9} (seconds in a nanosecond) $86,400,000,000,000$ or 8.64×10^{13} (nanoseconds in a day) last number is a large integer that cannot fit in a 32-bit integer
* We use a scientific notation to represent
\diamond Very small numbers (e.g. 1.0×10^{-9})
\diamond Very large numbers (e.g. 8.64×10^{13})
\diamond Scientific notation: \pm d. $f_{1} f_{2} f_{3} f_{4} \ldots \times 10 \pm e_{1} e_{2} e_{3}$

Floating-Point Numbers

* Examples of floating-point numbers in base 10 ..
$\diamond 5.341 \times 10^{3}, 0.05341 \times 10^{5},-2.013 \times 10^{-1},-201.3 \times 10^{-3}$
* Examples of floating-point numbers in base $2 \ldots$
$\triangleleft 1.00101 \times 2^{23}, 0.0100101 \times 2^{25},-1.101101 \times 2^{-3},-1101.101 \times 2^{-6}$
\diamond Exponents are kept in decimal for clarity
\diamond The binary number $(1101.101)_{2}=2^{3}+2^{2}+2^{0}+2^{-1}+2^{-3}=13.625$
* Floating-point numbers should be normalized
\triangleleft Exactly one non-zero digit should appear before the point
- In a decimal number, this digit can be from 1 to 9
- In a binary number, this digit should be 1
\triangleleft Normalized FP Numbers: 5.341×10^{3} and -1.101101×2^{-3}
\triangleleft NOT Normalized: 0.05341×10^{5} and -1101.101×2^{-6}

Floating-Point Representation

A floating-point number is represented by the triple
$\triangleleft S$ is the Sign bit (0 is positive and 1 is negative)

- Representation is called sign and magnitude
$\checkmark E$ is the Exponent field (signed)
- Very large numbers have large positive exponents
- Very small close-to-zero numbers have negative exponents
- More bits in exponent field increases range of values
$\checkmark F$ is the Fraction field (fraction after binary point)
- More bits in fraction field improves the precision of FP numbers
S Exponent \quad Fraction

Value of a floating-point number $=(-1)^{S} \times \operatorname{val}(F) \times 2^{\operatorname{val}(E)}$

IEEE 754 Floating-Point Standard

* Found in virtually every computer invented since 1980
\diamond Simplified porting of floating-point numbers
\diamond Unified the development of floating-point algorithms
« Increased the accuracy of floating-point numbers
* Single Precision Floating Point Numbers (32 bits)
\diamond 1-bit sign +8 -bit exponent +23 -bit fraction

$$
\text { Exponent }^{8} \quad \text { Fraction }{ }^{23}
$$

* Double Precision Floating Point Numbers (64 bits)
> 1-bit sign +11 -bit exponent +52 -bit fraction

S	Exponent 11
(continued)	

Normalized Floating Point Numbers

* For a normalized floating point number (S, E, F)
\square
* Significand is equal to $(1 . F)_{2}=\left(1 . f_{1} f_{2} f_{3} f_{4} \ldots\right)_{2}$
\triangleleft IEEE 754 assumes hidden 1. (not stored) for normalized numbers
\diamond Significand is 1 bit longer than fraction
* Value of a Normalized Floating Point Number is
$(-1)^{S} \times(1 . F)_{2} \times 2^{\text {val(E) }}$
$(-1)^{S} \times\left(1 . f_{1} f_{2} f_{3} f_{4} \ldots\right)_{2} \times 2^{\text {val(E) }}$
$(-1)^{S} \times\left(1+f_{1} \times 2^{-1}+f_{2} \times 2^{-2}+f_{3} \times 2^{-3}+f_{4} \times 2^{-4} \ldots\right)_{2} \times 2^{\mathrm{val}(E)}$
$(-1)^{S}$ is 1 when S is 0 (positive), and -1 when S is 1 (negative)
Floating Point
COE 308 - Computer Architecture

Biased Exponent Representation

* How to represent a signed exponent? Choices are ...
\diamond Sign + magnitude representation for the exponent
\triangleleft Two's complement representation
\& Biased representation
* IEEE 754 uses biased representation for the exponent
\triangleleft Value of exponent $=\operatorname{val}(E)=E-$ Bias (Bias is a constant)
* Recall that exponent field is 8 bits for single precision
$\triangleleft E$ can be in the range 0 to 255
$\triangleleft E=0$ and $E=255$ are reserved for special use (discussed later)
$\diamond E=1$ to 254 are used for normalized floating point numbers
\triangleleft Bias $=127$ (half of 254), $\operatorname{val}(E)=E-127$
$\triangleleft \operatorname{val}(E=1)=-126, \operatorname{val}(E=127)=0, \operatorname{val}(E=254)=127$

Biased Exponent - Cont'd

* For double precision, exponent field is 11 bits
$\diamond E$ can be in the range 0 to 2047
$\diamond E=0$ and $E=2047$ are reserved for special use
$\diamond E=1$ to 2046 are used for normalized floating point numbers
\triangleleft Bias $=1023$ (half of 2046), val(E) $=E-1023$
$\diamond \operatorname{val}(E=1)=-1022, \operatorname{val}(E=1023)=0, \operatorname{val}(E=2046)=1023$

* Value of a Normalized Floating Point Number is

$$
\begin{aligned}
& (-1)^{S} \times(1 . F)_{2} \times 2^{E-\text { Bias }} \\
& (-1)^{S} \times\left(1 . f_{1} f_{2} f_{3} f_{4} \ldots\right)_{2} \times 2^{E-\text { Bias }} \\
& (-1)^{S} \times\left(1+f_{1} \times 2^{-1}+f_{2} \times 2^{-2}+f_{3} \times 2^{-3}+f_{4} \times 2^{-4} \ldots\right)_{2} \times 2^{E-\text { Bias }}
\end{aligned}
$$

Examples of Single Precision Float

* What is the decimal value of this Single Precision float? 1011111100010000000000000000000000
* Solution:
\diamond Sign $=1$ is negative
\triangleleft Exponent $=(01111100)_{2}=124, E-$ bias $=124-127=-3$
\diamond Significand $=(1.0100 \ldots 0)_{2}=1+2^{-2}=1.25$ (1 . is implicit)
\diamond Value in decimal $=-1.25 \times 2^{-3}=-0.15625$
* What is the decimal value of?

01000001100100110000000000000000000

* Solution:
implicit 7
\triangleleft Value in decimal $=+(1.01001100 \ldots 0)_{2} \times 2^{130-127}=$ $(1.01001100 \ldots 0)_{2} \times 2^{3}=(1010.01100 \ldots 0)_{2}=10.375$

Examples of Double Precision Float

* What is the decimal value of this Double Precision float?

01000000001101001101101100000000000000
00000000000000000000000000000000

* Solution
\triangleleft Value of exponent $=(10000000101)_{2}-$ Bias $=1029-1023=6$
\triangleleft Value of double float $=(1.00101010 \ldots 0)_{2} \times 2^{6}(1$. is implicit $)=$ $(1001010.10 \ldots 0)_{2}=74.5$
* What is the decimal value of ?

10111111111000100000000000000000000
000000000000000000000000000000000

* Do it yourself! (answer should be $-1.5 \times 2^{-7}=-0.01171875$)

Converting FP Decimal to Binary

Convert -0.8125 to binary in single and double precision

* Solution:
\diamond Fraction bits can be obtained using multiplication by 2
- $0.8125 \times 2=1.625$
- $0.625 \times 2=1.25$
- $0.25 \times 2=0.5$
$0.8125=(0.1101)_{2}=1 / 2+1 / 4+1 / 16=13 / 16$
- $0.5 \times 2=1.0$
- Stop when fractional part is 0
\triangleleft Fraction $=(0.1101)_{2}=(1.101)_{2} \times 2 \stackrel{-1}{2}($ Normalized $)$
\triangleleft Exponent $=1+$ Bias $=126$ (single precision) and 1022 (double)

Largest Normalized Float

* What is the Largest normalized float?
* Solution for Single Precision:

\& Exponent - bias $=254-127=127$ (largest exponent for SP)
\diamond Significand $=(1.111 \ldots 1)_{2}=$ almost 2
\triangleleft Value in decimal $\approx 2 \times 2^{127} \approx 2^{128} \approx 3.4028$ $\times 10^{38}$
* Solution for Double Precision:

\checkmark Value in decimal $\approx 2 \times 2^{1023} \approx 2^{1024} \approx 1.79769 \ldots \times 10^{308}$
* Overflow: exponent is too large to fit in the exponent field

Smallest Normalized Float

* What is the smallest (in absolute value) normalized float?
* Solution for Single Precision:

0000000001100000000000000000000000000
\triangleleft Exponent - bias $=1-127=-126$ (smallest exponent for SP)
\triangleleft Significand $=(1.000 \ldots 0)_{2}=1$
\diamond Value in decimal $=1 \times 2^{-126}=1.17549 \ldots \times 10^{-38}$

* Solution for Double Precision:

000000000000010000000000000000000000
0000000000000000000000000000000000
\diamond Value in decimal $=1 \times 2^{-1022}=2.22507 \ldots \times 10^{-308}$

* Underflow: exponent is too small to fit in exponent field

Zero, Infinity, and NaN

* Zero
\triangleleft Exponent field $E=0$ and fraction $F=0$
$\diamond+0$ and -0 are possible according to sign bit S
* Infinity
\triangleleft Infinity is a special value represented with maximum E and $F=0$
- For single precision with 8-bit exponent: maximum $E=255$
- For double precision with 11-bit exponent: maximum $E=2047$
\diamond Infinity can result from overflow or division by zero
$\diamond+\infty$ and $-\infty$ are possible according to sign bit S
NaN (Not a Number)
$\triangleleft \mathrm{NaN}$ is a special value represented with maximum E and $F \neq 0$
\diamond Result from exceptional situations, such as $0 / 0$ or sqrt(negative)
\diamond Operation on a NaN results is $\mathrm{NaN}: \mathrm{Op}(X, \mathrm{NaN})=\mathrm{NaN}$

Denormalized Numbers

* IEEE standard uses denormalized numbers to ...
\triangleleft Fill the gap between 0 and the smallest normalized float
\triangleleft Provide gradual underflow to zero
* Denormalized: exponent field E is 0 and fraction $F \neq 0$
\diamond Implicit 1. before the fraction now becomes 0 . (not normalized)
* Value of denormalized number ($S, 0, F$)

Single precision: $(-1)^{s} \times(0 . F)_{2} \times 2^{-126}$
Double precision: $(-1)^{S} \times(0 . F)_{2} \times 2^{-1022}$

Floating-Point Comparison

* IEEE 754 floating point numbers are ordered
\diamond Because exponent uses a biased representation ...
- Exponent value and its binary representation have same ordering
\diamond Placing exponent before the fraction field orders the magnitude
- Larger exponent \Rightarrow larger magnitude
- For equal exponents, Larger fraction \Rightarrow larger magnitude
- $0<(0 . F)_{2} \times 2^{E_{\text {min }}}<(1 . F)_{2} \times 2^{E-B i a s}<\infty\left(E_{\text {min }}=1\right.$-Bias $)$
\diamond Because sign bit is most significant \Rightarrow quick test of signed $<$
- Integer comparator can compare magnitudes

Summary of IEEE 754 Encoding

Single-Precision	Exponent $=8$	Fraction $=23$	Value
Normalized Number	1 to 254	Anything	$\pm(1 . F)_{2} \times 2^{E-127}$
Denormalized Number	0	nonzero	$\pm(0 . F)_{2} \times 2^{-126}$
Zero	0	0	± 0
Infinity	255	0	$\pm \infty$
NaN	255	nonzero	NaN

Double-Precision	Exponent = 11	Fraction = 52	Value
Normalized Number	1 to 2046	Anything	$\pm(1 . F)_{2} \times 2^{E-1023}$
Denormalized Number	0	nonzero	$\pm(0 . F)_{2} \times 2^{-1022}$
Zero	0	0	± 0
Infinity	2047	0	$\pm \infty$
NaN	2047	nonzero	NaN

Floating Point COE 308-Computer Architecture © Muhamed Mudawar - slide 19

Next...

* Floating-Point Numbers
* IEEE 754 Floating-Point Standard
* Floating-Point Addition and Subtraction
* Floating-Point Multiplication
* Extra Bits and Rounding
* MIPS Floating-Point Instructions

Floating Point Addition Example

* Consider adding: $(1.111)_{2} \times 2^{-1}+(1.011)_{2} \times 2^{-3}$
\diamond For simplicity, we assume 4 bits of precision (or 3 bits of fraction)
* Cannot add significands ... Why?
\triangleleft Because exponents are not equal
* How to make exponents equal?
\diamond Shift the significand of the lesser exponent right until its exponent matches the larger number
* $(1.011)_{2} \times 2^{-3}=(0.1011)_{2} \times 2^{-2}=(0.01011)_{2} \times 2^{-1}$
\diamond Difference between the two exponents $=-1-(-3)=2$
\diamond So, shift right by 2 bits
* Now, add the significands:

$+\begin{aligned} & 1.111 \\ & 0.01011 \end{aligned}$
Carry \rightarrow 10.00111

Addition Example - cont'd

So, $(1.111)_{2} \times 2^{-1}+(1.011)_{2} \times 2^{-3}=(10.00111)_{2} \times 2^{-1}$

* However, result $(10.00111)_{2} \times 2^{-1}$ is NOT normalized

Normalize result: $(10.00111)_{2} \times 2^{-1}=(1.000111)_{2} \times 2^{0}$
\diamond In this example, we have a carry
\diamond So, shift right by 1 bit and increment the exponent

* Round the significand to fit in appropriate number of bits
\diamond We assumed 4 bits of precision or 3 bits of fraction
* Round to nearest: $(1.000111)_{2} \approx(1.001)_{2}$

$+$	1.000111
1.001	

২ If exponent becomes too large (overflow) or too small (underflow)

Floating Point Subtraction Example

* Consider: $(1.000)_{2} \times 2^{-3}-(1.000)_{2} \times 2^{2}$
\diamond We assume again: 4 bits of precision (or 3 bits of fraction)
* Shift significand of the lesser exponent right
\triangleleft Difference between the two exponents $=2-(-3)=5$
\triangleleft Shift right by 5 bits: $(1.000)_{2} \times 2^{-3}=(0.00001000)_{2} \times 2^{2}$
* Convert subtraction into addition to 2's complement

Subtraction Example - cont'd

So, $(1.000)_{2} \times 2^{-3}-(1.000)_{2} \times 2^{2}=-0.11111_{2} \times 2^{2}$

* Normalize result: $-0.11111_{2} \times 2^{2}=-1.1111_{2} \times 2^{1}$
\triangleleft For subtraction, we can have leading zeros
\diamond Count number z of leading zeros (in this case $z=1$)
\triangleleft Shift left and decrement exponent by z
* Round the significand to fit in appropriate number of bits \diamond We assumed 4 bits of precision or 3 bits of fraction
* Round to nearest: $(1.1111)_{2} \approx(10.000)_{2}$
* Renormalize: rounding generated a carry
$-1.1111_{2} \times 2^{1} \approx-10.000_{2} \times 2^{1}=-1.000_{2} \times 2^{2}$

\diamond Result would have been accurate if more fraction bits are used

Floating Point Addition / Subtraction

Floating Point Adder Block Diagram

Next

* Floating-Point Numbers
* IEEE 754 Floating-Point Standard
* Floating-Point Addition and Subtraction
* Floating-Point Multiplication
* Extra Bits and Rounding
* MIPS Floating-Point Instructions

Floating Point Multiplication Example

$\%$ Consider multiplying: $1.010_{2} \times 2^{-1}$ by $-1.110_{2} \times 2^{-2}$
\diamond As before, we assume 4 bits of precision (or 3 bits of fraction)

* Unlike addition, we add the exponents of the operands
\diamond Result exponent value $=(-1)+(-2)=-3$
* Using the biased representation: $E_{Z}=E_{X}+E_{Y}-$ Bias
$\triangleleft E_{X}=(-1)+127=126$ (Bias = 127 for SP)
$\diamond E_{Y}=(-2)+127=125$
$\diamond E_{Z}=126+125-127=124($ value $=-3)$
* Now, multiply the significands:
$(\underbrace{1.010})_{2} \times(\underbrace{1.110})_{2}=(\underbrace{0.001100})_{2}$
3-bit fraction 3-bit fraction 6-bit fraction
1.010
1.110 0000 1010 1010 1010 10001100

Multiplication Example - cont'd

* Since sign $S_{X} \neq S_{Y}$, sign of product $S_{Z}=1$ (negative)
* So, $1.010_{2} \times 2^{-1} \times-1.110_{2} \times 2^{-2}=-10.001100_{2} \times 2^{-3}$
* However, result: $-10.001100_{2} \times 2^{-3}$ is NOT normalized
* Normalize: $10.001100_{2} \times 2^{-3}=1.0001100_{2} \times 2^{-2}$
\checkmark Shift right by 1 bit and increment the exponent
\diamond At most 1 bit can be shifted right ... Why?
* Round the significand to nearest:
$1.0001100_{2} \approx 1.001_{2}$ (3-bit fraction)
Result $\approx-1.001_{2} \times 2^{-2}$ (normalized)

\& Detect overflow / underflow

\triangleleft No overflow / underflow because exponent is within range

Floating Point Multiplication

Next

* Floating-Point Numbers
* IEEE 754 Floating-Point Standard
* Floating-Point Addition and Subtraction
* Floating-Point Multiplication
* Extra Bits and Rounding
* MIPS Floating-Point Instructions

Extra Bits to Maintain Precision

\& Floating-point numbers are approximations for ...
\diamond Real numbers that they cannot represent

* Infinite variety of real numbers exist between 1.0 and 2.0
\diamond However, exactly 2^{23} fractions can be represented in SP, and
\triangleleft Exactly 2^{52} fractions can be represented in DP (double precision)
* Extra bits are generated in intermediate results when ...
\triangleleft Shifting and adding/subtracting a p-bit significand
\triangleleft Multiplying two p-bit significands (product can be $2 p$ bits)
* But when packing result fraction, extra bits are discarded
* We only need few extra bits in an intermediate result
\diamond Minimizing hardware but without compromising precision

Guard Bit

* Guard bit: guards against loss of a significant bit
\diamond Only one guard bit is needed to maintain accuracy of result
\triangleleft Shifted left (if needed) during normalization as last fraction bit
* Example on the need of a guard bit:
$1.00000000101100010001101 \times 2^{5}$
$-1.00000000000000010011010 \times 2^{-2}$ (subtraction)
$1.00000000101100010001101 \times 2^{5}$
$-0.000000100000000000000010011010 \times 2^{5}$ (shift right 7 bits)
$1.00000000101100010001101 \times 2^{5}$, Guard bit - do not discard

00.11111110101100010001011 (1); 100110×2^{5} (add significands)
$+1.11111101011000100010111^{\prime} 100010 \times 2^{4}$ (normalized)
Floating Point COE 308-Computer Architecture © Muhamed Mudawar - slide 33

Round and Sticky Bits

* Two extra bits are needed for rounding
« Just after normalizing a result significand
\diamond Round bit: appears just after the normalized significand
\diamond Sticky bit: appears after the round bit (OR of all additional bits)
\diamond Reduce the hardware and still achieve accurate arithmetic
\diamond As if result significand was computed exactly and rounded
* Consider the same example of previous slide:
$1.00000000101100010001101 \quad$ OR-reduce $\times 2^{5}$
11.1111110111111111111111011 (00110), $\times 2^{5}$ (2's complement)
00.11111110101100010001011 (昰 1 室 $\times 2^{5}$ (sum)

Round bit - - '- Sticky bit
COE 308 - Computer Architecture

Four Rounding Modes

* Normalized result has the form: 1. $f_{1} f_{2} \ldots f_{l} r s$
\diamond The round bit r and sticky bit s appear after the last fraction bit f_{l}
* IEEE 754 standard specifies four modes of rounding
* Round to Nearest Even: default rounding mode
\diamond Increment result if: $r s=$ " 11 " or ($r s=$ " 10 " and $f_{l}={ }^{\prime} 1$ ')
\diamond Otherwise, truncate result significand to 1. $f_{1} f_{2} \ldots f_{l}$
* Round toward $+\infty$: result is rounded up
\star Increment result if sign is positive and r or $s=‘ 1$ '
* Round toward $-\infty$: result is rounded down
\checkmark Increment result if sign is negative and r or $s=$ ' 1 '
* Round toward 0: always truncate result

Example on Rounding

Round following result using IEEE 754 rounding modes:
-1. 11111111111111111111111 ($\mathbf{0} \times \mathbf{2}^{-7}$

* Round to Nearest Even:
> Truncate result since $r=$ ' 0 '
\triangleleft Truncated Result: -1. $11111111111111111111111 \times 2^{-7}$
* Round towards $+\infty$: Truncate result since negative
* Round towards $-\infty$: Increment since negative and $s=$ '1'
\triangleleft Incremented result: -10.000000000000000000000000 $\times 2^{-7}$
\checkmark Renormalize and increment exponent (because of carry)
\& Final rounded result: -1.00000000000000000000000 $\times 2^{-6}$
* Round towards 0: Truncate always

Advantages of IEEE 754 Standard

* Used predominantly by the industry
* Encoding of exponent and fraction simplifies comparison
\& Integer comparator used to compare magnitude of FP numbers
* Includes special exceptional values: NaN and $\pm \infty$
\triangleleft Special rules are used such as:
- $0 / 0$ is NaN, sqrt(-1) is $\mathrm{NaN}, 1 / 0$ is ∞, and $1 / \infty$ is 0
\triangleleft Computation may continue in the face of exceptional conditions
* Denormalized numbers to fill the gap
\triangleleft Between smallest normalized number $1.0 \times 2^{E_{\text {min }}}$ and zero
\diamond Denormalized numbers, values $0 . F \times 2^{E_{\text {min }}}$, are closer to zero
\triangleleft Gradual underflow to zero

Floating Point Complexities

* Operations are somewhat more complicated
\& In addition to overflow we can have underflow
* Accuracy can be a big problem
\triangleleft Extra bits to maintain precision: guard, round, and sticky
\diamond Four rounding modes
\diamond Division by zero yields Infinity
\diamond Zero divide by zero yields Not-a-Number
\diamond Other complexities
* Implementing the standard can be tricky
\diamond See text for description of 80×86 and Pentium bug!
* Not using the standard can be even worse

Next

* Floating-Point Numbers
* IEEE 754 Floating-Point Standard
* Floating-Point Addition and Subtraction
* Floating-Point Multiplication
* Extra Bits and Rounding
* MIPS Floating-Point Instructions

MIPS Floating Point Coprocessor

Called Coprocessor 1 or the Floating Point Unit (FPU)

* 32 separate floating point registers: \$f0, \$f1, ..., \$f31
* FP registers are 32 bits for single precision numbers
* Even-odd register pair form a double precision register
* Use the even number for double precision registers

४ \$f0, \$f2, \$f4, ..., \$f30 are used for double precision

* Separate FP instructions for single/double precision
\diamond Single precision: add.s, sub.s, mul.s, div.s (.s extension)
\diamond Double precision: add.d, sub.d, mul.d, div.d (.d extension)
* FP instructions are more complex than the integer ones
\diamond Take more cycles to execute

FP Arithmetic Instructions

Instruction	Meaning	Format					
add.s fd, fs, ft	$(\mathrm{fd})=(\mathrm{fs})+(\mathrm{ft})$	0x11	0	ft^{5}	fs ${ }^{5}$	fd^{5}	0
add.d fd, fs, ft	$(\mathrm{fd})=(\mathrm{fs})+(\mathrm{ft})$	0x11	1	ft^{5}	fs^{5}	fd^{5}	0
sub.s fd, fs, ft	$(\mathrm{fd})=(\mathrm{fs})-(\mathrm{ft})$	0x11	0	ft^{5}	fs ${ }^{5}$	fd^{5}	1
sub.d fd, fs, ft	$(\mathrm{fd})=(\mathrm{fs})-(\mathrm{ft})$	0x11	1	ft^{5}	fs ${ }^{5}$	fd^{5}	1
mul.s fd, fs, ft	$(\mathrm{fd})=(\mathrm{fs}) \times(\mathrm{ft})$	0x11	0	ft^{5}	fs ${ }^{5}$	fd^{5}	2
mul.d fd, fs, ft	$(\mathrm{fd})=(\mathrm{fs}) \times(\mathrm{ft})$	0x11	1	ft^{5}	fs^{5}	fd^{5}	2
div.s fd, fs, ft	$(\mathrm{fd})=(\mathrm{fs}) /(\mathrm{ft})$	0x11	0	ft^{5}	fs ${ }^{5}$	fd^{5}	3
div.d fd, fs, ft	$(\mathrm{fd})=(\mathrm{fs}) /(\mathrm{ft})$	0x11	1	ft^{5}	fs^{5}	fd^{5}	3
sqrt.s fd, fs	(fd) $=$ sqrt (fs)	0x11	0	0	fs ${ }^{5}$	fd^{5}	4
sqrt.d fd, fs	(fd) $=$ sqrt (fs)	0×11	1	0	fs ${ }^{5}$	fd^{5}	4
abs.s fd, fs	(fd) $=$ abs (fs)	0x11	0	0	fs ${ }^{5}$	fd^{5}	5
abs.d fd, fs	(fd) $=$ abs (fs)	0x11	1	0	fs ${ }^{5}$	fd^{5}	5
neg.s fd, fs	$(\mathrm{fd})=-(\mathrm{fs})$	0x11	0	0	fs ${ }^{5}$	fd^{5}	7
neg.d fd, fs	(fd) $=-$ (fs)	0x11	1	0	fs ${ }^{5}$	fd^{5}	7

FP Load/Store Instructions

* Separate floating point load/store instructions

২ Iwc1: load word coprocessor 1
\diamond Idc1: load double coprocessor 1
\diamond swc1: store word coprocessor 1
\diamond sdc1: store double coprocessor 1

Instruction	Meaning	Format			
Iwc1 \$f2, 40(\$t0)	$(\$ f 2)=\operatorname{Mem}[(\$ t 0)+40]$	0x31	\$t0	\$f2	$\mathrm{im}^{16}=40$
Idc1 \$f2, 40(\$t0)	$(\$ f 2)=\operatorname{Mem}[(\$ \mathrm{t} 0)+40]$	0x35	\$t0	\$f2	$\mathrm{im}^{16}=40$
swc1 \$f2, 40(\$t0)	$\operatorname{Mem}[(\$ t 0)+40]=(\$ f 2)$	0x39	\$t0	\$f2	$\mathrm{im}^{16}=40$
sdc1 \$f2, 40(\$t0)	$\operatorname{Mem}[(\$ \mathrm{t})+40]=$ (\$f2)	0x3d	\$t0	\$f2	$\mathrm{im}^{16}=40$

* Better names can be used for the above instructions
$\diamond I . s=\operatorname{lwc} 1$ (load FP single), I.d = Idc1 (load FP double)
$\diamond s . s=$ swc1 (store FP single), s.d = sdc1 (store FP double)

FP Data Movement Instructions

* Moving data between general purpose and FP registers
$\checkmark \mathrm{mfc} 1: \quad$ move from coprocessor 1 (to general purpose register)
\triangleleft mtc1: move to coprocessor 1 (from general purpose register)

* Moving data between FP registers

\diamond mov.s: move single precision float
\diamond mov.d: move double precision float = even/odd pair of registers

Instruction	Meaning	Format					
mfc1 \$t0, \$f2	(\$t0) $=(\$ \mathrm{f} 2)$	0×11	0	\$t0	\$f2	0	0
mtc1 \$t0, \$ 2	$(\$+2)=(\$ \mathrm{t})$	0×11	4	\$t0	\$f2	0	0
mov.s \$f4, \$f2	(\$f4) $=(\$ \mathrm{f} 2)$	0×11	0	0	\$f2	\$f4	6
mov.d \$f4, \$f2	$(\$ f 4)=(\$ f 2)$	0x11	1	0	\$f2	\$f4	6

FP Convert Instructions

```
* Convert instruction: cvt.x.y
     Convert to destination format x from source format y
* Supported formats
\diamond Single precision float =.s (single precision float in FP register)
\diamond Double precision float = .d (double float in even-odd FP register)
\diamond Signed integer word = .w (signed integer in FP register)
```

Instruction	Meaning	Format					
cvt.s.w fd, fs	to single from integer	0×11	0	0	fs^{5}	fd^{5}	0×20
crt.s.d fd, fs	to single from double	0×11	1	0	fs^{5}	fd^{5}	0×20
crt.d.w fd, fs	to double from integer	0×11	0	0	fs^{5}	fd^{5}	0×21
crt.d.s fd, fs	to double from single	0×11	1	0	fs^{5}	fd^{5}	0×21
cvt.w.s fd, fs	to integer from single	0×11	0	0	fs^{5}	fd^{5}	0×24
crt.w.d fd, fs	to integer from double	0×11	1	0	fs^{5}	fd^{5}	0×24

FP Compare and Branch Instructions

* FP unit (co-processor 1) has a condition flag
\triangleleft Set to 0 (false) or 1 (true) by any comparison instruction
* Three comparisons: equal, less than, less than or equal
* Two branch instructions based on the condition flag

Instruction	Meaning	Format					
c.eq.s fs, ft	cflag = ((fs) == (ft))	0x11	0	ft^{5}	fs^{5}	0	0x32
c.eq.d fs, ft	cflag $=((\mathrm{fs})==(\mathrm{ft})$)	0x11	1	ft^{5}	fs^{5}	0	0x32
c.lt.s fs, ft	cflag $=((\mathrm{fs})<(\mathrm{ft})$)	0x11	0	ft^{5}	fs^{5}	0	0x3c
c.lt.d fs, ft	cflag $=((\mathrm{fs})<(\mathrm{ft})$)	0x11	1	ft^{5}	fs^{5}	0	$0 \times 3 \mathrm{c}$
c.le.s fs, ft	cflag = ((fs) < (ft$)$)	0x11	0	ft^{5}	fs^{5}	0	$0 \times 3 \mathrm{e}$
c.le.d fs, ft	cflag = ((fs) < = (ft))	0x11	1	ft^{5}	fs^{5}	0	0x3e
bc1f Label	branch if (cflag ==0)	0x11	8	0	$i m^{16}$		
bc1t Label	branch if (cflag == 1)	0x11	8	1	im ${ }^{16}$		

Example 1: Area of a Circle

```
.data
    pi: .double 3.1415926535897924
    msg: .asciiz "Circle Area = "
    .text
main:
    ldc1 $f2, pi
    li $v0, 7
    syscall
    mul.d $f12, $f0, $f0
    mul.d $f12, $f2, $f12 # $f12,13 = area
    la $a0, msg
    li $v0, 4 # print string (msg)
    syscall
    li $v0, 3 # print double (area)
    syscall # print $f12,13
```


Example 2: Matrix Multiplication

```
void mm (int n, double x[n][n], y[n][n], z[n][n]) {
    for (int i=0; i!=n; i=i+1)
        for (int j=0; j!=n; j=j+1) {
            double sum = 0.0;
            for (int k=0; k!=n; k=k+1)
                sum = sum + y[i][k] * z[k][j];
            x[i][j] = sum;
        }
}
```

* Matrices \mathbf{x}, \mathbf{y}, and \mathbf{z} are $\mathbf{n} \times \mathbf{n}$ double precision float
* Matrix size is passed in \$a0 = \mathbf{n}
* Array addresses are passed in \$a1, \$a2, and \$a3
What is the MIPS assembly code for the procedure?

Matrix Multiplication Procedure - 1/3

* Initialize Loop Variables

| $\mathrm{mm}:$ | addu $\$ t 1, \$ 0, \$ 0$ | $\# \$ t 1=i=0 ;$ for $1^{\text {st }}$ loop |
| :--- | :--- | :--- | :--- | :--- |
| L1: | addu $\$ t 2, \$ 0, \$ 0$ | $\# \$ t 2=j=0 ;$ for $2^{\text {nd }}$ loop |
| L2: | addu $\$ t 3, \$ 0, \$ 0$ | $\# \$ t 3=k=0 ;$ for $3^{\text {rd }}$ loop |
| | sub.d $\$ f 0, \$ f 0, \$ f 0 \quad \# \$ f 0=$ sum $=0.0$ | |

* Calculate address of y[i][k] and load it into \$f2,\$f3
* Skip \mathbf{i} rows ($\mathbf{i} \times \mathbf{n}$) and add \mathbf{k} elements

```
L3: multu $t1, $a0 # i*size(row) = i*n
    mflo $t4 # $t4 = i*n
    addu $t4, $t4, $t3 # $t4 = i*n + k
    sll $t4, $t4, 3 # $t4 =(i*n + k)*8
    addu $t4, $a2, $t4 # $t4 = address of y[i][k]
    ldc1 $f2, 0($t4) # $f2 = y[i][k]
```


Matrix Multiplication Procedure - $2 / 3$

* Similarly, calculate address and load value of $\mathbf{z}[\mathrm{k}][\mathrm{j}]$
* Skip \mathbf{k} rows ($\mathbf{k} \times \mathbf{n}$) and add \mathbf{j} elements

```
multu $t3, $a0 # k*size(row) = k*n
mflo $t5 # $t5 = k*n
addu $t5, $t5, $t2 # $t5 = k*n + j
sll $t5, $t5, 3 # $t5 =(k*n + j)*8
addu $t5, $a3, $t5 # $t5 = address of z[k][j]
ldc1 $f4, 0($t5) # $f4 = z[k][j]
```

* Now, multiply y[i][k] by z[k][j] and add it to \$f0
mul.d \$f6, \$f2, \$f4 \# \$f6 = y[i][k]*z[k][j]
add.d \$f0, \$f0, \$f6 \# \$f0 = sum
addiu \$t3, \$t3, $1 \quad \# \mathrm{k}=\mathrm{k}+1$
bne \$t3, \$a0, L3 \# loop back if (k != n)

```
Matrix Multiplication Procedure - 3/3
* Calculate address of x[i][j] and store sum
    multu $t1, $a0 # i*size(row) = i*n
    mflo $t6 # $t6 = i*n
    addu $t6, $t6, $t2 # $t6 = i*n + j
    sll $t6, $t6, 3 # $t6 =(i*n + j)*8
    addu $t6, $a1, $t6 # $t6 = address of x[i][j]
    sdc1 $f0, 0($t6) # x[i][j] = sum
* Repeat outer loops: L2 (for j = ...) and L1 (for i = ...)
    addiu $t2, $t2, 1 # j = j + 1
    bne $t2, $a0, L2 # loop L2 if (j != n)
    addiu $t1, $t1, 1 # i = i + 1
    bne $t1, $a0, L1 # loop L1 if (i != n)
* Return:
    jr $ra # return
```

