
1

Single Cycle Processor Design

COE 308
Computer Architecture

Prof. Muhamed Mudawar

Computer Engineering Department
King Fahd University of Petroleum and Minerals

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 2

Presentation Outline
Designing a Processor: Step-by-Step

Datapath Components and Clocking

Assembling an Adequate Datapath

Controlling the Execution of Instructions

The Main Controller and ALU Controller

Drawback of the single-cycle processor design

2

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 3

Recall, performance is determined by:
Instruction count

Clock cycles per instruction (CPI)

Clock cycle time

Processor design will affect
Clock cycles per instruction

Clock cycle time

Single cycle datapath and control design:
Advantage: One clock cycle per instruction

Disadvantage: long cycle time

The Performance Perspective

I-Count

CPI Cycle

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 4

Designing a Processor: Step-by-Step
Analyze instruction set => datapath requirements

The meaning of each instruction is given by the register transfers

Datapath must include storage elements for ISA registers

Datapath must support each register transfer

Select datapath components and clocking methodology

Assemble datapath meeting the requirements

Analyze implementation of each instruction

Determine the setting of control signals for register transfer

Assemble the control logic

3

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 5

Review of MIPS Instruction Formats
All instructions are 32-bit wide
Three instruction formats: R-type, I-type, and J-type

Op6: 6-bit opcode of the instruction
Rs5, Rt5, Rd5: 5-bit source and destination register numbers
sa5: 5-bit shift amount used by shift instructions
funct6: 6-bit function field for R-type instructions
immediate16: 16-bit immediate value or address offset
immediate26: 26-bit target address of the jump instruction

Op6 Rs5 Rt5 Rd5 funct6sa5

Op6 Rs5 Rt5 immediate16

Op6 immediate26

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 6

MIPS Subset of Instructions
Only a subset of the MIPS instructions are considered

ALU instructions (R-type): add, sub, and, or, xor, slt

Immediate instructions (I-type): addi, slti, andi, ori, xori

Load and Store (I-type): lw, sw

Branch (I-type): beq, bne

Jump (J-type): j

This subset does not include all the integer instructions

But sufficient to illustrate design of datapath and control

Concepts used to implement the MIPS subset are used
to construct a broad spectrum of computers

4

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 7

Details of the MIPS Subset

0x260rd5rt5rs5op6 = 0exclusive orxor rd, rs, rt

im16rt5rs50x0aslt immediateslti rt, rs, im16

im16rt5rs50x0exor immediatexori rt, im16

im260x02jumpj im26

0x2a0rd5rt5rs5op6 = 0set on less thanslt rd, rs, rt

im16rt5rs50x04branch if equalbeq rs, rt, im16

im16rt5rs50x05branch not equalbne rs, rt, im16

im16rt5rs50x2bstore wordsw rt, im16(rs)
im16rt5rs50x23load wordlw rt, im16(rs)

im16rt5rs50x0dor immediateori rt, rs, im16

0x250
0x240rd5rt5rs5op6 = 0bitwise andand rd, rs, rt

rd5rt5rs5op6 = 0bitwise oror rd, rs, rt

0x22
0x20

0
0

im16

im16

rd5
rd5

rt5

rt5

rt5
rt5

rs5

rs5

rs5
rs5

0x0cand immediateandi rt, rs, im16

0x08add immediateaddi rt, rs, im16

op6 = 0subtractionsub rd, rs, rt
op6 = 0additionadd rd, rs, rt

FormatMeaningInstruction

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 8

Register Transfer Level (RTL)
RTL is a description of data flow between registers

RTL gives a meaning to the instructions

All instructions are fetched from memory at address PC

Instruction RTL Description
ADD Reg(Rd) ← Reg(Rs) + Reg(Rt); PC ← PC + 4

SUB Reg(Rd) ← Reg(Rs) – Reg(Rt); PC ← PC + 4

ORI Reg(Rt) ← Reg(Rs) | zero_ext(Im16); PC ← PC + 4

LW Reg(Rt) ← MEM[Reg(Rs) + sign_ext(Im16)]; PC ← PC + 4

SW MEM[Reg(Rs) + sign_ext(Im16)] ← Reg(Rt); PC ← PC + 4

BEQ if (Reg(Rs) == Reg(Rt))
PC ← PC + 4 + 4 × sign_extend(Im16)

else PC ← PC + 4

5

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 9

Instructions are Executed in Steps
R-type Fetch instruction: Instruction ← MEM[PC]

Fetch operands: data1 ← Reg(Rs), data2 ← Reg(Rt)
Execute operation: ALU_result ← func(data1, data2)
Write ALU result: Reg(Rd) ← ALU_result
Next PC address: PC ← PC + 4

I-type Fetch instruction: Instruction ← MEM[PC]
Fetch operands: data1 ← Reg(Rs), data2 ← Extend(imm16)
Execute operation: ALU_result ← op(data1, data2)
Write ALU result: Reg(Rt) ← ALU_result
Next PC address: PC ← PC + 4

BEQ Fetch instruction: Instruction ← MEM[PC]
Fetch operands: data1 ← Reg(Rs), data2 ← Reg(Rt)
Equality: zero ← subtract(data1, data2)
Branch: if (zero) PC ← PC + 4 + 4×sign_ext(imm16)

else PC ← PC + 4

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 10

Instruction Execution – cont’d
LW Fetch instruction: Instruction ← MEM[PC]

Fetch base register: base ← Reg(Rs)
Calculate address: address ← base + sign_extend(imm16)
Read memory: data ← MEM[address]
Write register Rt: Reg(Rt) ← data
Next PC address: PC ← PC + 4

SW Fetch instruction: Instruction ← MEM[PC]
Fetch registers: base ← Reg(Rs), data ← Reg(Rt)
Calculate address: address ← base + sign_extend(imm16)
Write memory: MEM[address] ← data
Next PC address: PC ← PC + 4

Jump Fetch instruction: Instruction ← MEM[PC]
Target PC address: target ← PC[31:28] , Imm26 , ‘00’
Jump: PC ← target

concatenation

6

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 11

Requirements of the Instruction Set
Memory

Instruction memory where instructions are stored

Data memory where data is stored

Registers
32 × 32-bit general purpose registers, R0 is always zero

Read source register Rs

Read source register Rt

Write destination register Rt or Rd

Program counter PC register and Adder to increment PC

Sign and Zero extender for immediate constant

ALU for executing instructions

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 12

Next . . .
Designing a Processor: Step-by-Step

Datapath Components and Clocking

Assembling an Adequate Datapath

Controlling the Execution of Instructions

The Main Controller and ALU Controller

Drawback of the single-cycle processor design

7

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 13

Combinational Elements
ALU, Adder

Immediate extender

Multiplexers

Storage Elements
Instruction memory

Data memory

PC register

Register file

Clocking methodology
Timing of reads and writes

Components of the Datapath

Data
Memory

Address

Data_in
Data_out

MemRead MemWrite

32

32
32

32

Address

Instruction

Instruction
Memory

32

m
u
x

0

1
select

Extend
3216

ExtOp

Registers
RA

RB

BusA

RegWrite

BusB

RW

5

5

5

32

32

32

BusW

P
C32 32

A
L
U

ALU control

ALU result

zero

32

32

32

overflow

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 14

Register

Similar to the D-type Flip-Flop

n-bit input and output

Write Enable:

Enable / disable writing of register

Negated (0): Data_Out will not change

Asserted (1): Data_Out will become Data_In after clock edge

Edge triggered Clocking

Register output is modified at clock edge

Register Element

Register

Data_In

Clock
Write

Enable

n bits

Data_Out n bits

8

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 15

Register File consists of 32 × 32-bit registers
BusA and BusB: 32-bit output busses for reading 2 registers
BusW: 32-bit input bus for writing a register when RegWrite is 1
Two registers read and one written in a cycle

Registers are selected by:
RA selects register to be read on BusA
RB selects register to be read on BusB
RW selects the register to be written

Clock input
The clock input is used ONLY during write operation
During read, register file behaves as a combinational logic block

RA or RB valid => BusA or BusB valid after access time

RW RA RB
MIPS Register File

Register
FileRA

RB

BusA

RegWrite

BusB
RW

5

5

5

32

32

32

BusW
Clock

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 16

Details of the Register File

BusA

R1

R2

R31

...

BusW

D
ec

od
erRW

5

Clock RegWrite

...

R0 is
not used

BusB

"0" "0"
RA
Decoder

5 RB
Decoder

5

32

32

32

32

32

32

32

32

32

Tri-state
buffer

9

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 17

Allow multiple sources to drive a single bus

Two Inputs:
Data signal (data_in)

Output enable

One Output (data_out):
If (Enable) Data_out = Data_in

else Data_out = High Impedance state (output is disconnected)

Tri-state buffers can be

used to build multiplexors

Tri-State Buffers

Data_in Data_out

Enable

Data_0

Data_1

Output

Select

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 18

Building a Multifunction ALU

0

1

2

3

0

1

2

3

Logic Unit

2

AND = 00
OR = 01

NOR = 10
XOR = 11

Lo
gi

ca
l

O
pe

ra
tio

n

Shifter

2None = 00
SLL = 01
SRL = 10
SRA = 11

S
hi

ft
O

pe
ra

tio
n

A 32

32B

A
d
d
e
r

c0

32

32

ADD = 0
SUB = 1

A
rit

hm
et

ic
O

pe
ra

tio
n

Shift = 00
SLT = 01
Arith = 10

Logic = 11

ALU
Selection

32

2

Shift Amount

ALU Result

lsb 5

sign
<

zerooverflow

SLT: ALU does a
SUB and check the
sign and overflow

10

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 19

Instruction and Data Memories
Instruction memory needs only provide read access

Because datapath does not write instructions
Behaves as combinational logic for read
Address selects Instruction after access time

Data Memory is used for load and store
MemRead: enables output on Data_out

Address selects the word to put on Data_out

MemWrite: enables writing of Data_in
Address selects the memory word to be written
The Clock synchronizes the write operation

Separate instruction and data memories
Later, we will replace them with caches

MemWriteMemRead

Data
Memory

Address

Data_in

Data_out
32

32

32

Clock

32
Address Instruction

Instruction
Memory

32

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 20

Clocking Methodology
Clocks are needed in a sequential
logic to decide when a state element
(register) should be updated

To ensure correctness, a clocking
methodology defines when data can
be written and read

Combinational logic

R
eg

is
te

r 1

R
eg

is
te

r 2

clock

rising edge falling edge

We assume edge-
triggered clocking

All state changes
occur on the same
clock edge

Data must be valid
and stable before
arrival of clock
edge

Edge-triggered
clocking allows a
register to be read
and written during
same clock cycle

11

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 21

Determining the Clock Cycle
With edge-triggered clocking, the clock cycle must be
long enough to accommodate the path from one register
through the combinational logic to another register

Tcycle ≥ Tclk-q + Tmax_comb + Ts

Combinational logic

R
eg

is
te

r 1

R
eg

is
te

r 2

clock

writing edge

Tclk-q Tmax_comb Ts Th

Tclk-q : clock to output delay
through register

Tmax_comb : longest delay
through combinational logic

Ts : setup time that input to a
register must be stable
before arrival of clock edge

Th: hold time that input to a
register must hold after
arrival of clock edge

Hold time (Th) is normally
satisfied since Tclk-q > Th

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 22

Clock Skew
Clock skew arises because the clock signal uses different
paths with slightly different delays to reach state elements

Clock skew is the difference in absolute time between
when two storage elements see a clock edge

With a clock skew, the clock cycle time is increased

Clock skew is reduced by balancing the clock delays

Tcycle ≥ Tclk-q + Tmax_combinational + Tsetup+ Tskew

12

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 23

Next . . .
Designing a Processor: Step-by-Step

Datapath Components and Clocking

Assembling an Adequate Datapath

Controlling the Execution of Instructions

The Main Controller and ALU Controller

Drawback of the single-cycle processor design

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 24

We can now assemble the datapath from its components

For instruction fetching, we need …
Program Counter (PC) register

Instruction Memory

Adder for incrementing PC

Instruction Fetching Datapath

The least significant 2 bits
of the PC are ‘00’ since

PC is a multiple of 4

Datapath does not
handle branch or
jump instructions

Improved datapath
increments upper
30 bits of PC by 1

P
C

32

Address

Instruction

Instruction
Memory

32

32
32

4
A
d
d

next PC

32

Address

Instruction

Instruction
Memory

32

30

PC
00

+1

30

Improved
Datapath

next PC

00

13

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 25

Datapath for R-type Instructions

Control signals
ALUCtrl is derived from the funct field because Op = 0 for R-type

RegWrite is used to enable the writing of the ALU result

Op6 Rs5 Rt5 Rd5 funct6sa5

A
L
U32

32

ALUCtrl
RegWrite

Registers
RA

RB

BusA

BusB

RW
BusW

32

Address

Instruction

Instruction
Memory

32

30

P
C

00

+1

30
5Rs

5Rt

5Rd
ALU result

32

RA & RB come from the
instruction’s Rs & Rt fields

RW comes from the Rd field

ALU inputs come from BusA & BusB

ALU result is connected to BusW

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 26

Datapath for I-type ALU Instructions

Control signals
ALUCtrl is derived from the Op field

RegWrite is used to enable the writing of the ALU result

ExtOp is used to control the extension of the 16-bit immediate

Op6 Rs5 Rt5 immediate16

ALUCtrl
RegWrite

32

Address

Instruction

Instruction
Memory

32

30

P
C

00

+1

30

325

Registers
RA

RB

BusA

BusB

RW
BusW

5Rs

5Rt

ExtOp

32
ALU result

32

32

A
L
U

Extender
Imm16

Second ALU input comes
from the extended immediate

RB and BusB are not used

RW now comes from
Rt, instead of Rd

14

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 27

Combining R-type & I-type Datapaths

Control signals
ALUCtrl is derived from either the Op or the funct field

RegWrite enables the writing of the ALU result

ExtOp controls the extension of the 16-bit immediate

RegDst selects the register destination as either Rt or Rd

ALUSrc selects the 2nd ALU source as BusB or extended immediate

A mux selects RW
as either Rt or Rd

Another mux
selects 2nd ALU
input as either
source register

Rt data on BusB
or the extended

immediate

ALUCtrl
RegWrite

ExtOp

A
L
U

ALU result

32

32

Registers
RA

RB

BusA

BusB

RW

5

32

BusW

32

Address

Instruction

Instruction
Memory

32

30

P
C

00
+1

30
Rs

5

Rd

Extender
Imm16

Rt

32
5

m
u
x

0

1

RegDst

ALUSrc

m
u
x

0

1

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 28

A
L
U

ALUCtrl

ALU result

32

32

Registers
RA

RB

BusA

RegWrite = 1

BusB

RW

5

32

BusW

32

Address

Instruction

Instruction
Memory

32

30

P
C

00

+1

30
Rs

5

Rd

Extender

ExtOp

Imm16

Rt

32

m
u
x

0

1
5

m
u
x

0

1

Controlling ALU Instructions

For R-type ALU
instructions, RegDst is
‘1’ to select Rd on RW

and ALUSrc is ‘0’ to
select BusB as second
ALU input. The active

part of datapath is
shown in green

For I-type ALU
instructions, RegDst is
‘0’ to select Rt on RW
and ALUSrc is ‘1’ to

select Extended
immediate as second
ALU input. The active

part of datapath is
shown in green

A
L
U

ALUCtrl

ALU result

32

32

Registers
RA

RB

BusA

RegWrite = 1

BusB

RW

5

32

BusW

32

Address

Instruction

Instruction
Memory

32

30

P
C

00

+1

30
Rs

5

Rd

Extender

ExtOp

Imm16

Rt

32

m
u
x

0

1
5

m
u
x

0

1

RegDst = 1

ALUSrc = 0

RegDst = 0

ALUSrc = 1

15

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 29

Details of the Extender
Two types of extensions

Zero-extension for unsigned constants

Sign-extension for signed constants

Control signal ExtOp indicates type of extension

Extender Implementation: wiring and one AND gate

ExtOp = 0 ⇒ Upper16 = 0

ExtOp = 1 ⇒

Upper16 = sign bit

..

.

ExtOp

Upper
16 bits

Lower
16 bits

..

.

Imm16

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 30

Additional Control signals
MemRead for load instructions

MemWrite for store instructions

MemtoReg selects data on BusW as ALU result or Memory Data_out

BusB is connected to Data_in of Data
Memory for store instructions

Adding Data Memory to Datapath
A data memory is added for load and store instructions

A 3rd mux selects data on BusW as
either ALU result or memory data_out

Data
Memory

Address

Data_in
Data_out

32

32A
L
U

ALUCtrl

32

Registers
RA

RB

BusA

RegWrite

BusB

RW

5

BusW

32

Address

Instruction

Instruction
Memory

32

30

P
C

00

+1

30

Rs

5

Rd

Extender

ExtOp

Imm16

Rt

m
u
x

0

1
5
RegDst

ALUSrc

m
u
x

0

1

32

MemRead MemWrite

32

ALU result

32

m
u
x

0

1

MemtoReg

ALU calculates data memory address

16

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 31

ALUCtrl = ‘ADD’ to calculate data memory
address as Reg(Rs) + sign-extend(Imm16)

ALUSrc = ‘1’ selects extended immediate as
second ALU input

Controlling the Execution of Load

MemRead = ‘1’ to read data memory
RegDst = ‘0’ selects Rt
as destination register

ExtOp = ‘sign’ to sign-extend
Immmediate16 to 32 bits

RegWrite = ‘1’ to write the memory
data on BusW to register Rt

MemtoReg = ‘1’ places the data read
from memory on BusW

Data
Memory

Address

Data_in
Data_out

32

32

A
L
U

ALUCtrl
= ADD

ALU result

32

32Registers
RA

RB

BusA

RegWrite
= 1

BusB

RW

5

BusW

32

Address

Instruction

Instruction
Memory

32

30

P
C

00

+1

30

Rs

5

Rd

Extender

ExtOp
= sign

Imm16

Rt

m
u
x

0

1
5

m
u
x

0

1

m
u
x

0

1

32

MemRead
= 1

MemWrite
= 0

RegDst
= 0

ALUSrc
= 1

MemtoReg
= 1

32

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 32

ALUCtrl = ‘ADD’ to calculate data memory
address as Reg(Rs) + sign-extend(Imm16)

ALUSrc = ‘1’ to select the extended
immediate as second ALU input

Controlling the Execution of Store

MemWrite = ‘1’ to write data memory
RegDst = ‘x’ because
no destination register

ExtOp = ‘sign’ to sign-extend
Immmediate16 to 32 bits

RegWrite = ‘0’ because no register is
written by the store instruction

MemtoReg = ‘x’ because we don’t
care what data is placed on BusW

Data
Memory

Address

Data_in
Data_out

32

32

32

A
L
U

ALUCtrl
= ADD

ALU result

32

32Registers
RA

RB

BusA

RegWrite
= 0

BusB

RW

5

BusW

32

Address

Instruction

Instruction
Memory

32

30

P
C

00

+1

30

Rs

5

Rd

Extender

ExtOp
= sign

Imm16

Rt

m
u
x

0

1
5

RegDst
= x

m
u
x

0

1

m
u
x

0

1

32

MemRead
= 0

MemWrite
= 1

MemtoReg
= x

ALUSrc
= 1

17

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 33

Adding Jump and Branch to Datapath

Additional Control Signals
J, Beq, Bne for jump and branch instructions

Zero condition of the ALU is examined

PCSrc = 1 for Jump & taken Branch

Ext

Data
Memory

Address

Data_in
Data_out

MemRead MemWrite

32

A
L
U

ALUCtrl

ALU result

32Registers
RA

RB

BusA

RegWrite

BusB

RW

5

BusW

32

Address

Instruction

Instruction
Memory

P
C

00

+1

30

Rs

5

Rd

Imm26

Rt

m
u
x

0

1
5

RegDst
ALUSrc

m
u
x

0

1

m
u
x

0

1

MemtoReg

m
u
x

1

0

30

zero

30 Jump or Branch Target Address

30

PCSrc Imm16

J, Beq, Bne

Next
PC

Next PC computes
jump or branch target

instruction address

For Branch, ALU
does a subtraction

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 34

Details of Next PC

A
D
D

30

30
0

m
u
x

1

Inc PC

30

Imm16

Imm26

30
SE

4msb

26

Beq

Bne

J

Zero

PCSrcBranch or Jump Target Address

Imm16 is sign-extended to 30 bits

Jump target address: upper 4 bits of PC are concatenated with Imm26

PCSrc = J + (Beq . Zero) + (Bne . Zero)

Sign-Extension:

Most-significant
bit is replicated

18

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 35

Controlling the Execution of Jump

Ext

Data
Memory

Address

Data_in
Data_out

32

ALU result

32

5

Registers
RA

RB

BusA

BusB

RW BusW

32

Address

Instruction

Instruction
Memory

P
C

00

30

Rs

5

Rd

Imm26

Rt

m
u
x

0

1
5

m
u
x

0

1

m
u
x

0

1
m
u
x

1

0

30

30 Jump Target Address

30

Imm16

Next
PC

RegWrite
= 0

MemRead
= 0

MemWrite
= 0

J = 1
RegDst

= x ALUCtrl
= x

ALUSrc
= x

MemtoReg
= x

ExtOp
= x

PCSrc
= 1 +1 zero

A
L
U

Upper 4 bits are from
the incremented PC

We don’t care about RegDst, ExtOp,
ALUSrc, ALUCtrl, and MemtoReg

MemRead, MemWrite & RegWrite are 0

J = 1 selects Imm26 as
jump target address

PCSrc = 1 to select
jump target address

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 36

Controlling the Execution of Branch

Ext

Data
Memory

Address

Data_in
Data_out

32

ALU result

32

5

Registers
RA

RB

BusA

BusB

RW BusW

32

Address

Instruction

Instruction
Memory

P
C

00

30

Rs

5

Rd

Imm26

Rt

m
u
x

0

1
5

m
u
x

0

1

m
u
x

0

1
m
u
x

1

0

30

30 Branch Target Address

30

Imm16

Next
PC

RegWrite
= 0

MemRead
= 0

MemWrite
= 0

Beq = 1
Bne = 1

ALUCtrl
= SUB

ALUSrc
= 0

RegDst
= x

MemtoReg
= x

ExtOp
= x

PCSrc
= 1 +1 zero

A
L
U

RegDst = ExtOp = MemtoReg = xMemRead = MemWrite = RegWrite = 0

Either Beq or Bne =1

Next PC outputs branch target address

ALUSrc = ‘0’ (2nd ALU input is BusB)
ALUCtrl = ‘SUB’ produces zero flag

Next PC logic determines PCSrc
according to zero flag

19

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 37

Next . . .
Designing a Processor: Step-by-Step

Datapath Components and Clocking

Assembling an Adequate Datapath

Controlling the Execution of Instructions

The Main Controller and ALU Controller

Drawback of the single-cycle processor design

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 38

Main Control and ALU Control

Input:
6-bit opcode field from instruction

Output:
10 control signals for datapath

ALUOp for ALU Control

Input:
6-bit function field from instruction

ALUOp from main control

Output:
ALUCtrl signal for ALU

ALU
Control

Main
Control

Datapath32

Address

Instruction

Instruction
Memory

A
L
U

Op6

R
eg

D
st

R
eg

W
rit

e
Ex

tO
p

AL
U

Sr
c

M
em

R
ea

d

M
em

W
rit

e
M

em
to

R
eg

Be
q

Bn
e

ALUOp

ALUCtrl

fu
nc

t6

J

20

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 39

Single-Cycle Datapath + Control

PCSrc

Ext

Data
Memory

Address

Data_in
Data_out

32

A
L
U

ALU result

32

5

Registers
RA

RB

BusA

BusB

RW BusW

32

Address

Instruction

Instruction
Memory

P
C

00

+1

30

Rs

5

Rd

Imm26

Rt

m
u
x

0

1
5

m
u
x

0

1

m
u
x

0

1
m
u
x

1

0

30

30 Jump or Branch Target Address

30

Imm16

Next
PC

zero

ALU
Ctrl

ALUCtrl

ALUOp

func

RegDst ALUSrcRegWrite

J, Beq, Bne

MemtoReg

MemRead

MemWrite

ExtOp

Main
Control

Op

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 40

16-bit immediate is sign-extended16-bit immediate is zero-extendedExtOp

Data memory is read
Data_out ← Memory[address]NoneMemRead

Data memory is written
Memory[address] ← Data_inNoneMemWrite

BusW = Data_out from MemoryBusW = ALU resultMemtoReg

PC ← Branch target address
If branch is takenPC ← PC + 4Beq, Bne

Second ALU operand comes from
the extended 16-bit immediate

Second ALU operand comes from
the second register file output (BusB)ALUSrc

Destination register is written with
the data value on BusWNoneRegWrite

PC ← Jump target addressPC ← PC + 4J

This multi-bit signal specifies the ALU operation as a function of the opcodeALUOp

Destination register = RdDestination register = RtRegDst

Effect when ‘1’Effect when ‘0’Signal

Main Control Signals

21

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 41

1
0
0
0
0
0
0
0
0
0
0

J

x
SUB
SUB
ADD
ADD
XOR
OR

AND
SLT
ADD

R-type

ALU
Op

0
0
1
0
0
0
0
0
0
0
0

Beq

00001=Imm0=zero10 = Rtxori

x
x
x

1=sign
1=sign

0=zero
0=zero
1=sign
1=sign

x

Ext
Op

x000x0xj
x0010=BusB0xbne
x
x
1

0
0
0
0
0

Mem
toReg

0=BusB
1=Imm
1=Imm

1=Imm
1=Imm
1=Imm
1=Imm
0=BusB

ALU
Src

0
0
1

1
1
1
1
1

Reg
Write

Mem
Write

Mem
ReadBneReg

DstOp

0000 = Rtslti

0000 = Rtori

0000 = Rtaddi

000xbeq
100xsw
0100 = Rtlw

0

0

0 = Rt

1 = Rd

0

0

0andi

0R-type

Main Control Signal Values

X is a don’t care (can be 0 or 1), used to minimize logic

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 42

RegDst <= R-type

RegWrite <= (sw + beq + bne + j)

ExtOp <= (andi + ori + xori)

ALUSrc <= (R-type + beq + bne)

MemRead <= lw

MemWrite <= sw

MemtoReg <= lw

Logic Equations for Control Signals
Op6

R
-ty

pe
ad

di
sl

ti
an

di
or

i
xo

ri
lw sw

B
eq B
ne

R
eg

D
st

R
eg

W
rit

e

E
xt

O
p

A
LU

S
rc

M
em

R
ea

d

M
em

W
rit

e
M

em
to

R
eg

Logic
Equations

A
LU

op

J

Decoder

22

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 43

ALUCtrlfunct6ALUOpOp6

x
SUB
SUB
ADD
ADD
XOR
OR

AND
SLT
ADD
SLT
XOR
OR

AND
SUB
ADD

1010sltR-typeR-type
0110xorR-typeR-type
0101orR-typeR-type
0100andR-typeR-type
0010subR-typeR-type

0110xXORxori

x
0010
0010
0000
0000

0101
0100
1010
0000

0000

4-bit
Encoding

xxj
xSUBbne
x
x
x

x
x
x
x

add

ALU Control

SLTslti

ORori

ADDaddi

SUBbeq
ADDsw
ADDlw

AND

R-type

andi

R-type

ALU Control Truth Table

Other binary
encodings are also

possible. The idea is
to choose a binary
encoding that will

minimize the logic for
ALU Control

The 4-bit encoding
for ALUctrl is chosen
here to be equal to
the last 4 bits of the

function field

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 44

Next . . .
Designing a Processor: Step-by-Step

Datapath Components and Clocking

Assembling an Adequate Datapath

Controlling the Execution of Instructions

The Main Controller and ALU Controller

Drawback of the single-cycle processor design

23

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 45

Drawbacks of Single Cycle Processor
Long cycle time

All instructions take as much time as the slowest

Alternative Solution: Multicycle implementation
Break down instruction execution into multiple cycles

Instruction FetchStore ALU Memory Write

Instruction FetchALU Reg Read ALU

Instruction FetchBranch

Load Memory ReadInstruction Fetch
longest delay

ALUReg Read

Reg Read

Reg Read ALU

Instruction FetchJump Decode

Reg Write

Reg Write

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 46

Multicycle Implementation
Break instruction execution into five steps

Instruction fetch

Instruction decode and register read

Execution, memory address calculation, or branch completion

Memory access or ALU instruction completion

Load instruction completion

One step = One clock cycle (clock cycle is reduced)
First 2 steps are the same for all instructions

2Jump5Load
3Branch4ALU & Store

cyclesInstruction# cyclesInstruction

24

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 47

Performance Example
Assume the following operation times for components:

Instruction and data memories: 200 ps

ALU and adders: 180 ps

Decode and Register file access (read or write): 150 ps

Ignore the delays in PC, mux, extender, and wires

Which of the following would be faster and by how much?
Single-cycle implementation for all instructions

Multicycle implementation optimized for every class of instructions

Assume the following instruction mix:
40% ALU, 20% Loads, 10% stores, 20% branches, & 10% jumps

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 48

Solution

300 ps150200Jump
530 ps180150200Branch

180

180

180

ALU
Operation

200

200

Data
Memory

150

150

Register
Write

730 ps150200Store

880 ps150200Load

680 ps150200ALU

TotalRegister
Read

Instruction
Memory

Instruction
Class

For fixed single-cycle implementation:

Clock cycle =

For multi-cycle implementation:

Clock cycle =

Average CPI =

Speedup =

decode and update PC

0.4×4 + 0.2×5 + 0.1×4+ 0.2×3 + 0.1×2 = 3.8

max (200, 150, 180) = 200 ps (maximum delay at any step)

880 ps determined by longest delay (load instruction)

880 ps / (3.8 × 200 ps) = 880 / 760 = 1.16

25

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 49

Worst Case Timing (Load Instruction)

New PCOld PC

Clk-to-q

Instruction Memory Access Time
Old Instruction New Instruction = (Op, Rs, Rt, Rd, Funct, Imm16, Imm26)

Delay Through Control Logic
Old Control Signal Values New Control Signal Values (ExtOp, ALUSrc, ALUOp, …)

Register File Access Time
Old BusA Value New BusA Value = Register(Rs)

Delay Through Extender and ALU Mux
Old Second ALU Input New Second ALU Input = sign-extend(Imm16)

ALU Delay
Old ALU Result New ALU Result = Address

Data Memory Access Time
Old Data Memory Output Value New Value

Mux delay + Setup time + Clock skew Write
Occurs

Clk

Clock Cycle

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 50

Worst Case Timing – Cont'd
Long cycle time: must be long enough for Load operation
PC’s Clk-to-Q
+ Instruction Memory’s Access Time
+ Maximum of (

Register File’s Access Time,
Delay through control logic + extender + ALU mux)

+ ALU to Perform a 32-bit Add
+ Data Memory Access Time
+ Delay through MemtoReg Mux
+ Setup Time for Register File Write + Clock Skew

Cycle time is longer than needed for other instructions
Therefore, single cycle processor design is not used in practice

26

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 51

Summary
5 steps to design a processor

Analyze instruction set => datapath requirements

Select datapath components & establish clocking methodology

Assemble datapath meeting the requirements

Analyze implementation of each instruction to determine control signals

Assemble the control logic

MIPS makes Control easier
Instructions are of same size

Source registers always in same place

Immediates are of same size and same location

Operations are always on registers/immediates

Single cycle datapath => CPI=1, but Long Clock Cycle

