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Laundry Example: Three Stages

1. Wash dirty load of clothes

2. Dry wet clothes

3. Fold and put clothes into drawers

Each stage takes 30 minutes to complete

Four loads of clothes to wash, dry, and fold

A B

C D

Pipelining Example
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Sequential laundry takes 6 hours for 4 loads

Intuitively, we can use pipelining to speed up laundry 

Sequential Laundry

Time
6 PM

A

30 30 30
7 8 9 10 11 12 AM

30 30 30

B

30 30 30

C

30 30 30

D
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Pipelined laundry takes 
3 hours for 4 loads

Speedup factor is 2 for 
4 loads

Time to wash, dry, and 
fold one load is still the 
same (90 minutes)

Pipelined Laundry: Start Load ASAP

Time

6 PM

A

30
7 8 9 PM

B

30
30

C

30
30
30

D

30
30
30

30
30 30
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Serial Execution versus Pipelining
Consider a task that can be divided into k subtasks

The k subtasks are executed on k different stages

Each subtask requires one time unit

The total execution time of the task is k time units

Pipelining is to start a new task before finishing previous
The k stages work in parallel on k different tasks

Tasks enter/leave pipeline at the rate of one task per time unit

1 2 k…
1 2 k…

1 2 k…

1 2 k…
1 2 k…

1 2 k…

Without Pipelining
One completion every k time units

With Pipelining
One completion every 1 time unit
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Synchronous Pipeline
Uses clocked registers between stages

Upon arrival of a clock edge …
All registers hold the results of previous stages simultaneously

The pipeline stages are combinational logic circuits

It is desirable to have balanced stages
Approximately equal delay in all stages

Clock period is determined by the maximum stage delay

S1 S2 Sk
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Input

Clock

Output
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Let τi = time delay in stage Si

Clock cycle τ = max(τi) is the maximum stage delay

Clock frequency f =  1/τ =  1/max(τi)

A pipeline can process n tasks in k + n – 1 cycles
k cycles are needed to complete the first task

n – 1 cycles are needed to complete the remaining n – 1 tasks

Ideal speedup of a k-stage pipeline over serial execution

Pipeline Performance

k + n – 1Pipelined execution in cycles

Serial execution in cycles
== Sk → k  for large n

nk
Sk
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Next . . .
Pipelining versus Serial Execution

Pipelined Datapath

Pipelined Control

Pipeline Hazards

Data Hazards and Forwarding

Load Delay, Hazard Detection, and Stall Unit

Control Hazards

Delayed Branch and Dynamic Branch Prediction

Pipelined Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 10

Single-Cycle Datapath
Shown below is the single-cycle datapath

How to pipeline this single-cycle datapath?

Answer: Introduce registers at the end of each stage
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Pipelined Datapath
Pipeline registers, in green, separate each pipeline stage

Pipeline registers are labeled by the stages they separate

Is there a problem with the register destination address?
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Corrected Pipelined Datapath
Destination register number should come from MEM/WB

Along with the data during the written back stage

Destination register number is passed from ID to WB stage
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Graphically Representing Pipelines
Multiple instruction execution over multiple clock cycles

Instructions are listed in execution order from top to bottom
Clock cycles move from left to right
Figure shows the use of resources at each stage and each cycle

lw $6, 8($5) IM

CC1Time (in cycles)

Pr
og

ra
m

 E
xe

cu
ti

on
 O

rd
er

add $1, $2, $3

CC2

Reg

IM

ori $4, $3, 7

ALU

CC3

Reg

IM

sub $5, $2, $3

CC4

DM

ALU

Reg

IM

sw $2, 10($3)

CC5

Reg

DM

ALU

Reg

IM

CC7

Reg

DM

ALU

CC6

Reg

DM

ALU

Reg

CC8

Reg

DM
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Diagram shows:
Which instruction occupies what stage at each clock cycle

Instruction execution is pipelined over the 5 stages

Instruction–Time Diagram

IF

WB

–
EX

ID

WB

–
EX

WB

MEM –

ID

IF

EX

ID

IF

TimeCC1 CC4 CC5 CC6 CC7 CC8 CC9CC2 CC3

MEM

EX

ID

IF

WB

MEM

EX

ID

IF

lw $7, 8($3)

lw $6, 8($5)

ori $4, $3, 7

sub $5, $2, $3

sw $2, 10($3)In
st

ru
ct

io
n 

O
rd

er

Up to five instructions can be in 
execution during a single cycle

ALU instructions skip 
the MEM stage. 

Store instructions 
skip the WB stage 
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Single-Cycle vs Pipelined Performance
Consider a 5-stage instruction execution in which …

Instruction fetch = ALU operation = Data memory access = 200 ps

Register read = register write = 150 ps

What is the single-cycle non-pipelined time?

What is the pipelined cycle time?

What is the speedup factor for pipelined execution?

Solution

Non-pipelined cycle = 200+150+200+200+150 = 900 ps

Reg ALU MEMIF
900 ps

Reg
Reg ALU MEMIF

900 ps

Reg
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Single-Cycle versus Pipelined – cont’d
Pipelined cycle time =

CPI for pipelined execution = 
One instruction completes each cycle (ignoring pipeline fill)

Speedup of pipelined execution =
Instruction count and CPI are equal in both cases

Speedup factor is less than 5 (number of pipeline stage)
Because the pipeline stages are not balanced

900 ps / 200 ps = 4.5

1

max(200, 150) = 200 ps

200

IF Reg MEMALU Reg

IF Reg MEM RegALU

IF Reg MEMALU Reg200

200 200 200 200 200
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Control Signals
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Control Signals – cont’d
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Pipelined Control
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Pipelined Control – Cont'd
ID stage generates all the control signals

Pipeline the control signals as the instruction moves
Extend the pipeline registers to include the control signals

Each stage uses some of the control signals
Instruction Decode and Register Fetch

Control signals are generated

RegDst is used in this stage

Execution Stage => ALUSrc and ALUOp
Next PC uses Beq, Bne, J and zero signals for branch control

Memory Stage => MemRead, MemWrite, and MemtoReg

Write Back Stage => RegWrite is used in this stage
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Pipelining Summary
Pipelining doesn’t improve latency of a single instruction

However, it improves throughput of entire workload
Instructions are initiated and completed at a higher rate

In a k-stage pipeline, k instructions operate in parallel
Overlapped execution using multiple hardware resources

Potential speedup = number of pipeline stages k

Unbalanced lengths of pipeline stages reduces speedup

Pipeline rate is limited by slowest pipeline stage

Unbalanced lengths of pipeline stages reduces speedup

Also, time to fill and drain pipeline reduces speedup
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Next . . .
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Hazards: situations that would cause incorrect execution
If next instruction were launched during its designated clock cycle

1. Structural hazards
Caused by resource contention
Using same resource by two instructions during the same cycle

2. Data hazards
An instruction may compute a result needed by next instruction
Hardware can detect dependencies between instructions

3. Control hazards
Caused by instructions that change control flow (branches/jumps)
Delays in changing the flow of control

Hazards complicate pipeline control and limit performance

Pipeline Hazards
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Structural Hazards
Problem

Attempt to use the same hardware resource by two different
instructions during the same cycle

Example
Writing back ALU result in stage 4
Conflict with writing load data in stage 5

WB

WB

EX

ID

WB

EX MEM

IF ID

IF

TimeCC1 CC4 CC5 CC6 CC7 CC8 CC9CC2 CC3

EX

ID

IF

MEM

EX

ID

IF

lw $6, 8($5)

ori $4, $3, 7

sub $5, $2, $3

sw $2, 10($3)In
st

ru
ct

io
ns

Structural Hazard
Two instructions are 
attempting to write 

the register file 
during same cycle 
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Resolving Structural Hazards
Serious Hazard:

Hazard cannot be ignored

Solution 1: Delay Access to Resource
Must have mechanism to delay instruction access to resource

Delay all write backs to the register file to stage 5
ALU instructions bypass stage 4 (memory) without doing anything

Solution 2: Add more hardware resources (more costly)
Add more hardware to eliminate the structural hazard

Redesign the register file to have two write ports
First write port can be used to write back ALU results in stage 4

Second write port can be used to write back load data in stage 5
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Dependency between instructions causes a data hazard

The dependent instructions are close to each other
Pipelined execution might change the order of operand access

Read After Write – RAW Hazard
Given two instructions  I and J, where I comes before J …

Instruction J should read an operand after it is written by I

Called a data dependence in compiler terminology

I: add $1, $2, $3 # r1 is written

J: sub $4, $1, $3 # r1 is read

Hazard occurs when J reads the operand before I writes it

Data Hazards
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Example of a RAW Data Hazard

Result of sub is needed by and, or, add, & sw instructions
Instructions and & or will read old value of $2 from reg file
During CC5, $2 is written and read – new value is read

Time (cycles)
Pr

og
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m
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xe
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Solution 1: Stalling the Pipeline

The and instruction cannot fetch $2 until CC5
The and instruction remains in the IF/ID register until CC5

Two bubbles are inserted into ID/EX at end of CC3 & CC4
Bubbles are NOP instructions: do not modify registers or memory

Bubbles delay instruction execution and waste clock cycles
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In
st

ru
ct

io
n 

O
rd

er

value of $2
CC1
10

CC2
10

CC3
10

CC4
10

CC6
20

CC7
20

CC8
20

CC5
10/20
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ALU RegDMReg

sub $2, $1, $3 IM Reg ALU DM Reg

bubble
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Solution 2: Forwarding ALU Result
The ALU result is forwarded (fed back) to the ALU input

No bubbles are inserted into the pipeline and no cycles are wasted

ALU result exists in either EX/MEM or MEM/WB register
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Implementing Forwarding
Two multiplexers added at the inputs of A & B registers

ALU output in the EX stage is forwarded (fed back)

ALU result or Load data in the MEM stage is also forwarded

Two signals: ForwardA and ForwardB control forwarding
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RAW Hazard Detection
RAW hazards can be detected by the pipeline

Current instruction being decoded is in IF/ID register

Previous instruction is in the ID/EX register

Second previous instruction is in the EX/MEM register

RAW Hazard Conditions:

IF/ID.Rs = ID/EX.Rw

IF/ID.Rt = ID/EX.Rw

IF/ID.Rs = EX/MEM.Rw

IF/ID.Rt = EX/MEM.Rw

Raw Hazard detected with 
Previous Instruction

Raw Hazard detected with 
Second Previous Instruction
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Forwarding Unit
Forwarding unit generates ForwardA and ForwardB

That are used to control the two forwarding multiplexers

Uses Rs and Rt in IF/ID and Rw in ID/EX & EX/MEM
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Forwarding Control Signals

Forwarded from the previous ALU resultForwardB = 01
Forwarded from data memory or 2nd previous ALU resultForwardB = 10

Second ALU operand comes from the register fileForwardB = 00
Forwarded from data memory or 2nd previous ALU resultForwardA = 10
Forwarded from the previous ALU resultForwardA = 01
First ALU operand comes from the register fileForwardA = 00
ExplanationControl Signal

if (IF/ID.Rs == ID/EX.Rw ≠ 0 and ID/EX.RegWrite) ForwardA = 01
elseif (IF/ID.Rs == EX/MEM.Rw ≠ 0 and EX/MEM.RegWrite) ForwardA = 10
else ForwardA = 00

if (IF/ID.Rt == ID/EX.Rw ≠ 0 and ID/EX.RegWrite) ForwardB = 01
elseif (IF/ID.Rt == EX/MEM.Rw ≠ 0 and EX/MEM.RegWrite) ForwardB = 10
else ForwardB = 00
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Forwarding Example
Instruction sequence:
lw $4, 100($9)
add $7, $5, $6
sub $8, $4, $7
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When lw reaches the MEM stage

add will be in the ALU stage

sub will be in the Decode stage

ForwardA = 10

ForwardB = 01

lw $4,100($9)add $7,$5,$6sub $8,$4,$7

ForwardA = 10
Forward data from MEM stage

ForwardB = 01
Forward ALU result from ALU stage
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Load Delay
Unfortunately, not all data hazards can be forwarded

Load has a delay that cannot be eliminated by forwarding

In the example shown below …
The LW instruction does not have data until end of CC4

AND instruction wants data at beginning of CC4 - NOT possible
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DM

CC8

Reg
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Detecting RAW Hazard after Load
Detecting a RAW hazard after a Load instruction:

The load instruction will be in the ID/EX register

Instruction that needs the load data will be in the IF/ID register

Condition for stalling the pipeline
if ((ID/EX.MemRead == 1) and (ID/EX.Rw ≠ 0) and

((ID/EX.Rw == IF/ID.Rs) or (ID/EX.Rw == IF/ID.Rt))) Stall

Insert a bubble after the load instruction
Bubble is a no-op that wastes one clock cycle

Delays the instruction after load by once cycle

Because of RAW hazard
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bubble
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CC1 CC4
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and $4, $2, $5 IM Reg RegALU DM

Stall the Pipeline for one Cycle
Freeze the PC and the IF/ID registers

No new instruction is fetched and instruction after load is stalled

Allow the Load instruction in ID/EX register to proceed

Introduce a bubble into the ID/EX register

Load can forward data to next instruction after delaying it
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Compiler Scheduling
Compilers can schedule code in a way to avoid load stalls 

Consider the following statements:
a = b + c;  d = e – f;

Slow code:
lw $10, ($1) # $1 = addr b
lw $11, ($2) # $2 = addr c
add $12, $10, $11 # stall
sw $12, ($3) # $3 = addr a
lw $13, ($4) # $4 = addr e
lw $14, ($5) # $5 = addr f
sub $15, $13, $14 # stall
sw $15, ($6) # $6 = addr d

Fast code: No Stalls
lw $10, 0($1)
lw $11, 0($2)
lw $13, 0($4)
lw $14, 0($5)
add $12, $10, $11
sw $12, 0($3)
sub $15, $13, $14
sw $14, 0($6)
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Instruction J should write its result after it is read by I

Called an anti-dependence by compiler writers

I: sub $4, $1, $3 # $1 is read

J: add $1, $2, $3 # $1 is written

Results from reuse of the name $1

Hazard occurs when J writes $1 before I reads it

Cannot occur in our basic 5-stage pipeline because:
Reads are always in stage 2, and 

Writes are always in stage 5

Instructions are processed in order

Write After Read – WAR Hazard
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Write After Write – WAW Hazard
Instruction J should write its result after instruction I

Called an output-dependence in compiler terminology
I: sub $1, $4, $3 # $1 is written

J: add $1, $2, $3 # $1 is written again

This hazard also results from the reuse of name $1

Hazard occurs when writes occur in the wrong order

Can’t happen in our basic 5-stage pipeline because: 
All writes are ordered and always take place in stage 5

WAR and WAW hazards can occur in complex pipelines

Notice that Read After Read – RAR is NOT a hazard
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Next . . .
Pipelining versus Serial Execution

Pipelined Datapath

Pipelined Control

Pipeline Hazards

Data Hazards and Forwarding

Load Delay, Hazard Detection, and Stall Unit

Control Hazards

Delayed Branch and Dynamic Branch Prediction
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Control Hazards
Branch instructions can cause great performance loss

Branch instructions need two things:
Branch Result Taken or Not Taken

Branch target
PC + 4 If Branch is NOT taken

PC + 4 + 4 × immediate If Branch is Taken

Branch instruction is decoded in the ID stage
At which point a new instruction is already being fetched

For our pipeline: 2-cycle branch delay
Effective address is calculated in the ALU stage

Branch condition is determined by the ALU (zero flag)
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lw $8, ($7)
. . .
beq $5, $6, label
next1
next2

SUB

By the time the branch instruction reaches the 
ALU stage, next1 instruction is in the decode 
stage and next2 instruction is being fetched

beq $5,$6,labelnext1next2
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2-Cycle Branch Delay
Next1 thru Next2 instructions will be fetched anyway

Pipeline should flush Next1 and Next2 if branch is taken

Otherwise, they can be executed if branch is not taken

beq $5,$6,label

Next1 # bubble

Next2 # bubble

label: branch target instruction

ALUIF Reg

cc1 cc2 cc3

IF

IF Reg

cc4 cc5 cc6

BubbleBubble Bubble

cc7

ALUIF Reg

BubbleBubble Bubble

MEM

Bubble
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Reducing the Delay of Branches
Branch delay can be reduced from 2 cycles to just 1 cycle

Branches can be determined earlier in the Decode stage

Next PC logic block is moved to the ID stage

A comparator is added to the Next PC logic

To determine branch decision, whether the branch is taken or not

Only one instruction that follows the branch will be fetched

If the branch is taken then only one instruction is flushed

We need a control signal to reset the IF/ID register

This will convert the fetched instruction into a NOP
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Modified Datapath
PCSrc signal resets the IF/ID 

register when a branch is taken 
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Next PC block is moved to the Instruction Decode stage
Advantage: Branch and jump delay is reduced to one cycle
Drawback: Added delay in decode stage => longer cycle



26

Pipelined Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 51

Details of Next PC
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Next . . .
Pipelining versus Serial Execution

Pipelined Datapath

Pipelined Control

Pipeline Hazards

Data Hazards and Forwarding

Load Delay, Hazard Detection, and Stall Unit

Control Hazards

Delayed Branch and Dynamic Branch Prediction
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Branch Hazard Alternatives
Predict Branch Not Taken (modified datapath)

Successor instruction is already fetched

About half of MIPS branches are not taken on average

Flush instructions in pipeline only if branch is actually taken

Delayed Branch
Define branch to take place AFTER the next instruction

Compiler/assembler fills the branch delay slot (for 1 delay cycle)

Dynamic Branch Prediction
Can predict backward branches in loops ⇒ taken most of time

However, branch target address is determined in ID stage

Must reduce branch delay from 1 cycle to 0, but how?
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Define branch to take place after the next instruction

For a 1-cycle branch delay, we have one delay slot
branch instruction

branch delay slot (next instruction)

branch target (if branch taken)

Compiler fills the branch delay slot
By selecting an independent instruction

From before the branch

If no independent instruction is found
Compiler fills delay slot with a NO-OP

Delayed Branch

label:

. . .

add $t2,$t3,$t4

beq $s1,$s0,label

Delay Slot

label:

. . .

beq $s1,$s0,label

add $t2,$t3,$t4
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Zero-Delayed Branch
Disadvantages of delayed branch

Branch delay can increase to multiple cycles in deeper pipelines

Branch delay slots must be filled with useful instructions or no-op

How can we achieve zero-delay for a taken branch?
Branch target address is computed in the ID stage

Solution
Check the PC to see if the instruction being fetched is a branch

Store the branch target address in a branch buffer in the IF stage

If branch is predicted taken then
Next PC = branch target fetched from branch target buffer

Otherwise, if branch is predicted not taken then Next PC = PC+4
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Branch Target and Prediction Buffer
The branch target buffer is implemented as a small cache

Stores the branch target address of recent branches

We must also have prediction bits
To predict whether branches are taken or not taken

The prediction bits are dynamically determined by the hardware 

mux

PC

Branch Target & Prediction Buffer
Addresses of 

Recent Branches
Target

Addresses

low-order bits 
used as index

Predict
Bits

Inc

=
predict_taken
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Dynamic Branch Prediction
Prediction of branches at runtime using prediction bits

One or few prediction bits are associated with a branch instruction

Branch prediction buffer is a small memory
Indexed by the lower portion of the address of branch instruction

The simplest scheme is to have 1 prediction bit per branch

We don’t know if the prediction bit is correct or not

If correct prediction …
Continue normal execution – no wasted cycles

If incorrect prediction (misprediction) …
Flush the instructions that were incorrectly fetched – wasted cycles

Update prediction bit and target address for future use
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Prediction is just a hint that is assumed to be correct

If incorrect then fetched instructions are flushed

1-bit prediction scheme has a performance shortcoming
A loop branch is almost always taken, except for last iteration

1-bit scheme will mispredict twice, on first and last loop iterations

2-bit prediction schemes work better and are often used
A prediction must be wrong

twice before it is changed

A loop branch is mispredicted

only once on the last iteration

2-bit Prediction Scheme

Not
Taken

Predict
Taken

Predict
Taken

Not
Taken

Taken

Taken
Taken

Taken

Not Taken

Not Taken

Not Taken

Not 
Taken
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Pipeline Hazards Summary
Three types of pipeline hazards

Structural hazards: conflicts using a resource during same cycle

Data hazards: due to data dependencies between instructions

Control hazards: due to branch and jump instructions

Hazards limit the performance and complicate the design
Structural hazards: eliminated by careful design or more hardware

Data hazards are eliminated by forwarding

However, load delay cannot be eliminated and stalls the pipeline

Delayed branching can be a solution when branch delay = 1 cycle

Branch prediction can reduce branch delay to zero

Branch misprediction should flush the wrongly fetched instructions


