
Answer 1:  
 
The purpose of generating suitable Benchmark Graphs for this problem is essentially to compare the results of a graph-partitioning 
heuristic under scrutiny with the partition that has optimum cost (minimum cut-set in this case). For this the optimum solution 
(minimum cost graph) must be known beforehand. 
Generation of suitable benchmark graphs must be in a manner such that the following requirements are met: 

• Graph  should have reasonable complexity,  
• Optimal or near optimal solutions must be known before hand, for comparison. 

Graph generation strategies: 
1. Union of two complete graphs: Two independent complete graphs with n nodes each (therefore n-1 vertices for each node) 

can be connected together by randomly assigning new vertices between nodes of different graphs, such that number of new 
inter-graph vertices 0 � v < 2n-2. In this scenario, v will be the minimal cost. The vertices of this joined graph may then be 
randomly assigned to two equal partitions. 

  

Complete Graph A Complete Graph B 

Number of Nodes = 2n 
Number of vertices of each node = n-1 
Number of Intergraph vertices v < 2n-2 
Minimum cost partition will cut only the Intergraph 
vertices. 



2. Use of Regular Geometric Patterns: Line (Chain-shaped) graphs, Circular-Shaped Graphs etc can be used to test the 
algorithm: 

 
3. Maximum-cut Graph Bi-Partitioning? Take a randomly generated Dense graph with 2n nodes, partition arbitrarily into two 

equal halves (each with n nodes), and then apply the following algorithm:  
{  

move the node in partition 1 with the maximum value of –D where, -D = I-E, where I equals internal cost, and E equals 
external cost; 

Line-shaped Graph 
(min-cut = 1) 

Loop or Ring-shaped Graph: (min-cut = 2) 



do the same with partition 2…  
repeat the above steps until total cut-set reaches maximum…  
when no further increase in cut-set is possible, take the complement of the whole graph. The maximum cut-set would 
(should?) then become the minimum cut-set of this new sparse graph.  

} 
(This algorithm was inspired by the K-L Algorithm, among other things, and as such may carry its weaknesses as well…it is 
based on intuition and paperwork, but has not been tried extensively, or of course, mathematically proven. It may or may not 
always provide the optimal solution). 

 
 
 
 
 
 
 
Answer 2: 
 
Step 1:  
 

A={1, 2, 3} B = {4, 5, 6},  
Set A’ = A, and B’ = B. 

 
Step 2: Calculate D Values: 
 
 Di = Ei - Ii,  

 
D1 = 0 – 1 = –1   D2 = 1 – 2 = –1 
D3 = 0 – 1 = –1  D4 = 1 – 2 = –1 
D5 = 0 – 2 = –2  D6 = 0 – 2 = –2 

 
Step 3: Calculate Gain for each Pair: 



 
g14 = – 2  g15 = – 3  g16 = – 3   g24 = – 1 – 1 – 2 = – 4  g25 = – 1 – 2 = – 3  
g26 = – 1 – 2 = – 3  g34 = – 1 – 1 = – 2  g35 = – 1 – 2 = – 3   g36 = – 1 – 2 = – 3  
g14 and g34 are minimum gains… we select 1,4 for swapping.  

 
Step 4: Update D Values: 
 

A’ = {2, 3} B’ = {5, 6} 
 
D’2 = – 1 +2 (1) – 2 (1)  = –1   
D’3 = D3    = – 1 
D’5 = – 2 + 2 (1) –2 (0)  = 0   
D’6 = – 2 + 2 (1) –2 (0) = 0 

 
Step 3: Calculate Gain for each Pair:  

 
g25 = – 1 + 0 – 0 = – 1   
g26 = – 1 + 0 – 0 = – 1   
g35 = – 1 + 0 – 0 = – 1   
g36 = – 1 + 0 – 0 = – 1   

 
 All Gains are equal… we randomly select 2, 6 for swapping. 
 
Step 4: Update D Values: 
 

A’ = {3} B’ = {5} 
 
D’3 = – 1 + 2 (1) – 0  = 1 
D’5 = 0 + 2 (1) – 0   = 2  

 
Step 3: Calculate Gain for each Pair:  



 
g35 = 1 + 2 – 0 = 3 

 
 3, 5 are swapped. 
 
Step 4: Update D Values: 
 

A’ = {} B’ = {} 
 
Since A’ an B’ are Empty, go to step 5 

 
Step 5: Find maximum G: 
 
 g1 = -2,  g2 = -1,  g3 = 3 
 
 G1 = g1   = – 2 
 G2 = g1 + g2   = – 3 
 G3 = g1 + g2 + g3  = 0 
 
 Therefore, G3 maximizes G. 
 

So final solution:  
 
 A = {4, 5, 6},  B = {1, 2, 3} 
 



Answer 3: 
 
Partitioning using Simulated Annealing: 
 
The values of T0 (initial temperature), Alpha, and BETA were modified and charts were generated for each set of values (a total of 17 
charts). It has been noted that the effect of varying BETA is negligible for high values of T0, and a small problem size that involves 
only a few hundred iterations. Due to the small problem size, a minimal solution is usually attained randomly much before the 
algorithm terminates, and so variations in BETA have minimal effect.  
 
An increase in the value of initial temperature T0 generally resulted in the minimal solution being reached much later. This is probably 
due to the increased acceptance of bad moves. In one instance, with a low value of BETA (= 1) and a high value of T0 (= 14), the 
minimal solution was never achieved. It can be concluded that a relatively high value of T0 may require longer runtimes (i.e. a high 
BETA as well).  
 
Also visible from the graphs is that with a high value of T0 (= 14), there is no visible change in the initially high rate of acceptance of 
bad values with time… and thus the algorithm approximates a random walk. A similar situation occurs with low values of T0 (= 4), as 
rate of acceptance of bad moves remains low and unchanged throughout the run, approximating greedy behavior. Although due to the 
problem’s simplicity, a solution is often achieved. 
 
For T0 = 7, a constant reduction in the acceptance rate of bad moves is visible in the charts. Therefore, it is recommended, that for 
larger problem instances with similar weight assignments to nets, a value of T0 close to 7 will be appropriate. For lesser values of 
ALPHA (approx .87), greater values of BETA will give a stronger move-acceptance gradient. 
 
Therefore, in this particular implementation, and for this type of problem set, it can be concluded that approximately, T=7, Alpha = 
0.85, and Beta > 1.2 will yield the best approximation of the ‘annealing’ process. (Please see the last three charts in the Excel File) 
 
 
 
 
 
 



Code for Partitioning using Simulated Annealing (Results are in Attached Excel File): 
 
/********************************** Homework Asignment 2: Solving the Graph **********************************/ 
/**********************************       Partitioning Problem using  **********************************/ 
/**********************************           Simulated Annealing   **********************************/ 
#include "stdlib.h" 
#include "stdio.h" 
#include "conio.h" 
#include "math.h" 
#include "time.h" 
 
////// Parameter Definitions 
#define T0 14 
#define M 10 
#define ALPHA 0.9 
#define BETA 1.2 
#define TFINAL (T0*3/10) 
#define FILENAME 'Results' 
//////////////////////////// 
 
 
////// Function Prototypes 
void Metropolis(int* Sol_A, int* Sol_B,  double Temp, int Cycle_Time); 
int  Cost(int* Sol_A, int* Sol_B); 
////////////////////////// 
 
 
////// Global Variabes 
/* initial solution*/ 
int Part_A[] = { 1, 2, 3, 4, 5}; 
int Part_B[] = { 6, 7, 8, 9, 10}; 
/* Best Solution */ 
int Best_A[5]; 
int Best_B[5]; 
int Best_Cost; 
/* netlist and weights */ 
int Netlist[10][4] = {  
     { 1,  2,  4,  5}, 
     { 2,  3,  5, -1}, 
     { 3,  6, 10,  4}, 
     { 4,  8,  3,  7}, 
     { 5,  7,  1,  6}, 
     { 6,  4,  7,  2}, 
     { 7,  9,  5, -1}, 
     { 8,  2, -1, -1}, 
     { 9, 10,  5, -1}, 
     {10,  5, -1, -1} }; 
int Netweight[] = { 1, 1, 2, 1, 3, 3, 2, 3, 2, 4}; 
/////////////////////// 
 
 
/******** Start of Main Function: Simulated Annealing   ********/ 



void main (void) 
{ 
 //declare variables 
 int Time = 0, count, Current_Cost; 
 int Sol_A[6], Sol_B[6]; 
 double Temp = T0, Cycle_Time = M; 
 time_t t; 
 FILE *Result; 
 
 //copy initial solution to working space 
 for (count = 0; count <6; count++) 
 { 
  Sol_A[count] = Part_A[count]; 
  Sol_B[count] = Part_B[count]; 
 } 
  
 // set initial values 
 count = 0; 
 Current_Cost = Cost(Sol_A, Sol_B); 
 Best_Cost  = Current_Cost; 
 srand ((unsigned) time(&t)); 
 
 //start Simulated Annealing Loop 
 do  
 { 
  Metropolis(Sol_A, Sol_B, Temp, (int) Cycle_Time); 
  Temp  = ALPHA * Temp; 
  Cycle_Time = BETA * Cycle_Time; 
  //Time  = Time + Cycle_Time; 
  count++; 
 }while (Temp > TFINAL); 
  
 //print the best solution found and exit. 
 Result = fopen("c:\\Results.txt", "a+"); 
 printf("\nThe best solution found FINALLY has the following partitions:\n  A\t  B"); 
 fprintf(Result, "\nThe best solution found FINALLY has the following partitions:\n  A\t  B"); 
 for (count = 0; count < 5; count++) 
 { 
  printf("\n %d\t %d", Best_A[count], Best_B[count]); 
  fprintf(Result, "\n %d\t %d", Best_A[count], Best_B[count]); 
 } 
 printf("\n\n And the Cost of the Best Solution is: %d", Best_Cost); 
 fprintf(Result, "\n\n And the Cost of the Best Solution is: %d", Best_Cost); 
 getch(); 
 fclose (Result); 
 exit(0); 
} 
 
 
/******** Start of Metropolis Function   ********/ 
void Metropolis(int* Sol_A, int* Sol_B, double Temp, int Cycle_Time) 
{ 
 int cost1 = 0, cost2 =0, i=0, j=0, temporary, count=0, count1=0; 
 double randnum, Boltzmann=0; 



 FILE *Result; 
   
 // open file for writing 
 Result = fopen("c:\\Results.txt", "a+"); 
 /*fprintf(Result, "\nBest\tCost(O)\tCost(N)\tRandom\tBltzmn\tTemp\tCount"); 
 printf("\nBest\tCost(O)\tCost(N)\tRandom\tBltzmn\tTemp\tCount"); 
 //*/ 
 //main Metropolis Loop 
 while (Cycle_Time > 0) 
 { 
  //get cost 
  cost1 = Cost(Sol_A, Sol_B); 
   
  //perturb 
  i = rand() % 5; 
  j = rand() % 5; 
  temporary = Sol_A[i]; 
  Sol_A[i]  = Sol_B[j]; 
  Sol_B[j]  = temporary; 
 
  //get cost after perturb 
  cost2 = Cost(Sol_A, Sol_B); 
   
  //generate Random Number for Bad Solution Acceptance Criteria 
  randnum = (double) (rand() % 100); 
  randnum = randnum / 100; 
 
  //Rejection based on SA Criteria 
  Boltzmann = exp((-1)*(cost2-cost1)/Temp); 
  //print Parameters of iteration to file as well as to output 
  fprintf(Result, "\n%d\t%d\t%d\t%f\t%f\t%f\t%d", Best_Cost, cost1, cost2, randnum, Boltzmann, Temp, count1+1); 
  printf("\n%d\t%d\t%d\t%f\t%f\t%f\t%d", Best_Cost, cost1, cost2, randnum, Boltzmann, Temp, count1+1); 
 
  if( (cost2 >= cost1) && (randnum > Boltzmann) ) /* ie in both cases, if soln is unacceptable, do this*/ 
  { 
   temporary = Sol_A[i]; 
   Sol_A[i]  = Sol_B[j]; 
   Sol_B[j]  = temporary; 
   printf("\t REJECTED"); 
   fprintf(Result, "\t REJECTED"); 
  } 
  else 
  { 
   if (cost2 < cost1) 
   { 
    printf("\t ACCEPTED For Better Cost"); 
    fprintf(Result, "\t ACCEPTED For Better Cost"); 
   } 
   else 
   { 
    printf("\t ACCEPTED Randomly"); 
    fprintf(Result, "\t ACCEPTED Randomly"); 
   } 
   cost1 = cost2; 



  } 
      
  // If best cost found, then do this: 
  if(Best_Cost > cost1) 
  { 
   Best_Cost = cost1; 
   fprintf(Result, "\t ALSO BEST COST SO FAR"); 
   printf("\t ALSO BEST COST SO FAR"); 
   for (count = 0; count <6; count++) 
   { 
    Best_A[count] = Sol_A[count]; 
    Best_B[count] = Sol_B[count]; 
   } 
  } 
  Cycle_Time--; 
  count1++; 
 } 
 //printf("\nBest Cost: \t%d\n", Best_Cost); 
 //printf("\nCurrent Cost: \t%d\n", cost1); 
 //fprintf(Result, "\nBest Cost: \t%d\n", Best_Cost); 
 //fprintf(Result, "\nCurrent Cost: \t%d\n", cost1); 
 //fprintf(Result, "\n Best Cost/Current Cost so far: %d\t%d\n", Best_Cost, cost1); 
 fclose(Result); 
} 
 
 
 
/******** Start of Cost Calculation Function   ********/ 
int  Cost(int* Sol_A, int* Sol_B) 
{ 
 int i=0, j=0, k=0, Cost=0, NetOfAIsCut = 0, NetOfBIsCut = 0; 
 
 for (i=0; i<=4; i++) 
 { 
  NetOfAIsCut = 0; 
  for (j=0; j<=4; j++) 
  { 
   for (k=0; k<=2; k++) 
   { 
    if (Netlist[Sol_A[i]-1][k+1] == Sol_B[j]) 
    { 
     if(NetOfAIsCut != 0) 
      break; 
     Cost += Netweight[Sol_A[i]-1]; 
     NetOfAIsCut = 1; 
    } 
   } 
  } 
 } 
  
  
 for (i=0; i<=4; i++) 
 { 
  NetOfBIsCut = 0; 



  for (j=0; j<=4; j++) 
  { 
   for (k=0; k<=2; k++) 
   { 
    if (Netlist[Sol_B[i]-1][k+1] == Sol_A[j]) 
    { 
     if(NetOfBIsCut != 0) 
      break; 
     Cost += Netweight[Sol_B[i]-1]; 
     NetOfBIsCut = 1; 
    } 
   } 
  } 
 } 
 return Cost; 
} 
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