Answer 1:

Original Slicing Floorplan Area (Figure 1)

Section 1: In case an aspect ratio of 1 is unacceptable, the new aspect-ratio selections of all the blocks are given in Figure 2 (in bold):

Section 2: For determining the lower left corner of each block, we place them on a grid (see Figure 3):

Section 3: Calculating Estimated wire length requirements for Manhattan Routing.

From Figure 4 above, we can calculate the Manhattan distances between the center points of the blocks:
From $1(1.5,1)$ to $2(1,3)$:

$$
\text { X-distance }=0.5, \quad \text { Y-distance }=2,
$$

From $2(1,3)$ to $3(4.5,0.5)$:

$$
\mathrm{X} \text {-distance }=3.5 \quad \mathrm{Y} \text {-distance }=2.5 \text {, }
$$

From $3(4.5,0.5)$ to $4(7.5,1)$:
X-distance $=3 \quad$ Y-distance $=0.5$,
From $4(7.5,1)$ to $5(3.5,3)$:
X-distance $=4 \quad$ Y-distance $=2$,
From $5(3.5,3)$ to $6(5,3)$:

$$
\text { X-distance }=1.5 \quad Y \text {-distance }=0,
$$

Total wiring distance $=$ Sum of all X-distances + Sum of all Y-distances

$$
\begin{aligned}
& =(0.5+3.5+3+4+1.5)+(2+2.5+0.5+2+0) \\
& =12.5+7 \\
& =\mathbf{1 9 . 5} \text { unit lengths of wire are required. }
\end{aligned}
$$

Section 4: YES. This is for the following reason: At the root, the $(6,5)$ aspect ratio had been deemed redundant, as it was covered by the $(5,5)$ aspect-ratio block. But when an aspect ratio of 1 is undesirable, the second choice in terms of area would have been the $(6,5)$ block which was omitted.

Answer 2: For the Normalized Polish Expression: 12V3H4V5H, we get the following tree:

For this tree, the minimum area bounding box would have the dimensions ($\mathbf{8}, 18$), and with Area = $\mathbf{1 4 4}$ sq. units. In the diagram above, Aspect ratios of the elements that yield the minimum area are identified in (bold underlined brackets)

