
Chapter 3:
Floorplanning
Sadiq M. Sait & Habib Youssef

King Fahd University of Petroleum & Minerals
College of Computer Sciences & Engineering

Department of Computer Engineering

September 2003

Chapter 3: Floorplanning – p.1

Introduction
• Problem Statement
• Formal Model
• Objective Function
• Solution Approaches
• Cluster Growth
• Simulated Annealing
• Mathematical Formulation
• Dual Graph
• Discussion

Chapter 3: Floorplanning – p.2

Problem Statement
• Given n rectangular blocks and connectivity information,

find dimensions and positions of each block.
• Constraints: Geometric, Routability, Performance.
• Floorplanning is a generalization of Placement.
• Where for placement shape and pin positions of circuit

components are fixed, in floorplanning these have some
specified flexibility.

• This added flexibility must be captured by the floorplan
model.

• Aspects that need to be modelled consist of: The
components, the interconnections, the flexible interfaces
(blocks and chip), the chip carrier (layout surface), any
designer stated constraints, and the objective to optimize.

Chapter 3: Floorplanning – p.3

Example
Module Width Height

1 1 1

2 1 1

3 2 1

4 1 2

5 1 3

1 2

3
4

5 3

4 5 1 2

41 2

3

5

Figure 1: Some feasible floorplans for modules in the
table

Chapter 3: Floorplanning – p.4

Floorplanning Model
(1) S = {1, 2, · · · , i, · · · , n}, a set S of n rectangular modules;

(2) S1 and S2, a partition of S, where S1 and S2 are the sets of
the modules with fixed and free orientation respectively;

(3) an interconnection matrix Cn×n = [cij], 1 ≤ i, j ≤ n,
where cij indicates the connectivity between modules i
and j;

(4) a list of n triplets (A1, r1, s1), · · · (Ai, ri, si), · · ·
(An, rn, sn) where, Ai = wi × hi, is the area of block i, ri
and si are lower and upper bound constraints on the shape
of block i (ri 6= si if the block is flexible, and ri = si if
the block is rigid);

(5) two additional positive numbers p and q (p ≤ q), which
are lower and upper bound constraints on the shape of the
rectangle enveloping the n blocks.

Chapter 3: Floorplanning – p.5

Required Output
A feasible floorplan solution, i.e., an enveloping rectangle R
subdivided by horizontal and vertical line segments into n
non-overlapping rectangles labelled 1, 2, · · · , i, · · · , n, such that
the following constraints are satisfied,

(1) wi × hi = Ai, 1 ≤ i ≤ n;

(2) ri ≤
hi

wi
≤ si for modules with fixed orientation;

(3) ri ≤
hi

wi
≤ si or 1

si
≤ hi

wi
≤ 1

ri
for modules with free

orientation;

(4) xi ≥ wi and yi ≥ hi, 1 ≤ i ≤ n, where xi and yi are the
dimensions of basic rectangle i,

(5) p ≤ H
W ≤ q, where H and W are the height and width of

the enveloping rectangle R.

Chapter 3: Floorplanning – p.6

Required Output - contd
• A feasible floorplan optimizing the desired cost function

is an optimum floorplan.

Cost Functions:
• There are no universally accepted criteria for measuring

the quality of floorplans. Possible criteria can be,
(1) minimize area,
(2) minimize wirelength,
(3) maximize routability,
(4) minimize delays, or
(5) a combination of some of above criteria.

Chapter 3: Floorplanning – p.7

Floorplanning Approaches
• Constructive: Start from a seed module; then other

modules are selected one (or a group) at a time and added
to the partial floorplan; continue until all modules have
been selected.

• Examples: Cluster growth, force-directed, partitioning
and slicing, connectivity clustering, mathematical
programming, and rectangular dualization.

• Iterative: Start from an initial floorplan; this floorplan
undergoes a series of perturbations until a feasible
floorplan is obtained or no more improvements can be
achieved.

• Examples: Simulated annealing, simulated evolution,
force directed interchange/relaxation, and genetic
algorithm.

Chapter 3: Floorplanning – p.8

Floorplanning Approaches
• Knowledge-based: A knowledge expert system is

implemented which consists of three basic elements:
• A knowledge base that contains data describing the

floorplan problem and its current state,
• Rules stating how to manipulate the data in the

knowledge base in order to progress toward a
solution, and

• An inference engine controlling the application of the
rules to the knowledge base.

Chapter 3: Floorplanning – p.9

Cluster Growth Approach
• The floorplan is constructed in a greedy fashion one

module at a time until each module is assigned to a
location of the floorplan.

• A seed module is selected and placed into a corner of the
floorplan (lower left corner).

• The remaining modules are selected one at a time and
added to the partial floorplan, while trying to grow evenly
on upper, diagonal, and right sides simultaneously and
maintaining any stated aspect ratio constraint on the chip.

Chapter 3: Floorplanning – p.10

Cluster growth

Floor plan

growth

Figure 2: Cluster growth floorplanning

Chapter 3: Floorplanning – p.11

Cluster growth - contd
• To determine the order in which modules should be

selected, the modules are initially organized into a linear
order.

• Linear ordering algorithms order the given module netlist
into a linear list so as to minimize the number of nets that
will be cut by any vertical line drawn between any
consecutive modules in the linear order (Gota 1977, and
Kang 1983).

Chapter 3: Floorplanning – p.12

Linear Ordering
Algorithm Linear_Ordering
S : Set of all modules; Order: Sequence of ordered modules; (*initially empty*)
Begin

Seed:= Select Seed module; Order:=[Seed]; S:=S−{Seed};
Repeat

ForEach module m ∈ S Do
Compute the gain for selecting module m;
gainm:= number of nets terminated by m−

number of new nets started by m;
End ForEach ;
Select the module m∗ with maximum gain;
If there is a tie Then

Select the module that terminates the largest number of nets;
ElseIf there is a tie Then

Select the module that has the largest number of continuing nets;
ElseIf there is a tie Then

Select the module with the least number of connections;
Else break remaining ties as desired; (*append m∗ to the ordered sequence*)
Order:= [!Order,m∗]; S:= S − {m∗}

Until S = ∅
End. Chapter 3: Floorplanning – p.13

Linear Ordering - contd
Terminated nets New nets

Continuing net

Figure 3: Classification of nets during linear ordering.

Chapter 3: Floorplanning – p.14

Cluster Growth - Algorithm
Algorithm Cluster_Growth
S : Set of all modules;
Begin

Order:= Linear_Ordering(S);
Repeat

nextmodule:= b where Order=[b, !rest]
Order:= rest;
Select a location for b that will result in minimum
increase in cost function;
(*cost may be function of the contour of the partial
floorplan, size and shape of b, and wiring length*).

Until Order = ∅
End.

Chapter 3: Floorplanning – p.15

Cluster Growth - contd
• Another approach may consist of folding the linear order

in a row structure while satisfying also shape constraints
on the chip as well as on all the modules.

• It is usually the case that floorplanning is followed by a
global routing step. Global routing is executed in order to
appraise the net routes, therefore leading to a fairly
accurate measure of the required routing space.

• A common approach to global routing is to build a global
routing graph which models the regions of the floorplan,
as well as relationships (the routing regions also called
routing channels) between these regions. This graph is
also called the channel connectivity graph.

Chapter 3: Floorplanning – p.16

Cluster Growth - contd
The vertices in the channel connectivity graph are usually
assigned weights specifying the cost of assigning a net to the
channels.

(a) (b)

1 2

3 4 5
6 7 8

9 10 11

12 13

1 2

3

4

5

6 7 8

9 10

11

12 13

Figure 4: (a) Channel intersection graph. (b) Corre-
sponding channel connectivity graph.

Chapter 3: Floorplanning – p.17

Global Routing
• Global routing consists of performing a routing plan for

each net, thus, determining for each net the set of
channels through which the net will be routed.

• This amounts to performing the following tasks for each
net:

(1) mark the channel vertices in which the particular net
has pins;

(2) find a minimum cost Steiner tree connecting the
marked vertices.

Chapter 3: Floorplanning – p.18

Simulated Annealing
• First application of simulated annealing to placement

reported by Jepsen and Gelatt (1983).
• Since then, there have been several successful

applications of simulated annealing to the floorplanning
problem.

• In SA, first an initial solution is selected; then a controlled
walk through the search space is performed until no
sizeable improvement can be made or we run out of time.

• Two approaches can be used to perform floorplanning by
simulated annealing: (1) direct approach and (2) indirect
approach.

Chapter 3: Floorplanning – p.19

Simulated Annealing - contd
• The direct approach manipulates actual physical

coordinates, sizes, and shapes of modules.
• The indirect approach works on an abstract representation

of the floorplan, consisting usually of a graph
representation or a floorplan tree.

• Then a subsequent mapping process is required to
generate a real floorplan from its corresponding abstract
representation.

Chapter 3: Floorplanning – p.20

SA Algorithm
Algorithm Simulated_annealing(S0, T0, α, β,M,Maxtime);

(*S0 is the initial solution *)
(*T0 is the initial temperature *)
(*alpha is the cooling rate *)
(*beta a constant *)

begin
T = T0;

S = S0;

T ime = 0;

repeat
Call Metropolis(S, T,M);
T ime = T ime+M ;
T = α× T ;
M = β ×M

until (T ime ≥MaxTime);
Output Best solution found

End. (*of Simulated annealing*)

Chapter 3: Floorplanning – p.21

SA Algorithm - contd
Algorithm Metropolis(S, T, M);
begin

repeat
NewS=neighbor(S);

∆h=(Cost(NewS)− Cost(S));

if ((∆h< 0) or
(random < e−∆h/T))

then S = NewS;

{accept the solution}
M =M − 1

until (M = 0)
End. (*of Metropolis*).

Chapter 3: Floorplanning – p.22

Simulated Annealing - contd
To apply the simulated annealing technique we need to be able
to:

(1) Generate an initial solution,

(2) Disturb a feasible solution to create another feasible
solution,

(3) Evaluate the objective function for these solutions.

Chapter 3: Floorplanning – p.23

Terminology
Definition (Wong and Liu, DAC, 1986)

• An expression E = e1e2 · · · e2n−1, where each
ei ∈ {1, 2, · · · , n,H, V }, 1 ≤ i ≤ 2n− 1, is a Polish
expression of length 2n− 1 if and only if:

(1) every operand j, 1 ≤ j ≤ n, appears exactly once in
the expression;

(2) the expression E has the balloting property, i.e., for
every sub-expression Ei = e1 · · · ei, 1 ≤ i ≤ 2n− 1,
the number of operands is greater than the number of
operators.

Chapter 3: Floorplanning – p.24

Solution Representation
• The hierarchical structure of a slicing floorplan can be

represented by a binary tree with n leaves representing
the n basic rectangles, and n− 1 nodes representing the
dissection operators (H for horizontal and V for vertical
dissection).

• A postorder traversal of a slicing tree will produce a
Polish expression with operators H and V , and with
operands the basic rectangles 1, 2, · · · , n.

• In a postorder traversal of a binary tree, the tree is
traversed by visiting at each node the left subtree, the
right subtree, and then the node itself.

Chapter 3: Floorplanning – p.25

Solution Representation

1
2 3

4
5

6

7

V

H

V

H

V

1

2

3 4

57

6

H

E = 16H2V75VH34HV

(a) (b)

Figure 5: (a) A rectangular dissection. (b) Its corre-
sponding slicing tree.

Operators H and V carry the following meanings:
ijH means rectangle j on-top-of rectangle i;
ijV means rectangle i to-the-left-of rectangle j.

Chapter 3: Floorplanning – p.26

Terminology
Definition
• A Polish expression E = e1e2...e2n−1 is called

normalized if and only if E has no consecutive H’s or
V ’s.

• For example, E1= 12H43V H is a normalized Polish
expression, while E2= 12V 43HH is not normalized.

• The classification of Polish expressions into normalized
versus non-normalized Polish expressions is for the
purpose of removing redundant solutions from the
solution space.

Chapter 3: Floorplanning – p.27

Terminology
• There is a one-to-one correspondence between the set of

Polish expressions of length 2n− 1 and the set of slicing
trees with n leaves.

• However, in general, there may be several Polish
expressions that correspond to the same slicing floorplan.

• This is an undesirable property because:

(1) the search space will be enlarged with several
duplicate solutions, since several Polish expressions
may represent the same slicing floorplan;

(2) the number of Polish expressions corresponding to a
given slicing floorplan can vary from structure to
structure; this will bias the search for floorplans with
a larger number of corresponding slicing trees.

Chapter 3: Floorplanning – p.28

Floorplan example

1

2

3

4

5

6

7

V

H

H

V

H12

34

5

7

6

H

21H43H765HHVV

V

H

H

V

H12

34 5

7 6

H

21H43H76H5HVV

V

H

HV

12 34 5

7

6

HH

21H43HV765HHV

Figure 6: A rectangular dissection with several slicing
tree representations.

Chapter 3: Floorplanning – p.29

Terminology
Lemma 1:

• There is a one-to-one correspondence between the set of
skewed slicing trees with n leaves and the set of
normalized polish expressions of length 2n− 1.

Lemma 2:
• There is a one-to-one correspondence between the set of

normalized Polish expressionsof length 2n− 1 and the set
of slicing structures with n basic rectangles.

• Lemma 2 says, that given a normalized Polish expression,
we can construct a unique rectangular slicing structure
(i.e., a floorplan).

Chapter 3: Floorplanning – p.30

Terminology
Definition

• A sequence C = op1op2...opk of k operators is called a
chain of length k if and only if opi 6= opi+1, 1 ≤ i ≤ k− 1.

• Let E = e1e2...e2n−1 be a normalized Polish expression
that can be expressed as E = P1C1P2C2...PnCn, where
the Ci’s are chains (possibly of zero length), and
P1P2 · · ·Pn is a permutation of the operands 1, 2, · · · , n.

• Two operands in E are called adjacent if and only if they
are consecutive elements in P1, P2, ..., Pn.

• An operand and an operator are adjacent if and only if
they are consecutive elements in e1, e2...e2n−1.

Chapter 3: Floorplanning – p.31

Terminology
Example

• E= 123V H54HV = P1P2P3C3P4P5C5

• C1 = C2 = C4 are empty chains C3 = V H, C5 = HV

• P1 = 1, P2 = 2, P3 = 3, P4 = 5, P5 = 4

• 1 and 2 are adjacent operands;
• 3 and 5 are also adjacent operands;
• 3 and V are adjacent operand and operator.

Chapter 3: Floorplanning – p.32

Solution Perturbation
The Move Set:

• Floorplan solutions are represented by normalized Polish
expressions.

• Three types of moves are suggested to perturb a given
normalized Polish expression:

M1: swap two adjacent operands;
M2: complement some chain of nonzero length; (where

V = H and H = V);
M3: swap two adjacent operand and operator.

Chapter 3: Floorplanning – p.33

Solution Perturbation - contd
• Care must be taken to make sure that neighbors of

normalized expressions are also normalized.
• The first two moves always produce a normalized Polish

expression from a normalized expression.
• However, the third move may at times result in a

non-normalized Polish expression. Therefore, whenever
an M3 move is made, we must check that the resulting
expression is a normalized Polish expression, i.e.,
(a) it does not contain two identical consecutive

operators,
(b) it does not violate the balloting property.

• In case an M3 move violates either (a) or (b), the move is
rejected.

Chapter 3: Floorplanning – p.34

Terminology
• Checking that the new expression E does not contain two

identical consecutive operators is straightforward and
achievable in O(1) time.

• The following quick test is sufficient to know whether an
M3 move will violate the balloting property or not.

Lemma 3:
• Let Nk be the number of operators in the Polish

expression E = e1, e2, ..., ek, 1 ≤ k ≤ 2n− 1.
• Assume that the M3 move swaps the operand ei with the

operator ei+1, 1 ≤ i ≤ k − 1. Then, the swap will not
violate the balloting property if and only if 2Ni+1 < i.

Chapter 3: Floorplanning – p.35

Solution Evaluation

1

2

3

4

5

1

2

3
4

5

1
2

3
4

5

1

2 3

4

5

1 2

3
4

5

1

4

121
3

5

4

21

3

5
M1 M3

M2 M2

M3 M3

12V3H4V5H 12V4H3V5H 12V4H35VH 12V43H5VH

12H435VHV 12H435HVH 12V435HVH

Figure 7: An example of walk through a floorplan so-
lution space with 5 modules

Chapter 3: Floorplanning – p.36

Solution Evaluation
• Usually the principal goal is to achieve the floorplan with

minimum area and overall interconnection length.

Cost(F) = αA+ λW

where A is the area of the smallest rectangle enveloping
the n basic rectangles, and W is a measure of the overall
wiring length.

• A possible estimate of W may be defined as follows,

W =
∑

ij

cij · dij

where cij is equal to the number of connections between
blocks i and j, and dij is the center-to-center distance
between basic rectangles i and j. Chapter 3: Floorplanning – p.37

Area Evaluation
Definition

• Let Γ be a continuous curve on the plane. Γ is called a
bounding curve if it satisfies the following conditions:

(1) it is decreasing, i.e., for any two points (x1, y1) and
(x2, y2) on Γ, if x1 ≤ x2 then y2 ≤ y1;

(2) Γ lies completely in the first quadrant, i.e.,
∀(x, y) ∈ Γ, x > 0 and y > 0; and

(3) it partitions the first quadrant into two connected
regions. The connected region containing all the
points (x, x) for very large x is called the bounded
area with respect to the bounding curve Γ.

Chapter 3: Floorplanning – p.38

Area Evaluation

Bounding area

Bounding curveCorner points

Figure 8: A piecewise linear bounding curve.

Chapter 3: Floorplanning – p.39

Definitions
• Let Γ and Λ be two bounding curves. Two arithmetic

operations on bounding curves are defined as follows:

(1) the bounding curve corresponding to ΓHΛ is
obtained by summing the two curves along the y-axis,
i.e., ΓHΛ = {(u, v + w)|(u, v) ∈ Γ and (u,w) ∈ Λ};

(2) the bounding curve corresponding to ΓV Λ is obtained
by summing the two curves along the x-axis, i.e.,
ΓV Λ = {(u+ v, w)|(u,w) ∈ Γ and (v, w) ∈ Λ}.

• A piecewise linear bounding curve is completely
characterized by an ordered list of its corner points.

• To add two piecewise linear curves along either direction,
it is sufficient to sum up the two curves at their corner
points.

Chapter 3: Floorplanning – p.40

Definitions
• For the floorplanning problem, each module i, 1 ≤ i ≤ n

is constrained as follows,

(1) height = hi, width = wi, and area Ai = wihi;
(2) ri ≤

hi

wi
≤ si, if module i has fixed orientation;

(3) ri ≤
hi

wi
≤ si or 1

si
≤ hi

wi
≤ 1

ri
, if module i has free

orientation;
(4) ri = si, if module i is rigid, and ri 6= si if module i is

flexible.
• Each basic rectangle i, 1 ≤ i ≤ n must be large enough to

accommodate module i. Hence, xi ≥ wi and yi ≥ hi,
where xi and yi are the width and height of basic
rectangle i.

Chapter 3: Floorplanning – p.41

Bounding curves

y=s xi

i

x

y

y=r x

wi

wi

hi

hi

y=s xi

x

y

iy=r x

(c)

x

y

wi

hi

y=s xi

(b)(a)

y=s xi

x

y

y=

(d)

iy=r x

1

y=

1
i

 r

i

 s

Bounding area

x

x

Figure 9: Bounding curves for various classes of mod-
ules. Chapter 3: Floorplanning – p.42

Definitions
• Let TE be the floorplan tree corresponding to the normalized Polish

expression E.

• Let RE be the rectangular slicing structure corresponding to TE , and
DE be the set of all possible dimensions of RE .

• The set of points in DE constitute a bounding curve ΓE corresponding
to the rectangular dissection RE .

Computation of ΓE:

• Every leaf node i, 1 ≤ i ≤ n of TE has associated with it a bounding
curve Γi consistent with the shape, size, flexibility, and orientation of
the corresponding module i.

• The slicing tree is traversed from the leaves upwards, towards the root,
computing on the way the bounding curves Γv corresponding to each
internal node v.

• Γv = ΓlHΓr or Γv = ΓlV Γr, where l and r are left & right sons of v.
Chapter 3: Floorplanning – p.43

Definitions
• For efficiency reasons, all bounding curves are

approximated by piecewise staircase linear curves. The
accuracy of area estimation is a function of this staircase
approximation. Once all Γ’s are computed, the bounding
curve ΓE of RE is as follows:

(1) let (a1, b1) and (ak+1, bk+1) be the points of
intersection between ΓE and the lines y = px and
y = qx respectively (consequence of the shape
constraint on RE , which states that p ≤ H

W ≤ q);
(2) let (a1, b1), (a2, b2), ..., (ak, bk) be all the corner points

of the bounding curve ΓE which lie between the lines
y = px and y = qx.

Chapter 3: Floorplanning – p.44

Definitions
• The dimensions of a minimum area realization of the

floorplan tree TE are given by the corner point (ai, bi)
such that aibi = minj(ajbj).

• Hence, the minimum area enveloping rectangle has width
ai, height bi, and area A = aibi.

• The final step is to trace back the shapes and orientations
of the rectangles (composite or basic) that were selected
in the upward traversal of the tree.

Chapter 3: Floorplanning – p.45

Definitions
• When dealing with rigid blocks, we might have width or

height mismatch. In that case, the summation of the
corresponding two bounding curves along the x or y
directions should be changed to the following:

• Let Γ and Λ be two bounding curves.

(1) The bounding curve corresponding to ΓHΛ is
obtained by summing the two curves along the
y-axis, i.e., ΓHΛ ={(u, v + w)|(u1, v)} ∈ Γ and
(u2, w) ∈ Λ and {u = max(u1, u2)};

(2) the bounding curve corresponding to ΓV Λ is obtained
by summing the two curves along the x-axis, i.e.,
ΓV Λ ={(u+ v, w)|(u,w1)} ∈ Γ and (v, w2) ∈ Λ and
{w = max(w1, w2)};

Chapter 3: Floorplanning – p.46

Definitions
• Let (x1, y1) and (x2, y2) be two possible implementations

of a given rectangle. (x2, y2) is a redundant
implementation of (x1, y1) if and only if x2 ≥ x1 and
y2 > y1, or x2 > x1 and y2 ≥ y1.

• Redundant implementations should be identified during
the summation of the bounding curves and eliminated,
since a minimum area enveloping rectangle cannot
possibly include such redundant rectangles.

• Only corner points are non-redundant implementations,
therefore we should only consider corner point
implementations.

Chapter 3: Floorplanning – p.47

Example
Module Width Height

1 2 3

2 2 2

3 1 3

4 2 3

5 1 2

6 2 2

• For simplicity reason, we will assume that all modules
are rigid and can be rotated 90◦ with respect to their
original orientation.

• E = 21H34V 56V HV .

Chapter 3: Floorplanning – p.48

Example

V

HH

V

{ (5,5) (9,4) }

{ (2,5) (3,4) }

{ (2,3) (3,2) }

{ (2,3) (3,2) } { (2,2) }

{ (3,5) (6,4) }

{ (6,2) (3,3) }
1 2

{ (1,3) (3,1) }

V

{ (2,2) }{ (1,2) (2,1) }3 4

5 6

{ (3,2) }

(a) (b)

1

2

3 4

5 6

Figure 10: Example of floorplan area computation.

Chapter 3: Floorplanning – p.49

The Algorithm
• When using the simulated annealing technique, there are

several important decisions that must be made, which
consist of the following:

(1) a choice of the initial solution;
(2) a choice of a cooling schedule, that is, (a) choice of

the initial temperature, (b) how long before we
reduce the temperature, and, (c) the temperature
reduction rate;

(3) a perturbation function;
(4) a termination condition of the algorithm.

Chapter 3: Floorplanning – p.50

Algorithm
Algorithm Simulated_Annealing_Floorplanning
Best = E = E0 = 12V3V4V....nV;
T0 =

∆avg

ln(P)

uphill = 0; MT = 0; M = 0;
Repeat
MT = uphill = Reject = 0;
Repeat

Select_Move(M);
Case M of
M1 : Select two adjacent operands ei and ej ; NewE = Swap(E, ei, ej);
M2 : Select a nonzero length chain C of operators; NewE = Complement(E, C);
M3 : Done = False

While NOT(Done) Do
Select two adjacent opd ei and opr ei+1;
If (ei−1 6= ei+1) and (2Ni+1 < i) Then Done = TRUE;
EndWhile;

NewE = Swap(E, ei, ei+1);
EndCase

Chapter 3: Floorplanning – p.51

Algorithm - contd
MT = MT + 1;
∆Cost = Cost(NewE)− Cost(E);
If (∆Cost < 0) OR (RANDOM< e−∆Cost/T) Then

Begin
If (∆Cost > 0) Then uphill = uphill+1;
E = NewE; (*Accept NewE*);
If Cost(E) < Cost(Best) Then Best = E;

End
Else Reject = Reject + 1; (*reject the move*)

EndIf
Until (uphill > N) OR (MT > 2N)
T = λT
Until (Reject/MT < .05) OR (T ≤ ε) OR Out_of_Time;
End.

Chapter 3: Floorplanning – p.52

Initial temperature T0:
• A sequence of random moves are performed and the

average cost change for all uphill moves ∆avg is
computed.

• Then T0 is chosen such that e
∆avg

T0 = P , where P is the
initial probability of accepting uphill moves. P is initially
set very close to 1.

Chapter 3: Floorplanning – p.53

Perturbation function:
• First, the type of move is randomly selected.
• Then a pair of adjacent elements are chosen.
• In case the move is of type M3, we should make sure that

the perturbation does not lead to a non-normalized Polish
expression. In case it does, another pair of elements is
selected.

• This is repeated until the swapping of the two elements
does not violate the normality property of the Polish
expression.

• Each generated normalized Polish expression is evaluated
with respect to its cost (i.e., area of enveloping rectangle
and overall wiring length).

Chapter 3: Floorplanning – p.54

Perturbation function:
• If the new expression has an improved cost, then it is

accepted. Otherwise, if it has a higher cost (worse
solution) then it is accepted with a probability that is a
decreasing function of the annealing temperature.

• At each temperature, a number of trials are attempted
until either we make N uphill moves (bad moves), or the
total number of moves exceeds 2N , where N is an
increasing function of n, the number of basic rectangles.

• When we exit from the inner Repeat loop, the
temperature is reduced by a fixed ratio λ. A
recommended value for λ is λ = 0.85.

• The algorithm terminates when the number of good
moves becomes too small (≤ 5% of all moves made), or
when the temperature becomes too low.

Chapter 3: Floorplanning – p.55

Mathematical Formulation
(Shragowitz, Sutanthavibul, and Rosen 1990)

• The constraints specifying a feasible floorplan are
described by a set of mathematical equations, and solved
using mathematical programming techniques.

• Two major difficulties:
(1) Nonlinearity of the floorplanning problem.
(2) Size of the problem.

Chapter 3: Floorplanning – p.56

Notation & Problem Definition
S = {1, 2, · · · , n} set of n modules;
S1 subset of modules with fixed orientation;
S2 subset of modules with free orientation;

• Each module i has width wi and height hi; xiand yi are
coordinates of lower left corner of module i, 1 ≤ i ≤ n.

• Then, for two modules i and j not to overlap,
1 ≤ i < j ≤ n, at least one of the following linear
constraints must be satisfied:

if i is to the left of j: xi + wi ≤ xj

if i is below j: yi + hi ≤ yj

if i is to the right of j: xi − wj ≥ xj

if i is above j: yi − hj ≥ yj

Chapter 3: Floorplanning – p.57

Notation & Problem Definition
• For two modules i and j not to overlap in either the
x-direction or the y-direction, it is sufficient to enforce
one and only one equation.

• In order to state that in equations form, two additional 0-1
integer variables, xij and yij , are introduced for each
(i, j) pair. These 0-1 variables have the following
interpretation:
xij = 0 and yij = 0← i left of j -enforced
xij = 0 and yij = 1← i below j -enforced
xij = 1 and yij = 0← i right of j -enforced
xij = 1 and yij = 1← i above j -enforced

Chapter 3: Floorplanning – p.58

Notation & Problem Definition
• Let W and H be upper bounds on the floorplan width and

height. Hence, |xi − xj | ≤ W and |yi − yj | ≤ H

• If W and H are not given, then possible estimates of
these quantities could be W =

∑

i wi and H =
∑

i hi.
• Therefore, to enforce that no two modules overlap,

xi + wi ≤ xj +W (xij + yij)

yi + hi ≤ yj +H(1 + xij − yij)

xi − wj ≥ xj −W (1− xij + yij)

yi − hj ≥ yj −H(2− xij − yij)

Chapter 3: Floorplanning – p.59

Linear Prog. Formulation:
Assumption: one dimension of the chip (W), is fixed.

• CASE 1: All modules are rigid and have fixed orientation.
Constraints:
(1) no two modules overlap
(2) each module is enclosed within the floorplan
enveloping rectangle of width W and height Y , i.e.,
xi + wi ≤ W and yi + hi ≤ Y, 1 ≤ i ≤ n;
(3) all module coordinates are positive, xi ≥ 0 and
yi ≥ 0, 1 ≤ i ≤ n.
Objective:

• Since the width W is fixed, a possible objective to
minimize would be Y , the height of the floorplan.

Chapter 3: Floorplanning – p.60

Linear Prog. Formulation:
To summarize, we end up with the following 0-1 integer linear
program:



















































































Y ← minimize

Subject to :

xi + wi ≤W, 1 ≤ i ≤ n

yi + hi ≤ Y, 1 ≤ i ≤ n

xi + wi ≤ xj +W (xij + yij), 1 ≤ i < j ≤ n

xi − wj ≥ xj −W (1− xij + yij), 1 ≤ i < j ≤ n

yi + hi ≤ yj +H(1 + xij − yij), 1 ≤ i < j ≤ n

yi − hj ≤ yj −H(2− xij − yij), 1 ≤ i < j ≤ n

xi ≥ 0, yi ≥ 0, 1 ≤ i ≤ n

Size of the linear program:
2× n continuous variables, n(n− 1) integer variables, and 2n2 linear
constraints. For large n, this will lead to unacceptably large programs.

Chapter 3: Floorplanning – p.61

Linear Prog. Formulation:
• CASE 2: All modules rigid and rotation allowed.

For each free-orientation module i, one 0-1 integer variable is introduced zi.
zi = 0→ module i is not rotated;
zi = 1→ module i is rotated.



















































































Y ← minimize

Subject to :

xi + zihi + (1− zi)wi ≤W, 1 ≤ i ≤ n

yi + ziwi + (1− zi)hi ≤ Y, 1 ≤ i ≤ n

xi + zihi + (1− zi)wi ≤ xj +M(xij + yij), 1 ≤ i < j ≤ n

xi − zjhj + (1− zj)wj ≥ xj −M(1− xij + yij), 1 ≤ i < j ≤ n

yi + ziwi − (1− zi)hi ≤ yj +M(1 + xij − yij), 1 ≤ i < j ≤ n

yi − zjwj − (1− zj)hj ≤ yj −M(2− xij − yij), 1 ≤ i < j ≤ n

xi ≥ 0, yi ≥ 0, 1 ≤ i ≤ n

• M could be set equal tomax(W,H) or W +H .

• Size of the linear program: The number of equations did not change from the first
formulation. However, the number of 0-1 integer variables have increased by n, which is
equal to the number of modules. Chapter 3: Floorplanning – p.62

Linear Prog. Formulation:
• CASE 3: Some of the modules are flexible:
• Some of the modules are allowed to vary in shape as long

as they keep a fixed area Ai = wihi.
• This complicates the matter a bit as the equality
Ai = wihi is a nonlinear relationship.

• To maintain a linear program, we must linearize this
relationship.

• Let wi,max and hi,max be the maximum width and height
of module i, 1 ≤ i ≤ n.

• A possible linearization approach is to make a Taylor’s
series expansion of Ai about the point wi,max, and use the
first two terms of the series as an approximation of Ai.

Chapter 3: Floorplanning – p.63

Linear Prog. Formulation:
• The Taylor’s series expansion of a function f(x) about

the point x0 is:

f(x) =
∞

∑

k=0

(x− x0)
k

k!
× f (k)(x0)

• By evaluating the above Taylor’s series expansion for
hi =

Ai

wi
= f(wi) and x0 = wi,max, and taking the first two

terms, we get the following:

f(wi) = hi =
Ai

wi,max
+ Ai

(wi,max − wi)

w2
i,max

+O(wi − wi,max)

Chapter 3: Floorplanning – p.64

Linear Prog. Formulation:
• Let hi,0 =

Ai

wi,max
,∆i = wi,max − wi

• and λi =
Ai

w2i.max
.

• If we drop the error term, then the above equation can be
written as follows:

hi = hi,o + λi∆i

• The linear approximation of the area of the module is
illustrated in the figure.

Chapter 3: Floorplanning – p.65

Linear Prog. Formulation:

wimin

hi

w

himax

io
h

imax

h =

h i = hio + wii

wi

i
A

W
i

i

Figure 11: Linear approx. of the relationship Ai =

wi × hi

Chapter 3: Floorplanning – p.66

Linear Prog. Formulation:
• In above Equation, hi,0 and λi are known constant

parameters. Hence, this approximation will require the
addition of only one continuous variable ∆i for each
module i, 1 ≤ i ≤ n.

• Equations which state the conditions of no overlapping
between modules i and j must be rewritten to take into
account the flexibility of some of the modules. Three
cases can be distinguished:

• (1) Both modules are rigid: (same equations)

xi + wi ≤ xj +W (xij + yij)

xi − wj ≥ xj −W (1− xij + yij)

yi + hi ≤ yj +H(1 + xij − yij)

yi − hj ≥ yj −H(2− xij − yij)
Chapter 3: Floorplanning – p.67

Linear Prog. Formulation:
• (2) Module i is flexible and module j is rigid:
• In this case, the height of module i should be replaced

with its linear approximation in terms of wi, i.e.,
hi = hi,o + λi∆i.

• The constraints for no overlapping between flexible
module i and rigid module j become,

xi + wi,max −∆i ≤ xj +W (xij + yij)

yi + hi,0 + λi∆i ≤ yj +H(1 + xij − yij)

xi − wj ≥ xj −W (1− xij + yij)

yi − hj ≥ yj −H(2− xij − yij)

• Note that in previous equations wi is replaced by
wi,max −∆i.

Chapter 3: Floorplanning – p.68

Linear Prog. Formulation:
• (3) Both modules i and j are flexible:
• In this case, both hi as well as hj must be replaced with

their linear approximations.
• Here again we express wi = wi,max −∆i. Also, wj is

expressed the same way.

xi + wi,max −∆i ≤ xj +W (xij + yij)

yi + hi,0 + λi∆i ≤ yj +H(1 + xij − yij)

xi − wj,max +∆j ≥ xj −W (1− xij + yij)

yi − hj,0 − λj∆j ≥ yj −H(2− xij − yij)

Chapter 3: Floorplanning – p.69

Successive Augmentation
Example

• The major problem is the program size.
• Smallest program (when all modules are rigid and have

fixed orientation) will have 2× n continuous variables,
n(n− 1) integer variables, and 2n2 linear constraints.

• For a value of n = 100 modules (medium size problem),
the linear program will have 200 continuous variables,
990 integer variables, and 20000 linear constraints.

• Approach is realistic when the number of modules is very
small (around 10).

Chapter 3: Floorplanning – p.70

Successive Augmentation
• A linear program is formulated using a subset S1 of n1

modules.
• Then a second subset S2 of n2 modules is selected and

the corresponding linear program is formulated, with the
additional constraints that the previously selected n1

modules have fixed locations, shapes, and orientations.
• The floorplanning problem is solved when we solve

problems corresponding to remaining subsets S2, ..., Sk

such that,
∑k

i=1 ni = n.

Chapter 3: Floorplanning – p.71

Successive Augmentation
Next group of modules

Partial floorplan

W

Figure 12: Successive augmentation approach
Chapter 3: Floorplanning – p.72

Successive Augmentation
• Successive augmentation raises two new problems:

• (1) How to select the next subgroup of modules; and

• (2) how to formulate the successive mixed integer programs while
minimizing the number of required integer variables.

• For (1), a possible strategy is to use linear ordering to order the
modules into a linear list based on their connectivity.

• For (2), the size of each successive mixed integer program depends on
the cardinality of the next group of modules as well as the partially
constructed floorplan. We must describe the partial floorplan using the
smallest possible number of constraints and variables.

• The main idea consists of replacing the already placed modules by a set
of covering rectangles. The number of covering rectangles is
guaranteed to be always less than the number of original modules
(usually much less).

Chapter 3: Floorplanning – p.73

Successive Augmentation

R4 R5

R3

R2

R1

C3 C4

C2

C1Horizontal

cut edges

Dead space

(a) (b)

(c) (d)

Figure 13: Steps for determining a set of covering rect-
angles of the partial floorplan

Chapter 3: Floorplanning – p.74

Algorithm
ALGORITHM Greedy_Floorplanning;
BEGIN

Order the n modules;
Select a first subset S1 of n1 modules;
Formulate a first mixed integer linear program;
Solve this first problem;
k = n1;

i = 1;
WHILE k < n DO

BEGIN
Select the next subset Si of ni modules;
Find a set of di covering rectangles of partial floorplan;
Formulate a mixed integer program with ni free
modules and di fixed basic rectangles;
Solve this ith problem;
k = k + ni;

END;
Perform Global routing and adjust floorplan accordingly;

END.

Chapter 3: Floorplanning – p.75

Dual Graph Technique
• The graph dualization technique seeks to find a topological layout of

the modules which is consistent with the overall topological relations of
the blocks, as well as the sizes and shapes of these blocks.

• This approach consists of the following:

1. The original circuit s modelled by a graph G = (V, E). The set of
vertices V model the modules and the set of edges E model
module interconnections.

2. The graph G is then planarized.

3. Next, a rectangular dual of this planar graph is found, where faces
of the dual correspond to modules, and edges correspond to
interfaces between the modules (module adjacencies). The edges
of the dual model the routing channels through which signal nets
will be routed.

4. Finally a drawing of the dual graph is sought such that the
rectangular area assigned to each module is large enough to
accommodate the module. Chapter 3: Floorplanning – p.76

Dual Graph Technique
A final adjustment step is usually necessary to provide
sufficient routing space for the interconnections.

A B

CD

(a) (b)

E

(c)

A
B C

D E

A B

D

E

C

Figure 14: Steps of floorplan design by rectangular
dualization. (a) A circuit. (b) Graph model for (a).
(c) Rectangular dual for (b).

Chapter 3: Floorplanning – p.77

Terminology
• A plane graph is a graph that can be embedded in the

plane with no two edges crossing each other.
• A rectangular floorplan R can be represented by a

channel intersection graph. G = (V,E).
• The graph G is a planar graph. Each vertex in V (G)

represents a line intersection point of R. There is an edge
(u, v) ∈ E(G) if and only if the intersection points
modelled by u and v are adjacent. V (G) and E(G) are the
vertex set and edge set of graph G.

• The inner faces of G are called rooms.

Chapter 3: Floorplanning – p.78

Dual Graph

A B

C

D

(a) (b)

E

(c)

A

B

D

E
C

Inner faces (rooms)

A

B

D

E
C

Figure 15: (a) Rectangular floorplan. (b) Its channel
intersection planar graph. (c) Its inner dual graph.

Chapter 3: Floorplanning – p.79

Discussion
• Inclusion of performance issues in constraints and/or

objective.
• Problem when neither W nor H are fixed?
• Routability.

Chapter 3: Floorplanning – p.80

	Introduction
	Problem Statement
	Example
	Floorplanning Model
	Required Output
	Required Output - contd
	Floorplanning Approaches
	Floorplanning Approaches
	Cluster Growth Approach
	Cluster growth
	Cluster growth - contd
	Linear Ordering
	Linear Ordering - contd
	Cluster Growth - Algorithm
	Cluster Growth - contd
	Cluster Growth - contd
	Global Routing
	Simulated Annealing
	Simulated Annealing - contd
	SA Algorithm
	SA Algorithm - contd
	Simulated Annealing - contd
	Terminology
	Solution Representation
	Solution Representation
	Terminology
	Terminology
	Floorplan example
	Terminology
	Terminology
	Terminology
	Solution Perturbation
	Solution Perturbation - contd
	Terminology
	Solution Evaluation
	Solution Evaluation
	Area Evaluation
	Area Evaluation
	Definitions
	Definitions
	Bounding curves
	Definitions
	Definitions
	Definitions
	Definitions
	Definitions
	Example
	Example
	The Algorithm
	Algorithm
	Algorithm - contd
	Initial temperature T_0:
	Perturbation function:
	Perturbation function:
	Mathematical Formulation
	Notation & Problem Definition
	Notation & Problem Definition
	Notation & Problem Definition
	Linear Prog. Formulation:
	Linear Prog. Formulation:
	Linear Prog. Formulation:
	Linear Prog. Formulation:
	Linear Prog. Formulation:
	Linear Prog. Formulation:
	Linear Prog. Formulation:
	Linear Prog. Formulation:
	Linear Prog. Formulation:
	Linear Prog. Formulation:
	Successive Augmentation
	Successive Augmentation
	Successive Augmentation
	Successive Augmentation
	Successive Augmentation
	Algorithm
	Dual Graph Technique
	Dual Graph Technique
	Terminology
	Dual Graph
	Discussion

