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FSM Encoding
To encode p states using k bits, the number of 
possible assignments are

Encoding governs the mutual dependence of the 
state variables. Thus effecting the number of literals 
for next-state functions, their interconnection and 
inter-dependence.
Y1 = f1(y1,….,yn, x1, …, xm)
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Y1 = f1 (y1, y2, x1, …, xm)
Y2 = f2 (y1, y2, x1, …, xm)
Y3 = f3 (y3, y4, x1, …, xm)
Y4 = f4 (y3, y4, x1, …, xm)



Introductory Example

PS NS Z

X=0 X=1 X=0 X=1

A A D 0 1

B A C 0 0

C C B 0 0

D C A 0 1



Encoding - 1
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A -> 00 00        10 0        1

B -> 01 00        11 0        0

C -> 11 11        01 0       0

D -> 10 11        00 0       1



Encoding-2
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Z 
X=0    X=1

A -> 00 00        11 0        1

B -> 01 00        10 0        0

C -> 10 10        01 0        0

D -> 11 10        00 0        1
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• Thus, the choice of 

assignment affects the 
complexity of the circuit 
and determines the 
dependency of the next-
state variables and the 
overall structure of the 
machine.

• Thus we need to find out 
tools in order to derive 
assignments that result in 
reduced dependencies 
among the state variables. 

• Such assignments generally 
yield simpler logic 
equations and circuits.



Partitions
State assignment problem can also be viewed as partitioning problem
A partition consists of blocks of states.
E.g. in Encoding-1, we have 

Y1 = 1 for C and D; 0 for A and B;
Y2 = 1 for B and C; 0 for A and D;

We say 
Y1 induces a partition Τ1 = {A,B; C,D}
Y2 induces a partition Τ2 = {A,D; B,C}

In this case,
Τ1. Τ2 = π(0)
Where π(0) = {A; B; C; D} is called 0-partition.

The 0-partition describes that we have successfully assigned a unique code 
to each state
Thus, our aim in state encoding is to find set of partitions such that their 
product results in 0-partition.
Here ‘Τ’ is a general partition that is induced by a state variable. 



Closed Partitions

Closed partitions are represented 
with π.
A partition π is said to be closed if 
for every two states, Si and Sj which 
are in the same block of π and any 
input Ik, the states IkSi and IkSj are in 
a common block of π.
For the sample machine shown, the 
following partitions are closed
π1 = {AB; CD}
π2 = {AC; BD}
The successor relationship can be 
described using a graph.
Clearly, it can be seen that the 
knowledge of the present block of the 
machine and the input is sufficient to 
determine uniquely the next block.

PS NS Z

X=0 X=1 X=0 X=1

A A D 0 1

B A C 0 0

C C B 0 0

D C A 0 1



Closed Partitions
PS NS

X=0 X=1
A H B
B F A
C G D
D E C
E A C
F C D
G B A
H D B

In other words, we can say that the state 
variables assigned to blocks of a partition 
are independent of the remaining state 
variables.
For e.g., partition π(3) requires 2 state 
variables, say y1 and y2; the encoding of 
variables is independent of other 
variables.

π (0) = {A; B; C; D; E; F; G; H}
π (1) = {ABCD; EFGH}
π (2) = {ADEH; BCFG}
π (3) = { AD; BCFG; EH}
π (4) = { ADEH; BC; FG}
π (5) = { AD; BC; EH; FG}
π (6) = { ABCDEFGH} = π (I)

Machine: M2



M2 has eight states => 3 variables are 
required
π (5) requires 2 state variables.
We can partition the machine such 
into two blocks such that predecessor 
components has two varaibles, say y1 
and y2, that are assigned to partition 
π(5), while the successor component 
has a signle varialbe y3, which can 
distinguish the states in the blocks of 
π(5)
To do so, we need to find a partition 
such that
π(5). T = π (0)
A sample partition could be {ABEF; 
CDGH}
Information Flow

π (0) = {A; B; C; D; E; F; G; H}
π (1) = {ABCD; EFGH}
π (2) = {ADEH; BCFG}
π (3) = { AD; BCFG; EH}
π (4) = { ADEH; BC; FG}
π (5) = { AD; BC; EH; FG}
π (6) = { ABCDEFGH} = π (I)



However, maximal reduction in 
dependency (which is a good 
measure of area as well) of the 
state variables would be achieved 
if we could find three two-blocks 
closed partitions whose product is 
0-partition.
Then each state closed partition 
would be represented with a state 
variable – which would be 
independent of other state 
variables.
We only have two 2-block 
partitions π(1) and π(2).
So we need to find out partition to 
fill out the missing information, 
such that
π(1). π(2) . T = π(0)

π (0) = {A; B; C; D; E; F; G; H}
π (1) = {ABCD; EFGH}
π (2) = {ADEH; BCFG}
π (3) = { AD; BCFG; EH}
π (4) = { ADEH; BC; FG}
π (5) = { AD; BC; EH; FG}
π (6) = { ABCDEFGH} = π (I)



Let T = {ABGH; CDEF}
Then 

y1 is assigned to π(0)
y2 is assigned to π(1)
y3 is assigned to T

Now, y1 and y2, that are assigned to closed partitions are clearly 
self-dependent, while y3, which is assigned to T, will be a 
function of external inputs and al three state variables.
This is proved with the logical equations that are derived from the 
encoding.

Y1 = x’y1’
Y2 = x’y2 + xy2’

Y3=xy3 + x’y1’y2y3’ + y1’y2’y3 + x’y1y2’y3’



Parallel/Serial decompositions

If the product of n closed partitions results in 0-
partition then the machine can be realized with n 
parallel components (independent subsets)

π (1). π (2) … π (n) = π (0) 
If the above is not true, we need to incorporate a 
partition which is not closed. Such a partition result 
in a machine that is dependant on independent 
subsets.

π (1). π (2)…. Τ = π (0) 



Two Implementation for a machine

π (1) = {ABC; DEF}
π (2) = {AE; BF; CD}

π (1). π (2) = π (0) 

T(Y2) = (AE; BCDF}
T(Y3) = (ACDE; BF}

T(Y2).T(Y3) = π (2)
π (1) .T(Y2).T(Y3) = π (0)

PS NS z
00 01 11 10

A A C D F 0
B C B F E 0
C A B F D 0
D E F B C 0
E E D C B 0
F D F B A 1



Implementation - 1
Consider a parallel 
decomposition of a machine

π (1) π (2) = π (0) 
Y1 = f (x1, y1)

Y2 = f (x1, x2, y2, y3)
Y3 = f (x1, x2, y2, y3)

30 Diodes (gates)

Implementation - 2
The same machine can be 
implemented as

π (1) T (Y2) T(Y3) = π (0) 
Y1 = f (x1, y1)

Y2 = f (x1, x2,  y3)
Y3 = f (x1, x2, y2)

20 Diodes (gates)

Partitions T (Y2) and T(Y3) are cross dependant.
In implementation-1, we have two closed partitions. However, in 
implementation-2, we have only 1.
We see 

That next block for Partition T(Y2) lie in partition T(T3) and vice versa
T(Y2).T(Y3) results in a closed partition – and they should be since together they 
are independent of the rest and form a self-dependant subset for the machine.

Thus, we need to have a more general tool for evaluating such cross 
dependencies



Partition Pairs

Partition Pair is a set of two partitions such that they are 
cross dependant.
(T, T’) are said to be partition pairs if for any two states in 
any block in T, the next state for both lie in some block of 
T’. 
Thus T’ consists of all the successor blocks implied by T. 
A closed partition can now be thought of as a special 
case for a partition pair such that T’ = T.



Partial Ordering on Partition Pairs

(T1, T1’) and (T2, T2’) are partition pairs then (T1 + T2, T1’ + T2’) 
and (T1.T2, T1’.T2’) are also partition pairs.

Intuitively, if two states, Si and Sj are in the same block of T1.T2, then 
they must also be in the same blocks of T1 and T2. Thus (T1.T2, 
T1’.T2’) is a partition pair.

Similar observation can also be derived for considering (T1+T2, 
T1’+T2’) as a partition pair.

We say that (T1 + T2, T1’ + T2’) is the least upper bound (lub) for 
partition pairs (T1, T1’) and (T2, T2’).

Similarly, (T1.T2, T1’.T2’) is the greatest lower bound (glb) for 
partition pairs (T1, T1’) and (T2, T2’).



M(T’) and m(T)

M (T’) = Σ Ti, where the sum is over all Ti such that (Ti, T’) is a 
partition pair.
M (T’) is the largest partition the successors of whose blocks are 
contained in the blocks of T’.
M (T’) can be said as lub of all Ti such that (Ti, T’) is a partition pair.

m (T) = π.Ti’, where the product is over all Ti’ such that (T, Ti’) is a 
partition pair
m (T) is the smallest partition containing all the successors of the 
blocks of T.
m (T) can be said as glb of all Ti’ such that (T, Ti’) is a partition pair.



NSPS

00 01 11 10
A C A D B 0
B E C B D 0
C C D C E 0
D E A D B 0
E E D C E 1

z

m (TAB) = {ACE, BD} = T’1
m (TAC) = m (TDE) = {ACD, BE} = T’2
m (TAD) = m (TCE) = {A; B; CE; D} = T’3
m (TAE) = m (TCD) = π (I)
m (TBC) = m (TBE) = {A; BCDE} = T’4
m (TBD) = {AC; BD; E} = T’5

Let Tab be the partition that includes a 
block (ab) and leaves all other states 
in separate blocks. Then m (Tab) is 
the smallest partition containing the 
blocks implied by the identification of 
(ab). (Tab, m (Tab)) is a partition pair.
In other words m (Tab) represents 
smallest partition (maximum amount 
of information) such that the next 
states of partition Tab are contained 
in it.



m (TAB) = {ACE, BD} = T’1
m (TAC) = m (TDE) = {ACD, BE} = T’2
m (TAD) = m (TCE) = {A; B; CE; D} = T’3
m (TAE) = m (TCD) = π (I)
m (TBC) = m (TBE) = {A; BCDE} = T’4
m (TBD) = {AC; BD; E} = T’5

M (T’1) = TAB + TAD + TCD + TBD = {ABD; CE} = T1

In other words, M (T1’) is the largest partition from which the 
block of T1’ containing the next state of the machine can be 
determined.
M (T’) represents least amount of information such that (M(T’), 
T’) can be partition pair. 



Information Flow Inequality

If the next state variable, Yi, can be computed from 
the external inputs and a subset Pi of the variables 
then

π T (yj) ≤ M [T (yi)]
Where the product is taken over all T (yj), such that 
yj is contained in the subset Pi.

Verbally
Smallest partition (Max. no. of blocks) that contains the next state 

induced by variable(s) Yj ≤ Largest partition (least no. of blocks) 
containing the next state of partition induced by Yi
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