King Fahd University of Petroleum & Minerals

College of Computer Sciences & Engineering
Department of Computer Engineering

September 2003

Chapter 2: Partitioning — p.1

1. Kernighan-Lin Heuristic

2. Fiduccia-Mattheyses heuristic
3. Simulated Annealing

Chapter 2: Partitioning — p.2

elationship between the number of gates an
number of I/O pins 1s estimated by Rent‘s rule,

10 =tG"

where:

1O: number of I/0 pins,

t: number of terminals per gate,

GG: the number of gates in the circuit, and
r is Rent’s exponent (0 < r < 1).

Chapter 2: Partitioning — p.3

* When it becomes necessary to split a circuit across
packages, care must be exercised to minimize
cross-package interconnections. because off-chip wires
are undesirable.

1. Electrical signals travel slower along wires external to the chip.

2. Off-chip wires take up area on a PCB and reduce reliability.
Printed wiring and plated-through holes are both likely sources of
trouble.

3. Finally, since off-chip wires must originate and terminate into I/0
pins, more off-chip wires essentially mean more 1/O pins.

Chapter 2: Partitioning — p.4

R
8,
[
1))
=
o=
=
2
e
2=
S
A
&
=
Q
i)
=
<
i=
O

* A division of the set V into k subsets V7, Vs, ---. V5, such
that

1. an objective function 1s optimized,
2. subject to certain constraints.

Chapter 2: Partitioning — p.6

%

where s(v) is the size of a node v (area of the
corresponding circuit element).

* Let A; be the upper bound on the size of i subcircuit;
then,

Chapter 2: Partitioning — p.7

veV; veV

e If all the circuit elements have the same size, then above
equation reduces to:

n
nz’SE

where n; and n are the number of elements in V; and in V
respectively.

Chapter 2: Partitioning — p.8

where w(e) is the cost of edge/connection e.

* Let the partitions be numbered 1, 2, - - -, k, and p(u) be the
partition number of node wu.

* Equvalently, one can write the function C'ost as follows:

Chapter 2: Partitioning — p.9

* If we do not place the constraint that the partition be
balanced, the two-way partitioning problem (TWPP) is
easy. One simply applies the well known max-flow
mincut.

* However, the balance criterion 1s extremely important in

practice and cannot be overlooked. This constraint makes
TWPP NP-Complete.

Chapter 2: Partitioning — p.10

2. Non-Deterministic.
(a) Simulated Annealing.
(b) Genetic Algorithm.
(c) Tabu Search.

3. Constructive vs. Iterative.

Chapter 2: Partitioning — p.11

Problem instance

Constructive heuristic

Iterative heuristic

Stopping
criteria

met ?

Stop; Output
best solution
encountered so far

Figure 2: General structure combining constructive

and 1terative heuristics

Chapter 2: Partitioning — p.12

* The problem 1s characterized by a connectivity matrix C'.
Element c;; represents the sum of weights of the edges
connecting elements 2 and ;.

* In TWPP, since the edges have unit weights, c;; simply
counts the number of edges connecting ¢ and ;.

* The output of the partitioning algorithm is a pair of sets A
and B such that |A| = n = |B|, and AN B = (), and such
that the size of the cutset 7" 1s minimized.

Chapter 2: Partitioning — p.13

¢ How can a given partition be improved?

¢ Let P* = {A*, B*} be the optimum partition and P = { A, B} be the
current partition.

EEEEEEEEEEEEEEERE
i
i)
oy
|
=

® Then, in order to attain P* from P, one has to swap a subset X C A
with a subset Y C B such that,

(D) | X]=1Y]
2) X = AN B*
(3) Y = A* ﬂ B Chapter 2: Partitioning — p.14

Figure 3: Initial & optimal partitions

Chapter 2: Partitioning — p.15

Definition 2:
The internal cost 1, of node a € A is defined as follows.

I :anv

veA

A AR R R RRERERER A
S
Mm
oy

Chapter 2: Partitioning — p.16

Chapter 2: Partitioning — p.17

Figure 4: Internal cost versus external costs

Chapter 2: Partitioning — p.18

Lemma 1:

* Iftwo elements a € A and b € B are interchanged, the
reduction in the cost is given by

gab = Dy + Dy — 2cqp

Chapter 2: Partitioning — p.19

* Similarly

Cab + Z
veEB,v#£b
Cab + Z

Chapter 2: Partitioning — p.20

Z Chu — Iy = Dp — Cap
ueAu#a

* When both moves are carried out, the total cost reduction
1s given by the sum of above two equations, that 1s

Gab — Da + Db — 2Cab

Chapter 2: Partitioning — p.21

the new D—values are given by

D;, = Dy + 2¢pq — 2¢4p, Vo € A—{a}
Y

D, = Dy +2c,, — 2¢cyq, Yy € B —{b}

* Notice that if a module x 1s neither connected to a nor to
b then ¢, = ¢y = 0, and, D). = D,..

Chapter 2: Partitioning — p.22

Figure 5: Updating D-Values after an exchange

Chapter 2: Partitioning — p.23

[a: =1, — Cgq 1+ Czb

Chapter 2: Partitioning — p.24

D, =E, —1I, = Dy+ 24 — 2y

* Similarly, the new D—value of y € B — {b} is

D,=E,—I,= Dy +2cp — 2cy

Chapter 2: Partitioning — p.25

* X and Y may be empty, indicating in that case that the
current partition can no longer be improved.

Chapter 2: Partitioning — p.26

locked. Hence, the gain of swapping the pair (a1, b1) followed by the
(az,b2) swap is Go = g1 + go.

. Continue selecting (a3, b3), - - -, (a;,b;), - - -, (an, b,) With gains gs,

...,gi,...,gn.

. The gain of making the swap of the first k pairs is G, = Z,’f:l g;. If

there is no k such that G > 0 then the current partition cannot be
improved; otherwise choose the £ that maximizes G, and make the
interchange of {a1, as, - -+, ar} with {b1,bs, - - -, by } permanent.

Chapter 2: Partitioning — p.27

improvements can be obtained by pairwise swapping.

Chapter 2: Partitioning — p.28

9i = Da; + Dy, — 2¢q,b;;
add the pair (a;, b;) to queue;
A=A —{a;}; B =B —{b;};
Step 4. If A’ and B’ are both empty then Goto Step 5
Else recalculate D—values for A’ U B’;

1 < 1 + 1; Goto Step 3;
Step 5. Find k to maximize the partial sum

G= ?:1 gis
If G > 0 then
Move X = {a1,---,a} to B;
move Y = {by,---,bx} to A;
Goto Step 2
Else STOP
EndIf End. Chapter 2: Partitioning — p.29

Figure 6: (a) A circuit to be partitioned (b) Its corre-

sponding graph

Chapter 2: Partitioning — p.30

* Step 2: Compute D—values.

Di=F1—-—11=1—-0=+1
Do=FEy—Io=1—-2=-1
Dy=FE3—I3=0—-—1= -1
Diy=F;,—14,=2—-1=+1
Ds=FEs—I[5=1—1=+40
Dg=FE¢g—Ig=1—1=+40

Chapter 2: Partitioning — p.31

931 = D3 + D1 — 2¢31 =
935 = D3 + D5 — 2¢35 =
936 = D3 + Dg — 2c36 =
941 = Dy + D1 — 2c41 =
945 = Dy + D5 — 2¢45 =
946 = Dy + Dg — 2c46 =

ga1 = g1= 2, and

/\/\A/—\/—\/—\

+ +

A= A—{4)}=(23}, B =

HHHHHH
~— — — " ~— —

+ + + + +

(+1) —2(0)
(+0) —2(0)
(+0) —2(0)
(+1) —2(0)
(+0) —2(1)
(+0) —2(1)
!

— {1} = 15,6}.

Chapter 2: Partitioning — p.32

The vertices connected to (4,1) are vertex (2) in set A’
and vertices (5,6) in set B’. The new D—values for
vertices of A" and B’ are given by

Dy = Do+ 294 — 2091 = -1+ 2(1—1) = —1
D,5:D5—|—2651—2654:-|-0-|-2(0—1):—2
Dg = Dg + 2c61 — 2c4 = +0 4+ 2(0 — 1) = —2

Chapter 2: Partitioning — p.33

935 = D3 + D5 — 2c35 = (—]_) + (_2) _ 2(0) — _3
g36 — DS + D6 — 2c36 = (—]_) + (_2) _ 2(0) — _3

* All the g values are equal, so we arbitrarily choose g3,
and hence the pair (as, b9) is (3, 6),

936 = 92 = —3,
A=A — {3} = {2},
B' = B'— {6} = {5}.

Chapter 2: Partitioning — p.34

925 = Do + D5 — 2c53 = (+1) 4 (0) — 2(0) = +1

* Therefore the last pair (a3, b3) is (2,5) and the
corresponding gain 1s go5 = g3 = +1.

Chapter 2: Partitioning — p.35

Therefore, X = {a;} = {4} and Y = {b;} = {1}.

The new partition that results from moving X to B and Y
to Ais, A={1,2,3}and B = {4,5,6}.

The entire procedure 1s repeated again with this new
partition as the initial partition.

Verity that the second iteration of the algorithm is also
the last, and that the best solution obtained 1s

A=1{1,2,3}and B = {4,5,6}.

Chapter 2: Partitioning — p.36

(a;, b;).

* Therefore the total time spent in updating the D —values
can be

n

> (2n — 2i) = O(n?)

=

* The pair selection procedure 1s the most expensive step 1n
the Kernighan-Lin algorithm. If we want to pick (a;, b;),
there are as many as (n — 4 + 1) pairs to choose from
leading to an overall complexity of O(n?). cuuper2 puioning -5

DalzDaQZ”'ZD

A(n—i+1)

* Similarly, for elements of Block B,

Dbl > Db2 > 2 Db(n—’H—l)

Chapter 2: Partitioning — p.38

phase, then we do not have to examine any more pairs.

° Hence, it D,, + Dy, < g;; for some ¢, j then gi; < g;;.

* Since it 1s almost never required to examine all the pairs
(Da;, Dy,), the overall complexity of selecting a pair
(a;, bj) is O(nlogn).

* Since n exchange pairs are selected in one pass, the
complexity of Step 3 is O(n?logn).

Chapter 2: Partitioning — p.39

1increase with n.

The time complexity of the pair selection step can be improved by
scanning the unsorted list of D—values and selecting a and b which
maximize DD, and D). Since this can be done in linear time, the
algorithm’s time complexity reduces to O(n?).

This scheme is suited for sparse matrices where the probability of
cqp > 01s small. Of course, this 1s an approximation of the greedy
selection procedure, and may generate a different solution as compared

to greedy selection.

Chapter 2: Partitioning — p.40

and no, n1 + no = 2n.

1. Divide the set V' into two subsets A and B, one
containing M I N (ny,ng) vertices and the other
containing M AX (n1, na) vertices (this division may
be done arbitrarily).

2. Apply the algorithm starting from Step 2, but restrict
the maximum number of vertices that can be
interchanged in one pass to M IN(ni,ns).

Chapter 2: Partitioning — p.41

block A and at most no vertices in block B, the procedure
shown below may be used:

.

Divide the set V' into blocks A and B; A containing
n1 vertices and B containing ny vertices.

. Add ns — n; dummy vertices to block A. Dummy

vertices have no connections to the original graph.
Apply the algorithm starting from Step 2.

. Remove all dummy vertices.

Chapter 2: Partitioning — p.42

element has unit size.

2. Replace each element of size s with s vertices which
are fully connected with edges of infinite weight. (In
practice, the weight 1s set to a very large number M.)

3. Apply the original Kernighan-Lin algorithm.

Chapter 2: Partitioning — p.43

2. Apply the two-way partitioning procedure on each
pair of partitions.

Chapter 2: Partitioning — p.44

the global optimal solution.

* Since there are (%) pairs to consider, the time complexity
for one pass through all pairs for the O(n?)-procedure is
(g)nz = O(k*n?).

* In general, more passes than this will be actually
required, because when a particular pair of partitions 1s

optimized, the optimality of these partitions with respect
to others may change.

Chapter 2: Partitioning — p.45

a solution to the following bipartitioning problem:

* Given a circuit consisting of C cells connected by a set of
N nets (where each net connects at least two cells), the
problem is to partition circuit C into two blocks A and B
such that the number of nets which have cells in both the
blocks is minimized and a balance factor r is satisfied.

Chapter 2: Partitioning — p.46

A . B

qi
mj
N k: (1) 79 (5)

Figure 7: Illustration of (a) Cut of nets. (b) Cut of
edges

Chapter 2: Partitioning — p.47

time, from either block 1s selected and considered for
movement to the other block.

* Objective of partitioning
1. Kernighan-Lin heuristic partitions a graph into two
blocks such that the cost of edges cut 1s minimum.

2. Fiduccia-Mattheyses heuristic aims at reducing the
cost of nets cut by the partition.

Chapter 2: Partitioning — p.48

to another is computed instead of the gain due to
swap of two cells. Once a cell 1s selected for
movement, 1t 1s locked for the remainder of that pass.
The total number of cells that can change blocks 1s
then given by the best sequence of moves

C1,€2,* ", CL.

. In contrast, in Kernighan-Lin the first best £ pairs in a

pass are swapped.

Chapter 2: Partitioning — p.49

and it produces a balanced partition with respect to size. The
balance factor 7 (called ratzo) is user specified and is defined as
follows: r = %, where |A| and | B| are the sizes of
partitioned blocks A and B.

* Some of the cells can be initially locked to one of the
partitions.

* Time complexity of Fiduccia-Mattheyses heuristic is
linear. In practice only a very small number of passes are
required leading to a fast approximate algorithm for
min-cut partitioning.

Chapter 2: Partitioning — p.50

’ C U ‘ L . LI . A10 U UC J C C
both blocks, and 1s uncut otherwise. A variable cutstate

1s used to denote the state of a net.

“Cutset of partition” : The cutset of a partition is the
cardinality of the set of all nets with cutstate equal to cut.

“Gain of cell” : The gain g(¢) of a cell ‘7’ is the number of
nets by which the cutset would decrease if cell 2” were to
be moved. A cell 1s moved from 1ts current block (the
From_block) to its complementary block (the To_block).

Chapter 2: Partitioning — p.51

where |A| + |B| = |V|; and s00= Maz[s(1)],
e AUB=V.

“Base cell” : The cell selected for movement from one block
to another 1s called “base cell”. It 1s the cell with
maximum gain and the one whose movement will not
violate the balance criterion.

Chapter 2: Partitioning — p.52

= - e e e - Y JVCU

will change its cutstate. That is, if and only if A(n) is
either O or 1, or B(n) is either O or 1.

Chapter 2: Partitioning — p.53

Figure 8: Block to the left of partition 1s designated as
‘A’ and to the right as ‘B’. (a) A(n) = 1 (b) A(n) =0
(c) B(n)=1(d) B(n) =0

Chapter 2: Partitioning — p.54

Step 3.

Step 4.

Step 5.

Step 6.

End.

(11) satisfies balance criterion,;

If t2e Then use Size criterion or Internal connections;
Lock cell ¢;;
Update gains of cells of those affected critical nets;
If free cells # ¢ Then ¢ = 7 + 1; select next base cell;
If c; # ¢ then Goto Step 3;
Select best sequence of moves c1,ca, - -+, Ck
(1 < k < 1) such that G=Z§’:1 g; is max;
If tie then choose subset that achieves a superior balance;
If G < 0 Then Exit;
Make all 2 moves permanent;
Free all cells; Goto Step 1

Chapter 2: Partitioning — p.55

Similar to the Kernighan-Lin algorithm, the effect of the movement of a

cell on the cutset is quantified with a gain function.
Let F'(¢) and T'(¢) be the From_block and To_block of cell i.
The gain g(¢) resulting from the movement of cell ¢ from block F'(%) to

block T'(%) is:

9(1) = FS(i) = TE(:)

where F'S(¢) = the number of nets connected to cell ¢ and not connected to any other cell
in the From_Block F'(%) of cell i.

and T'E(i) = the number of nets that are connected to cell ¢ and not crossing the cut.
Chapter 2: Partitioning — p.56

A . B

qi
5 o)A
5 :
ks 0@ Csp

Figure 9: Illustration of (a) Cut of nets. (b) Cut of
edges.

Chapter 2: Partitioning — p.57

o0
X
o,
[
o
=
.
=
S
=
i
&
S\
=
g
B
S
=
O

+1

otner Cell 1n o10C

* Therefore, by definition, £'S(2)=2. And T'E(2)=1 since
the only net connected and not crossing the cut is net m.

* Hence g(2)=2-1=1. Which means that the number of nets
cut will be reduced by 1 (from 3 to 2) if cell 2 were to be
moved from A to B.

Chapter 2: Partitioning — p.59

are connected to
cell 5 in block B, but one of them, that is, net £ 1s
crossing the cut, while net 5 1s not. Therefore, T'E(5) 1s
also 1. (see table of previous slide)

* The above observation can be translated into an efficient
procedure to compute the gains of all free cells.

Chapter 2: Partitioning — p.60

For each net ‘n’ on cell ‘2" Do
If F(n) =1Then g(i) < g(¢) + 1;
(*Cell 7 1s the only cell in the From_Block
connected to net n.*)
If T'(n) =0 Then g(i) < g(i) — 1
(* All of the cells connected to net n are
in the From_Block. *)
EndFor

EndFor

End.

Chapter 2: Partitioning — p.61

A(j) = 0,A(m)
2

A(q)
B

3)
B(j) = 2,B(m) =0,

¢ For cells in block A we have, the From_block A (F' = A) and To_block
i1s B (I' = B). For this configuration we get,

F(j)=0,F(m)=3,F(q) =2, F(k) =1, F(p) =1,
T(j) =2, T(m) =0, T(q) = 1, T(k) = 1, T(p) = 1

F'(7) is the number of cells of net ¢ in From_block.

Chapter 2: Partitioning — p.62

b

F(k)=1,F(p)=1,and T(m) = 0.

¢ Now, the application of “Compute_cell_gains” would produce the
following:

® =1, F = A;T = B;neton cell 1 is m. Values of interest are
T(m) = O;therefore, g(1) =0 —1 = —1.

® 1=2;F =A;T = B;nets on cell 2 are m, ¢, k, and p. Values of
interest are F'(k) = 1; F'(p) = 1; and T'(m) = 0; therefore,
g(2)=2-1=1.

® =3, F =A;T = B;nets on cell 3 are m and ¢, but only
T(m) = 0; therefore, g(3) =0 — 1= —1.

Chapter 2: Partitioning — p.63

* If no base cell 1s found then the procedure stops.

Algorithm Select_cell;
Begin
For each cell with maximum gain
If moving will create imbalance
Then discard it
EndIf
EndFor;
If neither block has a qualifying cell
Then Exit
End.

Chapter 2: Partitioning — p.64

ODINEC CASCS, UIC Z
However, we still move the cell with the expectation that
the move will allow the algorithm to “escape out of a

local minimum”.

¢ 9 C CC OI1-PCO VC.

To avoid migration of all cells to one block, during each
move, the balance criterion 1S maintained.

The notion of a tolerance factor 1s used in order to speed
up convergence from an unbalanced situation to a
balanced one.

Chapter 2: Partitioning — p.65

where
cells.

1S an 1mcreasing function ol the numoer o1 Iree

Initially £ 1s large and 1s slowly decreased with each pass
until it reduces to unity.

If more than one cell of maximum gain exists, and all
such cells satisty the balance criterion, then ties may be
broken depending on the size, internal connectivity, or
any other criterion.

Chapter 2: Partitioning — p.66

using the rollowing procedure.

Chapter 2: Partitioning — p.67

Else If T'(n) = 1 Then decrement gain of the only 7" cell on net n, if it is free
Endlf;

(* update F'(n) & T'(n) to reflect the move *)

F(n)«— F(n)—1;T(n) « T(n) + 1;

(* check for critical nets after the move *)

If F'(n) = 0 Then decrement gains of free cells on net n
Else If F'(n) = 1 Then increment the gain of the only
F cell on net n, if it is free
EndIf
EndFor
End.

Chapter 2: Partitioning — p.68

then we move on to Step 3.

Step S. Select best sequence of moves:

* After all the cells have been considered for movement, as
in the case of Kernighan-Lin, the best partition
encountered during the pass is taken as the output of the
pass. The number of cells to move 1s given by the value
of k£ which yields maximum positive gain G, where

k
G = i—19i-

Chapter 2: Partitioning — p.69

Chapter 2: Partitioning — p.70

sizes of cells are as follows:
s(c1)=3, s(c2)=2, s(c3)=4, s(cq4)=1, s(c5)=3, and s(cg)=5.
Solution:

* We have already found that cell ¢ 1s the candidate with
maximum gain.

* (9 also satisfies the balance criterion.

* Now, for each net n on cell ¢y we find its distribution
F(n) and T'(n) (that is, the number of cells on net n in the
From_block and 1n the To_block respectively before the
move).

Chapter 2: Partitioning — p.71

k
m
q
p

_ N W =
— e OO
S = N O
o D =

Notice that the change in net distribution to reflect the move 1s

a decrease in F'(n) and an increase in 1'(n).

Chapter 2: Partitioning — p.72

2. If T'(n) is zero then the gains of all free cells on the net n
are incremented.

3. If T'(n) is one then the gains of the only 7" cell on net n is
decremented (if the cell 1s free).

In our case, the selected base cell ¢y 1s connected to nets k, m,
p, and ¢, and all of them are critical, with T'(m) = 0, and

T(k)=T(q) =T/ =1.

Chapter 2: Partitioning — p.73

Gain due to T'(n) due to F'(n) Gains
Cells | k |m|q |p ||k | m]|]qg]|p || Old | New
C1 1 -1 0
C3 1 1 -1 1
Cy -1 0) -1
Cs -1 -1 0)
Cq -1 -1 | -1

Chapter 2: Partitioning — p.74

F' cell on net n 1s incremented, if 1t 1s free.

* Since we are looking for the net distribution after the
move, we look at the values of F".

* Here we have [’ (k) = F’(p) =0 and F’(q) = 1.

* The contribution to gain due to cell 5 on net k£ and cell 6
on net p 1s —1, and since cell 3 1s the only F' cell (cell on
From_block), the gain due to 1t 1s +1.

* These values are tabulated in the four columns “Gain due
to F'(n))” of previous table.

Chapter 2: Partitioning — p.75

* We continue the above procedure of selecting the base
cell (Step 2) for different values of .

° Imtially Ag={1,2,3}, Bo={4,5,6}. The results are
summarized below.

i = 1: The cell with maximum gain is ¢o. |A| = 7. This move
satisfies the balance criterion. Maximum gain g; = 1. Lock cell
{ca}. A1={1,3}, B1={2,4,5,6}.

i = 2 : Cell with maximum gain is c3. |A| = 3. The move satisfies the
balance criterion. Maximum gain go = 1. Locked cells are {co,

cs}. Ax={1}, B>={2,3,4,5,6}.

Chapter 2: Partitioning — p.76

i =4 : Cell with maximum gain is ¢;. |A| = 5. This satisfies the balance

criterion. Maximum gain g4 = 1. Locked cells are {cy, c2, c3, cg}.
As={6}, B4={1,2,3,4,5}.

i =5 : Cell with maximum gain is c5. |A| = 8. This satisfies the balance

criterion. Maximum gain g5 = —2. Locked cells are {c1, c2, c3, c5,¢5}.
As={5,6}, Bs={1,2,3,4}.

i = 6 : Cell with maximum gain is c¢4. |A| = 9. This satisfies the balance

criterion. Maximum gain gg = 0. All cells are locked. Ag={4,5,6},
Bs={1,2,3}.

Chapter 2: Partitioning — p.77

since the balance criterion 1s satisfied, it is selected for
movement.

We now look for £ that will maximize G =Z§:1 gj;

1 < k <17. We have a tie with two candidates for k, k = 2
and £ = 4, giving a gain of +2. Since the value of £ =4
results in a better balance between partitions, we choose
k=4. Therefore we move across partitions the first four
cells selected, which are cells c¢9, c3, cg, and ¢;. The final
partition 1s A ={6}, and B ={1,2,3,4,5}. The cost of nets
cut 1s reduced from 3 to 1.

Chapter 2: Partitioning — p.78

introduced by Kirkpatrick, Gelatt, and Vecchi in 1983.

¢ The simulated annealing heuristic derives inspiration
from the process of carefully cooling molten metals in
order to obtain a good crystal structure.

* In SA, first an initial solution is selected; then a controlled
walk through the search space is performed until no
sizeable improvement can be made or we run out of time.

* Simulated annealing has hill-climbing capability.

Chapter 2: Partitioning — p.79

Figure 10: Local vs. Global Optima

Chapter 2: Partitioning — p.80

Figure 11: Design space analogous to a hilly terrain

Chapter 2: Partitioning — p.81

begin
T = To;
S = So;
Time = 0;

repeat
Call Metropolis(S,T, M);
Time = Trme + M;
T=axT,
M=pxM
until (7T'ime > MaxT'ime);
Output Best solution found
End. (fof SA *)

Chapter 2: Partitioning — p.82

if ((Ah< 0) or (random < e 2MT))
then S = NewS;
{accept the solution }
M=M-1
until (M =0)
End. (*of Metropolis®).

Chapter 2: Partitioning — p.83

similar scheme to simulate a collection of atoms in
equilibrium at a given temperature.

Besides the temperature parameter, Metropolis receives
as input the current solution .S which it improves through
local search. Metropolis must also be provided with the
value M, which 1s the amount of time for which
annealing must be applied at temperature 7.

The procedure Simulated_annealing simply invokes
Metropolis at various (decreasing) temperatures.

Chapter 2: Partitioning — p.84

cCIMperaturc gradaually tncreasea as tiemperaturc
lowered. This is done using the parameter G > 1.

* The variable Time keeps track of the time already
expended by the heuristic. The annealing procedure halts
when Time exceeds the allowed time.

Chapter 2: Partitioning — p.85

(3) evaluate the objective function for these solutions.

Chapter 2: Partitioning — p.86

	Introduction
	Partitioning
	Partitioning - contd
	Partitioning - examples
	K-way Partitioning
	Constraints
	Constraints - contd
	Cost Functions
	Two-Way Partitioning
	Two-Way Partitioning-contd
	Two-Way Partitioning-contd
	Kernighan-Lin Algorithm
	K-L Algorithm - contd
	K-L Algorithm - contd
	Definitions
	Definitions
	Example
	Example-contd
	Proof
	Proof - contd
	Proof - contd
	Proof - contd
	Proof - contd
	Proof - contd
	Overview of K-L Algorithm:
	Greedy Procedure-Identify X,Y
	Iterative Improvement
	K-L algorithm for TWPP
	Example
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Time Complexity
	Time Complexity - contd
	Time Complexity - contd
	Time Complexity - contd
	Variations of K-L Algorithm
	Another approach
	Another approach - contd
	$k-$way partition
	$k-$way partition - contd
	Fiduccia-Mattheyses Heuristic
	Illustration
	KL vs. FM heuristics
	KL vs. FM heuristics - contd
	KL vs. FM heuristics - contd
	Definitions
	Definitions - contd
	Definitions - contd
	Illustration of critical nets
	FM Algorithm TWPP
	FM Algorithm TWPP - contd
	Example
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Another Example
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Simulated Annealing
	SA - contd
	SA - contd
	SA - Algorithm
	SA - Algorithm
	SA - contd
	SA - contd
	SA - contd

