
Chapter 2:
Partitioning

Sadiq M. Sait & Habib Youssef

King Fahd University of Petroleum & Minerals
College of Computer Sciences & Engineering

Department of Computer Engineering

September 2003

Chapter 2: Partitioning – p.1

Introduction
• Introduction to Partitioning
• Problem Definition
• Cost Function and Constraints
• Approaches to Partitioning

1. Kernighan-Lin Heuristic
2. Fiduccia-Mattheyses heuristic
3. Simulated Annealing

Chapter 2: Partitioning – p.2

Partitioning
• Partitioning is assignment of logic components to

physical packages.

1. Circuit is too large to be placed on a single chip.

2. I/O pin limitations.

• Relationship between the number of gates and the
number of I/O pins is estimated by Rent‘s rule,

IO = tGr

where:
IO: number of I/O pins,
t: number of terminals per gate,
G: the number of gates in the circuit, and
r is Rent’s exponent (0 < r < 1).

Chapter 2: Partitioning – p.3

Partitioning - contd
• A large pin count increases dramatically the cost of

packaging the circuit.
• The number of I/O pins must correspond to one of the

standard packaging technologies - 12, 40, 128, 256 etc.
• When it becomes necessary to split a circuit across

packages, care must be exercised to minimize
cross-package interconnections. because off-chip wires
are undesirable.

1. Electrical signals travel slower along wires external to the chip.

2. Off-chip wires take up area on a PCB and reduce reliability.
Printed wiring and plated-through holes are both likely sources of
trouble.

3. Finally, since off-chip wires must originate and terminate into I/O
pins, more off-chip wires essentially mean more I/O pins.

Chapter 2: Partitioning – p.4

Partitioning - examples
1

8

2

7

4

6

5

3

C

C

1

2

1

2

3

4

5

6

7

8

1

2 3

4

5 6

7 8

(a)

(b)

(c)

Figure 1: A circuit to be partitioned
Chapter 2: Partitioning – p.5

K-way Partitioning
Given:

• A graph G(V,E), where each vertex v ∈ V has a size
s(v), and each edge e ∈ E has a weight w(e).

Output:

• A division of the set V into k subsets V1, V2, · · · , Vk, such
that

1. an objective function is optimized,
2. subject to certain constraints.

Chapter 2: Partitioning – p.6

Constraints
• The cutset of a partition is indicated by ψ and is equal to

the set of edges cut by the partition.
• The size of the ith subcircuit is given by

S(Vi) =
∑

v∈Vi

s(v)

where s(v) is the size of a node v (area of the
corresponding circuit element).

• Let Ai be the upper bound on the size of ith subcircuit;
then,

∑

v∈Vi

s(v) ≤ Ai

Chapter 2: Partitioning – p.7

Constraints - contd
• If it is desirable to divide the circuit into roughly equal

sizes then,

S(Vi) =
∑

v∈Vi

s(v) ≤ d
1

k

∑

v∈V

s(v)e =
1

k
S(V)

• If all the circuit elements have the same size, then above
equation reduces to:

ni ≤
n

k

where ni and n are the number of elements in Vi and in V
respectively.

Chapter 2: Partitioning – p.8

Cost Functions
Minimize External Wiring.

Cost =
∑

e∈ψ

w(e)

where w(e) is the cost of edge/connection e.

• Let the partitions be numbered 1, 2, · · · , k, and p(u) be the
partition number of node u.

• Equivalently, one can write the function Cost as follows:

Cost =
∑

∀e=(u,v)&p(u)6=p(v)

w(e)

Chapter 2: Partitioning – p.9

Two-Way Partitioning
• Given a circuit with 2n elements, we wish to generate a

balanced two-way partition of the circuit into two
subcircuits of n elements each.

• The cost function is the size of the cutset.
• If we do not place the constraint that the partition be

balanced, the two-way partitioning problem (TWPP) is
easy. One simply applies the well known max-flow
mincut.

• However, the balance criterion is extremely important in
practice and cannot be overlooked. This constraint makes
TWPP NP-Complete.

Chapter 2: Partitioning – p.10

Two-Way Partitioning-contd
• A number of “heuristic” techniques can be used to find a

good feasible solution.
1. Deterministic.

(a) Kernighan-Lin.
(b) Fiduccia-Mattheyes.

2. Non-Deterministic.
(a) Simulated Annealing.
(b) Genetic Algorithm.
(c) Tabu Search.

3. Constructive vs. Iterative.

Chapter 2: Partitioning – p.11

Two-Way Partitioning-contd

Yes

No

Problem instance

Constructive heuristic

 Stop; Output

 best solution

encountered so far

Iterative heuristic

 Stopping

 criteria

 met ?

Figure 2: General structure combining constructive
and iterative heuristics

Chapter 2: Partitioning – p.12

Kernighan-Lin Algorithm
• Most popular algorithm for the two-way partitioning

problem.
• The algorithm can also be extended to solve more general

partitioning problems.
• The problem is characterized by a connectivity matrix C.

Element cij represents the sum of weights of the edges
connecting elements i and j.

• In TWPP, since the edges have unit weights, cij simply
counts the number of edges connecting i and j.

• The output of the partitioning algorithm is a pair of sets A
and B such that |A| = n = |B|, and A ∩B = ∅, and such
that the size of the cutset T is minimized.

Chapter 2: Partitioning – p.13

K-L Algorithm - contd

T =
∑

a∈A,b∈B

cab

• Kernighan-Lin heuristic is an iterative improvement algorithm. It starts
from an initial partition (A, B) such that |A| = n = |B|, and
A ∩B = ∅.

• How can a given partition be improved?

• Let P ∗ = {A∗, B∗} be the optimum partition and P = {A, B} be the
current partition.

• Then, in order to attain P ∗ from P , one has to swap a subset X ⊆ A

with a subset Y ⊆ B such that,

(1) |X| = |Y |

(2) X = A ∩B∗

(3) Y = A∗ ∩B Chapter 2: Partitioning – p.14

K-L Algorithm - contd
• A∗ = (A−X) + Y and B∗ = (B − Y) +X .
• The problem of identifying X and Y is as hard as that of

finding P ∗ = {A∗, B∗}.

A B A* B*

Initial Optimal

X XYY

Figure 3: Initial & optimal partitions

Chapter 2: Partitioning – p.15

Definitions
Definition 1:
Consider any node a in block A. The contribution of node a to
the cutset is called the external cost of a and is denoted as Ea,
where

Ea =
∑

v∈B

cav

Definition 2:
The internal cost Ia of node a ∈ A is defined as follows.

Ia =
∑

v∈A

cav

Chapter 2: Partitioning – p.16

Definitions
Moving node a from block A to block B would increase the
value of the cutset by Ia and decrease it by Ea.

Therefore, the benefit of moving a from A to B is

Da = Ea − Ia

Chapter 2: Partitioning – p.17

Example
Consider the figure with, Ia=2, Ib=3, Ea =3, Eb=1, Da = 1,
and Db = −2.

a

b

Figure 4: Internal cost versus external costs

Chapter 2: Partitioning – p.18

Example-contd
• To maintain balanced partition, we must move a node

from B to A each time we move a node from A to B.
• The effect of swapping two modules a ∈ A with b ∈ B is

characterized by the following lemma.

Lemma 1:
• If two elements a ∈ A and b ∈ B are interchanged, the

reduction in the cost is given by

gab = Da +Db − 2cab

Chapter 2: Partitioning – p.19

Proof
• The external cost can be re-written as

Ea = cab +
∑

v∈B,v 6=b

cav

• Therefore,

Da = Ea − Ia = cab +
∑

v∈B,v 6=b

cav − Ia

• Similarly

Db = Eb − Ib = cab +
∑

u∈A,u6=a

cbu − Ib

Chapter 2: Partitioning – p.20

Proof - contd
• Moving a from A to B reduces the cost by

∑

v∈B,v 6=b

cav − Ia = Da − cab

• Moving b from B to A reduces the cost by

∑

u∈A,u6=a

cbu − Ib = Db − cab

• When both moves are carried out, the total cost reduction
is given by the sum of above two equations, that is

gab = Da +Db − 2cab

Chapter 2: Partitioning – p.21

Proof - contd
• The following lemma tells us how to update the
D−values after a swap.

Lemma 2:
• If two elements a ∈ A and b ∈ B are interchanged, then

the new D−values are given by

D
′

x = Dx + 2cxa − 2cxb, ∀x ∈ A− {a}

D
′

y = Dy + 2cyb − 2cya, ∀y ∈ B − {b}

• Notice that if a module x is neither connected to a nor to
b then cxa = cxb = 0, and, D′

x = Dx.

Chapter 2: Partitioning – p.22

Proof - contd
A B

a

xa

xb

b

x

x

a
b

C

C

C

C

xb

xa

A B

Figure 5: Updating D-Values after an exchange

Chapter 2: Partitioning – p.23

Proof - contd
• Consider a node x ∈ A− {a}. Since b has entered block
A, the internal cost of x increases by cxb.

• Similarly, since a has entered the opposite block B, the
internal cost of x must be decreased by cxa.

• The new internal cost of x therefore is

I
′

x = Ix − cxa + cxb

Chapter 2: Partitioning – p.24

Proof - contd
• One can similarly show that the new external cost of x is

E
′

x = Ex + cxa − cxb

• Thus the new D−value of x ∈ A− {a} is

D
′

x = E
′

x − I
′

x = Dx + 2cxa − 2cxb

• Similarly, the new D−value of y ∈ B − {b} is

D
′

y = E
′

y − I
′

y = Dy + 2cyb − 2cya

Chapter 2: Partitioning – p.25

Overview of K-L Algorithm:
• Start from an initial partition {A,B} of n elements each.
• Use lemmas 1 and 2 together with a greedy procedure to

identify two subsets X ⊆ A, and Y ⊆ B, of equal
cardinality, such that when interchanged, the partition
cost is improved.

• X and Y may be empty, indicating in that case that the
current partition can no longer be improved.

Chapter 2: Partitioning – p.26

Greedy Procedure-Identify X ,Y
1. Compute gab for all a ∈ A and b ∈ B.

2. Select the pair (a1, b1) with maximum gain g1 and lock a1 and b1.

3. Update the D−values of remaining free cells and recompute the gains.

4. Then a second pair (a2, b2) with maximum gain g2 is selected and
locked. Hence, the gain of swapping the pair (a1, b1) followed by the
(a2, b2) swap is G2 = g1 + g2.

5. Continue selecting (a3, b3), · · · , (ai, bi), · · ·, (an, bn) with gains g3,
· · ·, gi, · · · , gn.

6. The gain of making the swap of the first k pairs is Gk =
∑k

i=1
gi. If

there is no k such that Gk > 0 then the current partition cannot be
improved; otherwise choose the k that maximizes Gk, and make the
interchange of {a1, a2, · · · , ak} with {b1, b2, · · · , bk} permanent.

Chapter 2: Partitioning – p.27

Iterative Improvement
• The above improvement procedure constitutes a single

pass of the Kernighan-Lin procedure.
• The partition obtained after the ith pass constitutes the

initial partition of the i+ 1st pass.
• Iterations are terminated when Gk ≤ 0, that is, no further

improvements can be obtained by pairwise swapping.

Chapter 2: Partitioning – p.28

K-L algorithm for TWPP
Algorithm KL_TWPP
Begin
Step 1. V = set of 2n elements; {A,B} is initial partition such that

|A| = |B|; A ∩B = ∅; and A ∪B = V ;
Step 2. Compute Dv for all v ∈ V ; queue← φ ; and i← 1;

A′ = A; B′ = B;

Step 3. Choose ai ∈ A′, bi ∈ B′, which maximizes
gi = Dai

+Dbi
− 2caibi

;

add the pair (ai, bi) to queue;
A

′

= A
′

− {ai};B
′

= B
′

− {bi};
Step 4. If A′ and B′ are both empty then Goto Step 5

Else recalculate D−values for A′ ∪B′;
i← i+ 1; Goto Step 3;

Step 5. Find k to maximize the partial sum
G=

∑k
i=1 gi;

If G > 0 then
Move X = {a1, · · · , ak} to B;
move Y = {b1, · · · , bk} to A;
Goto Step 2

Else STOP
EndIf End. Chapter 2: Partitioning – p.29

Example

12

3

4

5

6

12

3

4
5

6 G
G

2
1

(a) (b)

Figure 6: (a) A circuit to be partitioned (b) Its corre-
sponding graph

Chapter 2: Partitioning – p.30

Example - contd
• Step 1: Initialization.

Let the initial partition be a random division of vertices
into the partition A={2,3,4} and B={1,5,6}.

A′ = A ={2,3,4}, and B′ = B ={1,5,6}.
• Step 2: Compute D−values.

D1 = E1 − I1 = 1− 0 = +1

D2 = E2 − I2 = 1− 2 = −1

D3 = E3 − I3 = 0− 1 = −1

D4 = E4 − I4 = 2− 1 = +1

D5 = E5 − I5 = 1− 1 = +0

D6 = E6 − I6 = 1− 1 = +0

Chapter 2: Partitioning – p.31

Example - contd
• Step 3: Compute gains.

g21 = D2 +D1 − 2c21 = (−1) + (+1)− 2(1) = −2

g25 = D2 +D5 − 2c25 = (−1) + (+0)− 2(0) = −1

g26 = D2 +D6 − 2c26 = (−1) + (+0)− 2(0) = −1

g31 = D3 +D1 − 2c31 = (−1) + (+1)− 2(0) = +0

g35 = D3 +D5 − 2c35 = (−1) + (+0)− 2(0) = −1

g36 = D3 +D6 − 2c36 = (−1) + (+0)− 2(0) = −1

g41 = D4 +D1 − 2c41 = (+1) + (+1)− 2(0) = +2

g45 = D4 +D5 − 2c45 = (+1) + (+0)− 2(1) = −1

g46 = D4 +D6 − 2c46 = (+1) + (+0)− 2(1) = −1

• The largest g value is g41. (a1, b1) is (4, 1), the gain
g41 = g1= 2, and
A′ = A′−{4}={2,3}, B′ = B′ − {1} = {5, 6}.

Chapter 2: Partitioning – p.32

Example - contd
• Both A′ and B′ are not empty; then we update the
D−values in the next step and repeat the procedure from
Step 3.

• Step 4: Update D−values of nodes connected to (4,1).

The vertices connected to (4,1) are vertex (2) in set A′

and vertices (5,6) in set B′. The new D−values for
vertices of A′ and B′ are given by

D
′

2 = D2 + 2c24 − 2c21 = −1 + 2(1− 1) = −1

D
′

5 = D5 + 2c51 − 2c54 = +0 + 2(0− 1) = −2

D
′

6 = D6 + 2c61 − 2c64 = +0 + 2(0− 1) = −2

Chapter 2: Partitioning – p.33

Example - contd
• To repeat Step 3, we assign Di = D

′

i and then recompute
the gains:

g25 = D2 +D5 − 2c25 = (−1) + (−2)− 2(0) = −3

g26 = D2 +D6 − 2c26 = (−1) + (−2)− 2(0) = −3

g35 = D3 +D5 − 2c35 = (−1) + (−2)− 2(0) = −3

g36 = D3 +D6 − 2c36 = (−1) + (−2)− 2(0) = −3

• All the g values are equal, so we arbitrarily choose g36,
and hence the pair (a2, b2) is (3, 6),

g36 = g2 = −3,
A′ = A′ − {3} = {2},
B′ = B′ − {6} = {5}.

Chapter 2: Partitioning – p.34

Example - contd
• The new D−values are:

D
′

2 = D2 + 2c23 − 2c26 = −1 + 2(1− 0) = 1

D
′

5 = D5 + 2c56 − 2c53 = −2 + 2(1− 0) = 0

• The corresponding new gain is:
g25 = D2 +D5 − 2c52 = (+1) + (0)− 2(0) = +1

• Therefore the last pair (a3, b3) is (2,5) and the
corresponding gain is g25 = g3 = +1.

Chapter 2: Partitioning – p.35

Example - contd
• Step 5: Determine k.
• We see that g1 = +2, g1 + g2 = −1, and
g1 + g2 + g3 = 0.

• The value of k that results in maximum G is 1.
• Therefore, X = {a1} = {4} and Y = {b1} = {1}.
• The new partition that results from moving X to B and Y

to A is, A = {1, 2, 3} and B = {4, 5, 6}.
• The entire procedure is repeated again with this new

partition as the initial partition.
• Verify that the second iteration of the algorithm is also

the last, and that the best solution obtained is
A = {1, 2, 3} and B = {4, 5, 6}.

Chapter 2: Partitioning – p.36

Time Complexity
• Computation of the D−values requires O(n2) time

((O(n) for each node).
• It takes constant time to update any D−value. We update

as many as (2n− 2i) D−values after swapping the pair
(ai, bi).

• Therefore the total time spent in updating the D−values
can be

n
∑

i=1

(2n− 2i) = O(n2)

• The pair selection procedure is the most expensive step in
the Kernighan-Lin algorithm. If we want to pick (ai, bi),
there are as many as (n− i+ 1)2 pairs to choose from
leading to an overall complexity of O(n3). Chapter 2: Partitioning – p.37

Time Complexity - contd
• To avoid looking at all pairs, one can proceed as follows.
• Recall that, while selecting (ai, bi), we want to maximize
gi = Dai

+Dbi − 2caibi .

• Suppose that we sort the D−values in a decreasing order
of their magnitudes. Thus, for elements of Block A,

Da1 ≥ Da2 ≥ · · · ≥ Da(n−i+1)

• Similarly, for elements of Block B,

Db1 ≥ Db2 ≥ · · · ≥ Db(n−i+1)

Chapter 2: Partitioning – p.38

Time Complexity - contd
• Sorting requires O(n log n).
• Next, we begin examining Dai

and Dbj pairwise.
• If we come across a pair (Dak

, Dbl) such that (Dak
+Dbl)

is less than the gain seen so far in this improvement
phase, then we do not have to examine any more pairs.

• Hence, if Dak
+Dbl < gij for some i, j then gkl < gij .

• Since it is almost never required to examine all the pairs
(Dai

, Dbj), the overall complexity of selecting a pair
(ai, bi) is O(n log n).

• Since n exchange pairs are selected in one pass, the
complexity of Step 3 is O(n2 log n).

Chapter 2: Partitioning – p.39

Time Complexity - contd
• Step 5 takes only linear time.

• The complexity of the Kernighan-Lin algorithm is O(pn2 log n), where
p is the number of iterations of the improvement procedure.

• Experiments on large practical circuits have indicated that p does not
increase with n.

• The time complexity of the pair selection step can be improved by
scanning the unsorted list of D−values and selecting a and b which
maximize Da and Db. Since this can be done in linear time, the
algorithm’s time complexity reduces to O(n2).

• This scheme is suited for sparse matrices where the probability of

cab > 0 is small. Of course, this is an approximation of the greedy

selection procedure, and may generate a different solution as compared

to greedy selection.

Chapter 2: Partitioning – p.40

Variations of K-L Algorithm
The Kernighan-Lin algorithm may be extended to solve several
other cases of the partitioning problem.

Unequal sized blocks. Partitioning of a graph G = (V,E)
with 2n vertices into two subgraphs of unequal sizes n1
and n2, n1 + n2 = 2n.
1. Divide the set V into two subsets A and B, one

containing MIN(n1, n2) vertices and the other
containing MAX(n1, n2) vertices (this division may
be done arbitrarily).

2. Apply the algorithm starting from Step 2, but restrict
the maximum number of vertices that can be
interchanged in one pass to MIN(n1, n2).

Chapter 2: Partitioning – p.41

Another approach
• Another possible approach would be to proceed as

follows.
• Assume that n1 < n2.
• To divide V such that there are at least n1 vertices in

block A and at most n2 vertices in block B, the procedure
shown below may be used:
1. Divide the set V into blocks A and B; A containing

n1 vertices and B containing n2 vertices.
2. Add n2 − n1 dummy vertices to block A. Dummy

vertices have no connections to the original graph.
3. Apply the algorithm starting from Step 2.
4. Remove all dummy vertices.

Chapter 2: Partitioning – p.42

Another approach - contd
Unequal sized elements

• To generate a two-way partition of a graph whose vertices
have unequal sizes, we may proceed as follows:
1. Without loss of generality assume that the smallest

element has unit size.
2. Replace each element of size s with s vertices which

are fully connected with edges of infinite weight. (In
practice, the weight is set to a very large number M .)

3. Apply the original Kernighan-Lin algorithm.

Chapter 2: Partitioning – p.43

k−way partition
• Assume that the graph has k · n vertices, k > 2, and it is

required to generate a k−way partition, each with n
elements.

1. Begin with a random partition of k sets of n vertices
each.

2. Apply the two-way partitioning procedure on each
pair of partitions.

Chapter 2: Partitioning – p.44

k−way partition - contd
• Pairwise optimality is only a necessary condition for

optimality in the k−way partitioning problem. Usually a
complex interchange of 3 or more items from 3 or more
subsets will be required to reduce the pairwise optimal to
the global optimal solution.

• Since there are
(k
2

)

pairs to consider, the time complexity
for one pass through all pairs for the O(n2)-procedure is
(k
2

)

n2 = O(k2n2).

• In general, more passes than this will be actually
required, because when a particular pair of partitions is
optimized, the optimality of these partitions with respect
to others may change.

Chapter 2: Partitioning – p.45

Fiduccia-Mattheyses Heuristic
• Fiduccia-Mattheyses heuristic is an iterative procedure

that takes into consideration multipin nets as well as sizes
of circuit elements.

• Fiduccia-Mattheyses heuristic is a technique used to find
a solution to the following bipartitioning problem:

• Given a circuit consisting of C cells connected by a set of
N nets (where each net connects at least two cells), the
problem is to partition circuit C into two blocks A and B
such that the number of nets which have cells in both the
blocks is minimized and a balance factor r is satisfied.

Chapter 2: Partitioning – p.46

Illustration

m

p

k

q

1

2

4

5

6

3

m

q

k

p

1

2

3 4

5

6

qqm

m

(a) (b)

j
j

A B

Figure 7: Illustration of (a) Cut of nets. (b) Cut of
edges

Chapter 2: Partitioning – p.47

KL vs. FM heuristics
• Movement of cells

1. In Kernighan-Lin heuristic, during each pass a pair of
cells is selected for swapping, one from each block.

2. In the Fiduccia-Mattheyses heuristic a single cell at a
time, from either block is selected and considered for
movement to the other block.

• Objective of partitioning
1. Kernighan-Lin heuristic partitions a graph into two

blocks such that the cost of edges cut is minimum.
2. Fiduccia-Mattheyses heuristic aims at reducing the

cost of nets cut by the partition.

Chapter 2: Partitioning – p.48

KL vs. FM heuristics - contd
• Selection of cells

1. Fiduccia-Mattheyses heuristic is similar to the
Kernighan-Lin in the selection of cells. But the gain
due to the movement of a single cell from one block
to another is computed instead of the gain due to
swap of two cells. Once a cell is selected for
movement, it is locked for the remainder of that pass.
The total number of cells that can change blocks is
then given by the best sequence of moves
c1, c2, · · · , ck.

2. In contrast, in Kernighan-Lin the first best k pairs in a
pass are swapped.

Chapter 2: Partitioning – p.49

KL vs. FM heuristics - contd
• Balance criterion?

1. Kernighan-Lin heuristic can produce imbalanced partition in case
cells are of different sizes.

2. Fiduccia-Mattheyses heuristic is designed to handle imbalance,
and it produces a balanced partition with respect to size. The
balance factor r (called ratio) is user specified and is defined as
follows: r = |A|

|A|+|B| , where |A| and |B| are the sizes of
partitioned blocks A and B.

• Some of the cells can be initially locked to one of the
partitions.

• Time complexity of Fiduccia-Mattheyses heuristic is
linear. In practice only a very small number of passes are
required leading to a fast approximate algorithm for
min-cut partitioning.

Chapter 2: Partitioning – p.50

Definitions
Let p(j) be the number of pins of cell ‘j’, and s(j) be the size
of cell ‘j’, for j = 1, 2, · · · , C. If V is the set of the C cells,
then |V | =

∑C
i=1 s(i).

“Cutstate of a net” : A net is said to be cut if it has cells in
both blocks, and is uncut otherwise. A variable cutstate
is used to denote the state of a net.

“Cutset of partition” : The cutset of a partition is the
cardinality of the set of all nets with cutstate equal to cut.

“Gain of cell” : The gain g(i) of a cell ‘i’ is the number of
nets by which the cutset would decrease if cell ‘i’ were to
be moved. A cell is moved from its current block (the
From_block) to its complementary block (the To_block).

Chapter 2: Partitioning – p.51

Definitions - contd
“Balance criterion” : To avoid having all cells migrate to one

block a balancing criterion is maintained.
A partition (A,B) is balanced iff

r × |V | − smax ≤ |A| ≤ r × |V |+ smax(1)

where |A|+ |B| = |V |; and smax=Max[s(i)],
i ∈ A ∪B = V .

“Base cell” : The cell selected for movement from one block
to another is called “base cell”. It is the cell with
maximum gain and the one whose movement will not
violate the balance criterion.

Chapter 2: Partitioning – p.52

Definitions - contd
“Distribution of a net” : Distribution of a net n is a pair

(A(n), B(n)) where (A,B) is an arbitrary partition, and,
A(n) is the number of cells of net n that are in A and
B(n) is the number of cells of net n that are in B.

“Critical net” : A net is critical if it has a cell which if moved
will change its cutstate. That is, if and only if A(n) is
either 0 or 1, or B(n) is either 0 or 1.

Chapter 2: Partitioning – p.53

Illustration of critical nets

(a) (b)

(c) (d)

A B

A BA B

A B

Figure 8: Block to the left of partition is designated as
‘A’ and to the right as ‘B’. (a) A(n) = 1 (b) A(n) = 0

(c) B(n) = 1 (d) B(n) = 0
Chapter 2: Partitioning – p.54

FM Algorithm TWPP
Algorithm FM_TWPP
Begin
Step 1. Compute gains of all cells.
Step 2. i =1. Select ‘base cell’ and call it ci;

If no base cell Then Exit;
A base cell is one which

(i) has maximum gain;
(ii) satisfies balance criterion;

If tie Then use Size criterion or Internal connections;
Step 3. Lock cell ci;

Update gains of cells of those affected critical nets;
Step 4. If free cells 6= φ Then i = i+ 1; select next base cell;

If ci 6= φ then Goto Step 3;
Step 5. Select best sequence of moves c1, c2, · · · , ck

(1 ≤ k ≤ i) such that G=
∑k

j=1 gj is max;
If tie then choose subset that achieves a superior balance;
If G ≤ 0 Then Exit;

Step 6. Make all i moves permanent;
Free all cells; Goto Step 1

End.
Chapter 2: Partitioning – p.55

FM Algorithm TWPP - contd
Step 1.
• The first step consists of computing the gains of all free cells.

• Cells are considered to be free if they are not locked either initially by
the user, or after they have been moved during this pass.

• Similar to the Kernighan-Lin algorithm, the effect of the movement of a
cell on the cutset is quantified with a gain function.

• Let F (i) and T (i) be the From_block and To_block of cell i.

• The gain g(i) resulting from the movement of cell i from block F (i) to
block T (i) is:

g(i) = FS(i)− TE(i)

• where FS(i) = the number of nets connected to cell i and not connected to any other cell
in the From_Block F (i) of cell i.

• and TE(i) = the number of nets that are connected to cell i and not crossing the cut.
Chapter 2: Partitioning – p.56

Example

m

p

k

q

1

2

4

5

6

3

m

q

k

p

1

2

3 4

5

6

qqm

m

(a) (b)

j
j

A B

Figure 9: Illustration of (a) Cut of nets. (b) Cut of
edges.

Chapter 2: Partitioning – p.57

Example - contd
Gains of cells

Cell i F T FS(i) TE(i) g(i)

1 A B 0 1 -1
2 A B 2 1 +1
3 A B 0 1 -1
4 B A 1 1 0
5 B A 1 1 0
6 B A 1 0 +1

Chapter 2: Partitioning – p.58

Example - contd
• Consider cell 2, its From_Block is A and its To_Block is
B.

• Nets k, m, p, and q are connected to cell 2 of block A, of
these only two nets k and p are not connected to any
other cell in block A.

• Therefore, by definition, FS(2)=2. And TE(2)=1 since
the only net connected and not crossing the cut is net m.

• Hence g(2)=2-1=1. Which means that the number of nets
cut will be reduced by 1 (from 3 to 2) if cell 2 were to be
moved from A to B.

Chapter 2: Partitioning – p.59

Example - contd
• Consider cell 4. In Block B, cell 4 has only one net (net
j) which is connected to it and also not crossing the cut,
therefore TE(4)=1. FS(4)=1 and g(4)=1-1=0, that is, no
gain.

• Finally consider cell 5. Two nets j and k are connected to
cell 5 in block B, but one of them, that is, net k is
crossing the cut, while net j is not. Therefore, TE(5) is
also 1. (see table of previous slide)

• The above observation can be translated into an efficient
procedure to compute the gains of all free cells.

Chapter 2: Partitioning – p.60

Example - contd
Algorithm Compute_cell_gains.
Begin

For each free cell ‘i’ Do
g(i)← 0;
F ← From_block of cell i;
T ← To_block of cell i;
For each net ‘n’ on cell ‘i’ Do

If F (n) = 1 Then g(i)← g(i) + 1;
(*Cell i is the only cell in the From_Block

connected to net n.*)
If T (n) = 0 Then g(i)← g(i)− 1

(* All of the cells connected to net n are
in the From_Block. *)

EndFor
EndFor

End.
Chapter 2: Partitioning – p.61

Example - contd
• We apply the previous procedure compute the gains of all the free cells

of the circuit.

• We first compute the values of A(n) and B(n) (where A(n) and B(n)

are the numbers of cells of net n that are in block A and block B

respectively). For the given circuit we have,

A(j) = 0,A(m) = 3,A(q) = 2,A(k) = 1,A(p) = 1,

B(j) = 2,B(m) = 0,B(q) = 1,B(k) = 1,B(p) = 1.

• For cells in block A we have, the From_block A (F = A) and To_block
is B (T = B). For this configuration we get,

F (j) = 0, F (m) = 3, F (q) = 2, F (k) = 1, F (p) = 1,

T (j) = 2, T (m) = 0, T (q) = 1, T (k) = 1, T (p) = 1.

F (i) is the number of cells of net i in From_block.

Chapter 2: Partitioning – p.62

Example - contd
• Since only critical nets affect the gains, we are interested only in those

values which have,
• for cells of block A, A(n) = 1 and B(n) = 0, and
• for cells of block B, B(n) = 1 and A(n) = 0.

• Therefore, values of interest for Block A are
F (k) = 1, F (p) = 1, and T (m) = 0.

• Now, the application of “Compute_cell_gains” would produce the
following:
• i = 1; F = A; T = B; net on cell 1 is m. Values of interest are

T (m) = 0;therefore, g(1) = 0− 1 = −1.
• i = 2; F = A; T = B; nets on cell 2 are m, q, k, and p. Values of

interest are F (k) = 1; F (p) = 1; and T (m) = 0; therefore,
g(2) = 2− 1 = 1.

• i = 3; F = A; T = B; nets on cell 3 are m and q, but only
T (m) = 0; therefore, g(3) = 0− 1 = −1.

Chapter 2: Partitioning – p.63

Example - contd
Step 2. Selection of ‘base cell
• Having computed the gains of each cell, we now choose

the ‘base cell’.
• The base cell is one that has a maximum gain and does

not violate the balance criterion.
• If no base cell is found then the procedure stops.

Algorithm Select_cell;
Begin
For each cell with maximum gain

If moving will create imbalance
Then discard it

EndIf
EndFor;

If neither block has a qualifying cell
Then Exit

End.

Chapter 2: Partitioning – p.64

Example - contd
Step 2. Selection of ‘base cell’ (Cont.):

• When the balance criterion is satisfied then the cell with
maximum gain is selected as the base cell.

• In some cases, the gain of the cell is non-positive.
However, we still move the cell with the expectation that
the move will allow the algorithm to “escape out of a
local minimum”.

• To avoid migration of all cells to one block, during each
move, the balance criterion is maintained.

• The notion of a tolerance factor is used in order to speed
up convergence from an unbalanced situation to a
balanced one.

Chapter 2: Partitioning – p.65

Example - contd
• The balance criterion is therefore relaxed to the inequality

below:

r × S(V)− k × smax ≤ S(A) ≤ r × S(V) + k × smax

where k is an increasing function of the number of free
cells.

• Initially k is large and is slowly decreased with each pass
until it reduces to unity.

• If more than one cell of maximum gain exists, and all
such cells satisfy the balance criterion, then ties may be
broken depending on the size, internal connectivity, or
any other criterion.

Chapter 2: Partitioning – p.66

Example - contd
Step 3. Lock cell and update gains:

• After each move the selected cell is locked in its new
block for the remainder of the pass.

• Then the gains of cells of affected critical net are updated
using the following procedure.

Chapter 2: Partitioning – p.67

Example - contd
Algorithm Update_Gains;
Begin
(* move base cell and update neighbors’ gains *)
F ← the From_block of base cell; T ← the To_block of base cell;
Lock the base cell and complement its blocks;
For each net n on base cell Do(* check critical nets before the move *)

If T (n) = 0 Then increment gains of free cells on net n
Else If T (n) = 1 Then decrement gain of the only T cell on net n, if it is free
EndIf;
(* update F (n) & T (n) to reflect the move *)
F (n)← F (n)− 1 ; T (n)← T (n) + 1;
(* check for critical nets after the move *)
If F (n) = 0 Then decrement gains of free cells on net n
Else If F (n) = 1 Then increment the gain of the only

F cell on net n, if it is free
EndIf

EndFor
End.

Chapter 2: Partitioning – p.68

Example - contd
Step 4. Select next base cell:

• In this step, if more free cells exist then we search for the
next base cell. If found then we go back to Step 3, lock
the cell, and repeat the update. If no free cells are found
then we move on to Step 5.

Step 5. Select best sequence of moves:

• After all the cells have been considered for movement, as
in the case of Kernighan-Lin, the best partition
encountered during the pass is taken as the output of the
pass. The number of cells to move is given by the value
of k which yields maximum positive gain Gk, where
Gk =

∑k
i=1 gi.

Chapter 2: Partitioning – p.69

Example - contd
Step 6. Make moves permanent:

• Only the cells given by the best sequence, that is,
c1, c2, · · · , ck are permanently moved to their
complementary blocks. Then all cells are freed and the
procedure is repeated from the beginning.

Chapter 2: Partitioning – p.70

Another Example
• We would like to apply the remaining steps of the

Fiduccia-Mattheyses heuristic to the circuit of previous
example to complete one pass.

• Assume that the desired balance factor be 0.4 and the
sizes of cells are as follows:
s(c1)=3, s(c2)=2, s(c3)=4, s(c4)=1, s(c5)=3, and s(c6)=5.
Solution:

• We have already found that cell c2 is the candidate with
maximum gain.

• c2 also satisfies the balance criterion.
• Now, for each net n on cell c2 we find its distribution
F (n) and T (n) (that is, the number of cells on net n in the
From_block and in the To_block respectively before the
move).

Chapter 2: Partitioning – p.71

Example - contd
Similarly we find F ’(n) and T ’(n), the number of cells after
the move.

Before Move After Move
Net F T F ’ T ’

k 1 1 0 2
m 3 0 2 1
q 2 1 1 2
p 1 1 0 2

Notice that the change in net distribution to reflect the move is

a decrease in F (n) and an increase in T (n).

Chapter 2: Partitioning – p.72

Example - contd
We now apply the procedure of Step 3 to update the gains of
cells and determine the new gains.

1. For each net n on the base cell we check for the critical
nets before the move.

2. If T (n) is zero then the gains of all free cells on the net n
are incremented.

3. If T (n) is one then the gains of the only T cell on net n is
decremented (if the cell is free).

In our case, the selected base cell c2 is connected to nets k, m,
p, and q, and all of them are critical, with T (m) = 0, and
T (k) = T (q) = T (p) = 1.

Chapter 2: Partitioning – p.73

Example - contd
• Therefore, the gains of the free cells connected to net m (c1 and c3) are

incremented, while the gains of the free T_cells connected to nets k, p

and q (c5, c6, and c4) are decremented.

• These values are tabulated in the first four columns (Gain due to T (n))
of the table below.

Gain due to T (n) due to F (n) Gains

Cells k m q p k m q p Old New

c1 1 -1 0

c3 1 1 -1 1

c4 -1 0 -1

c5 -1 -1 0 -2

c6 -1 -1 1 -1

Chapter 2: Partitioning – p.74

Example - contd
• We continue with the procedure “Update_Gains” and

check for the critical nets after the move.
• If F (n) is zero then the gains of all free cells on net n are

decremented and if F (n) is one then the gain of the only
F cell on net n is incremented, if it is free.

• Since we are looking for the net distribution after the
move, we look at the values of F ’.

• Here we have F ’(k) = F ’(p) = 0 and F ’(q) = 1.
• The contribution to gain due to cell 5 on net k and cell 6

on net p is −1, and since cell 3 is the only F cell (cell on
From_block), the gain due to it is +1.

• These values are tabulated in the four columns “Gain due
to F (n))” of previous table.

Chapter 2: Partitioning – p.75

Example - contd
• From previous table, the updated gains are obtained.
• The second candidate with maximum gain (say g2) is cell
c3. This cell also satisfies the balance criterion and
therefore is selected and locked.

• We continue the above procedure of selecting the base
cell (Step 2) for different values of i.

• Initially A0={1,2,3}, B0={4,5,6}. The results are
summarized below.

i = 1 : The cell with maximum gain is c2. |A| = 7. This move
satisfies the balance criterion. Maximum gain g1 = 1. Lock cell
{c2}. A1={1,3}, B1={2,4,5,6}.

i = 2 : Cell with maximum gain is c3. |A| = 3. The move satisfies the
balance criterion. Maximum gain g2 = 1. Locked cells are {c2,
c3}. A2={1}, B2={2,3,4,5,6}.

Chapter 2: Partitioning – p.76

Example - contd
i = 3 : Cell with maximum gain (+1) is c1. If c1 is moved then A ={},

B ={1,2,3,4,5,6}. |A| = 0. This does not satisfy the balance criterion.
Cell with next maximum gain is c6. |A| = 8. This cell satisfies the
balance criterion. Maximum gain g3 = −1. Locked cells are {c2, c3,
c6}. A3={1,6}, B3={2,3,4,5}.

i = 4 : Cell with maximum gain is c1. |A| = 5. This satisfies the balance
criterion. Maximum gain g4 = 1. Locked cells are {c1, c2, c3, c6}.
A4={6}, B4={1,2,3,4,5}.

i = 5 : Cell with maximum gain is c5. |A| = 8. This satisfies the balance
criterion. Maximum gain g5 = −2. Locked cells are {c1, c2, c3, c5,c6}.
A5={5,6}, B5={1,2,3,4}.

i = 6 : Cell with maximum gain is c4. |A| = 9. This satisfies the balance
criterion. Maximum gain g6 = 0. All cells are locked. A6={4,5,6},
B6={1,2,3}.

Chapter 2: Partitioning – p.77

Example - contd
• Observe that when i = 3, cell c1 is the cell with maximum

gain, but since it violates the balance criterion, it is
discarded and the next cell (c6) is selected. When i = 4
cell c1 again is the cell with maximum gain, but this time,
since the balance criterion is satisfied, it is selected for
movement.

• We now look for k that will maximize G =
∑k

j=1 gj ;

1 ≤ k ≤ i. We have a tie with two candidates for k, k = 2
and k = 4, giving a gain of +2. Since the value of k = 4
results in a better balance between partitions, we choose
k=4. Therefore we move across partitions the first four
cells selected, which are cells c2, c3, c6, and c1. The final
partition is A ={6}, and B ={1,2,3,4,5}. The cost of nets
cut is reduced from 3 to 1.

Chapter 2: Partitioning – p.78

Simulated Annealing
• First application of simulated annealing to placement

reported by Jepsen and Gelatt.
• It is an adaptive heuristic and belongs to the class of

non-deterministic algorithms. This heuristic was first
introduced by Kirkpatrick, Gelatt, and Vecchi in 1983.

• The simulated annealing heuristic derives inspiration
from the process of carefully cooling molten metals in
order to obtain a good crystal structure.

• In SA, first an initial solution is selected; then a controlled
walk through the search space is performed until no
sizeable improvement can be made or we run out of time.

• Simulated annealing has hill-climbing capability.

Chapter 2: Partitioning – p.79

Simulated annealing- contd

Cost

States

S

L
G

X

X

X

Figure 10: Local vs. Global Optima
Chapter 2: Partitioning – p.80

Simulated annealing- contd

Figure 11: Design space analogous to a hilly terrain

Chapter 2: Partitioning – p.81

Simulated annealing- Algorithm
Algorithm SA(S0, T0, α, β,M,Maxtime);
(*S0 : the initial solution *)
(*T0 : the initial temperature *)
(*α : the cooling rate *)
(*β : a constant *)
(*Maxtime : max allowed time for annealing *)
(*M : time until the next parameter update *)
begin

T = T0;

S = S0;

T ime = 0;

repeat
Call Metropolis(S, T,M);
T ime = T ime+M ;
T = α× T ;
M = β ×M

until (T ime ≥MaxTime);
Output Best solution found

End. (*of SA *)

Chapter 2: Partitioning – p.82

Simulated annealing- Algorithm
Algorithm Metropolis(S, T,M);
begin

repeat
NewS=neighbor(S);
∆h=(Cost(NewS)− Cost(S));

if ((∆h< 0) or (random < e−∆h/T))

then S = NewS;

{accept the solution}
M =M − 1

until (M = 0)
End. (*of Metropolis*).

Chapter 2: Partitioning – p.83

Simulated annealing- contd
• The core of the algorithm is the Metropolis procedure,

which simulates the annealing process at a given
temperature T .

• The procedure is named after a scientist who devised a
similar scheme to simulate a collection of atoms in
equilibrium at a given temperature.

• Besides the temperature parameter, Metropolis receives
as input the current solution S which it improves through
local search. Metropolis must also be provided with the
value M , which is the amount of time for which
annealing must be applied at temperature T.

• The procedure Simulated_annealing simply invokes
Metropolis at various (decreasing) temperatures.

Chapter 2: Partitioning – p.84

Simulated annealing- contd
• Temperature is initialized to a value T0 at the beginning

of the procedure, and is slowly reduced in a geometric
progression; the parameter α is used to achieve this
cooling. The amount of time spent in annealing at a
temperature is gradually increased as temperature is
lowered. This is done using the parameter β > 1.

• The variable Time keeps track of the time already
expended by the heuristic. The annealing procedure halts
when Time exceeds the allowed time.

Chapter 2: Partitioning – p.85

Simulated annealing- contd
• To apply the simulated annealing technique we need to be

able to:
(1) generate an initial solution,
(2) disturb a feasible solution to create another feasible

solution,
(3) evaluate the objective function for these solutions.

Chapter 2: Partitioning – p.86

	Introduction
	Partitioning
	Partitioning - contd
	Partitioning - examples
	K-way Partitioning
	Constraints
	Constraints - contd
	Cost Functions
	Two-Way Partitioning
	Two-Way Partitioning-contd
	Two-Way Partitioning-contd
	Kernighan-Lin Algorithm
	K-L Algorithm - contd
	K-L Algorithm - contd
	Definitions
	Definitions
	Example
	Example-contd
	Proof
	Proof - contd
	Proof - contd
	Proof - contd
	Proof - contd
	Proof - contd
	Overview of K-L Algorithm:
	Greedy Procedure-Identify X,Y
	Iterative Improvement
	K-L algorithm for TWPP
	Example
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Time Complexity
	Time Complexity - contd
	Time Complexity - contd
	Time Complexity - contd
	Variations of K-L Algorithm
	Another approach
	Another approach - contd
	$k-$way partition
	$k-$way partition - contd
	Fiduccia-Mattheyses Heuristic
	Illustration
	KL vs. FM heuristics
	KL vs. FM heuristics - contd
	KL vs. FM heuristics - contd
	Definitions
	Definitions - contd
	Definitions - contd
	Illustration of critical nets
	FM Algorithm TWPP
	FM Algorithm TWPP - contd
	Example
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Another Example
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Example - contd
	Simulated Annealing
	SA - contd
	SA - contd
	SA - Algorithm
	SA - Algorithm
	SA - contd
	SA - contd
	SA - contd

