Chapter 1: Introduction to VLSI Physical Design

Sadiq M. Sait & Habib Youssef

King Fahd University of Petroleum & Minerals College of Computer Sciences & Engineering Department of Computer Engineering

September 2003

Introduction

Present day VLSI technology permits us to build systems with hundreds of thousands of transistors on a single chip.

For example:

- The Intel 80286 microprocessor has over 10⁵ transistors.
- The 80386 has 275,000 transistors.
- The 80486 has approximately 10⁶, transistors.
- The RISC processor from National Semiconductor NS32SF641 has over 10⁶ transistors.
- The Pentium processor has over 3×10^6 transistors.

Introduction-contd

ICs of this complexity would not have been possible without computer programs which automate most design tasks.

- Designing a VLSI chip with the help of computer programs is known as CAD.
- Design Automation (DA), on the other hand, refers to entirely computerized design process with no or very little human intervention.
- CAD and DA research has a long history of over three decades.

Introduction-contd

As technology has changed from SSI to VLSI:

- The demand for DA has escalated.
- The *types* of DA tools have multiplied due to changing needs.
- There has been a radical change in design issues.
- Due to sustained research by a number of groups, sophisticated tools are available for designing ICs, and we are briskly moving towards complete DA.

Physical Design

- Physical design is the process of generating the final layout for the circuit.
- This is a very complex task.
- In order to reduce the complexity several intermediate levels of abstractions are introduced.
- More and more details are introduced as the design progresses from highest to lowest levels of abstractions.
- Typical levels of abstractions together with their corresponding design steps are illustrated in Figure.

Levels of abstraction

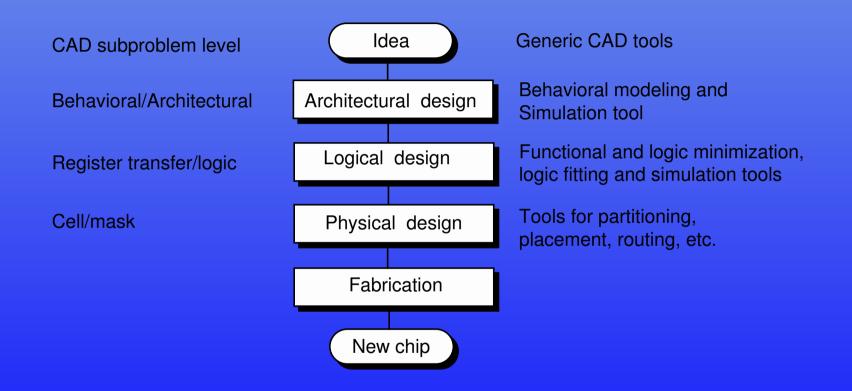


Figure 1: Levels of abstraction & corresponding design step.

Logical & Architectural Design

- As indicated the design is taken from specs to fabrication step by step with the help of CAD tools.
- Architectural design of a chip is carried out by expert human engineers.
- Decisions made at this stage affect the cost and performance of the design significantly.
- Once the system architecture is defined, it is necessary to carry out two things:
 - (a) Detailed logic design of individual circuit modules.
 - (b) Derive the control signals necessary to activate and deactivate the circuit modules.
- The first step is known as *data path design*.
- The second step is called *control path design*.

Example

It is required to design an 8-bit adder. The two operands are stored in two 8-bit shift registers A and B. At the end of the addition operation, the sum must be stored in A. The contents of B must not be destroyed. The design must be as economical as possible in terms of hardware.

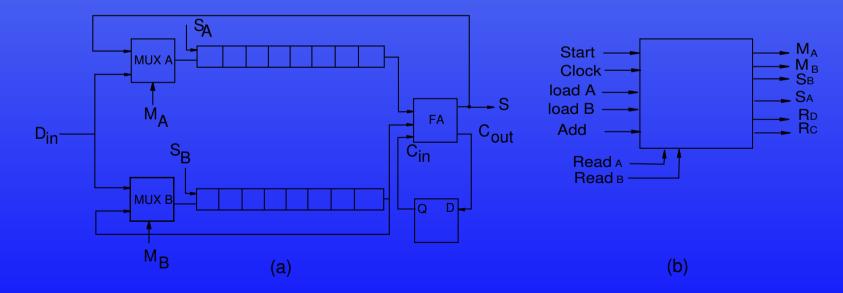


Figure 2: Organization of a serial adder: (a) Data Path
(b) Control path block diagram. Chapter 1: Introduction to VLSI Physical Design - p.8

Example-contd

- There are numerous ways to design the above circuit.
- Since it is specified that the hardware cost must be minimum, it is perhaps best to design a serial adder.
- The organization of such an adder is shown in figure.
- The relevant control signals are tabulated below.
 - S_A Shift the register A right by one bit
 - S_B Shift the register *B* right by one bit
 - M_A Control multiplexer A
 - M_B Control multiplexer B
 - R_D Reset the D flip-flop
 - R_C Reset the counter
 - START A control input, which & commences the addition

Example-contd

• The control algorithm for adding A and B is given below.

forever do

while (START = 0) skip; Reset the D flip-flop and the counter; Set M_A and M_B to 0; repeat Shift registers A and B right by one; counter = counter + 1; until counter = 8;

High-level Synthesis

- Several observations can be made by studying the example of the serial-adder.
- First, note that designing a circuit involves a trade-off between cost, performance, and testability.
- The serial adder is cheap in terms of hardware, but slow in performance.
- It is also more difficult to test the serial adder, since it is a sequential circuit.
- The parallel 8-bit CLA is likely to be fastest in terms of performance, but costliest in hardware.

High-level Synthesis-contd

- All the different ways that we can think of to build an 8-bit adder constitute what is known as the *design space* (at that particular level of abstraction).
- Each method of implementation is called a point in the design space.
- There are advantages and disadvantages associated with each design point.
- When we try optimizing the hardware cost, we usually lose out on performance, and vice versa.
- There are many more design aspects, such as *power* dissipation, fault tolerance, ease of design, and ease of making changes to the design.

High-level Synthesis-contd

- A circuit specification may pose *constraints* on one or more aspects of the final design.
- For example, when the specification says that the circuit operate at a minimum of 15 MHz, we have a constraint on the timing performance.
- Given a specification, the objective is to arrive at a design which meets all the constraints posed by the specification, and optimizes on one or more of the design aspects.
- This problem is also known as *hardware synthesis*.
- Computer programs have been developed for data path synthesis as well as control path synthesis.
- The automatic generation of data path and control path is known as *high-level synthesis*.

Logic Design

- The data path and control path will have components such as arithmetic/logic units, shift registers, multiplexers, buffers, etc.
- Further design steps depend on the following factors.
 - (1) How is the circuit to be implemented, on a PCB or as a VLSI chip?
 - (2) Are all the components available as off-the-shelf ICs circuits or as predesigned modules?
- If the circuit must be implemented on a PCB using off-the-shelf components, then the next stage is to select the components.

Logic Design-contd

- Following this, the ICs are placed on boards and the necessary interconnections are established.
- A similar procedure may be used in case the circuit is implemented on a VLSI.
- These modules are also known as *macro-cells*.
- The cells must be placed on the layout surface and wired together using metal and polysilicon (poly) interconnections.

Physical Design

- Physical design of a circuit is the phase that precedes the fabrication of a circuit.
- In most general terms it refers to all synthesis steps succeeding logic design and preceding fabrication.
- These include all or some of the following steps:
 - 1. Circuit Partitioning.
 - 2. Floorplanning and Channel Definition.
 - 3. Circuit Placement.
 - 4. Global Routing.
 - 5. Channel Ordering.
 - 6. Detailed routing of power and ground nets.
 - 7. Channel and Switchbox Routing.

Physical Design-contd

- The performance of the circuit, its area, its yield, and its reliability depend on the layout.
- Long wires and vias affect the performance and area of the circuit.
- The area of a circuit also has a direct influence on the *yield* of the manufacturing process.

Layout Styles

- These approaches differ mainly in the structural constraints they impose on the layout elements and the layout surface.
- They belong to two general classes:
 - (a) The full-custom layout approach.
 - (b) The semi-custom approaches.
- Current layout styles are:
 - 1. Full-custom.
 - 2. Gate-array design style.
 - 3. Standard-cell design style.
 - 4. Macro-cell (Building block layout).
 - 5. PLA (Programmable Logic Array), and
 - 6. FPGA (Field Programmable Gate-Array) layout.

Full-Custom Layout

- Full-custom layout refers to manual layout design.
- Full-custom design is a time-consuming and difficult task.
- Gives full control to the artwork designer in placing/interconnecting.
- A high degree of optimization in both the area and performance is possible.
- Takes several man-months to layout a chip.
- Therefore is used only for circuits that are mass produced (microprocessors).
- For circuits which will be reproduced in millions, it is important to optimize on the area as well as performance.
- Designers productivity is increased with the help of a good layout editor.

Gate-Array Layout

- A gate-array (MPGAs) consists of transistors prefabricated on a wafer in the form of a regular 2-D array.
- Initially the transistors in an array are not connected to one another.
- In order to realize a circuit on a gate-array, metal connections must be placed using the usual process of masking (*personalizing*).
 - Short fabrication time (only four processing steps).
 - Low cost of production due to yield.
 - Limited wiring space, therefore present difficulties to automatic layout generator.

Gate-Array Layout-contd

- A special case of the gate-array architecture is when routing channels are very narrow, or virtually absent is called Sea of Gates (Channel-less Gate-Arrays).
- A typical gate-array cell personalized as a two-input NAND gate is shown in Figure.

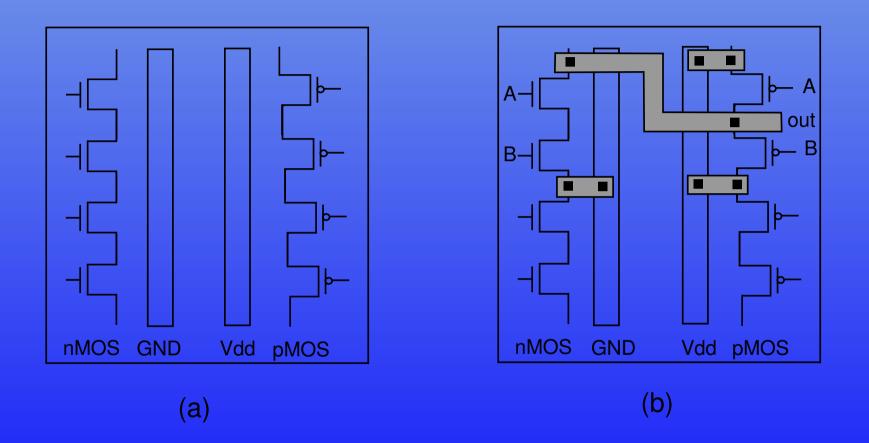


Figure 3: (a) Example of a basic cell in a gate array (b) Cell personalized as a two-input NAND gate.

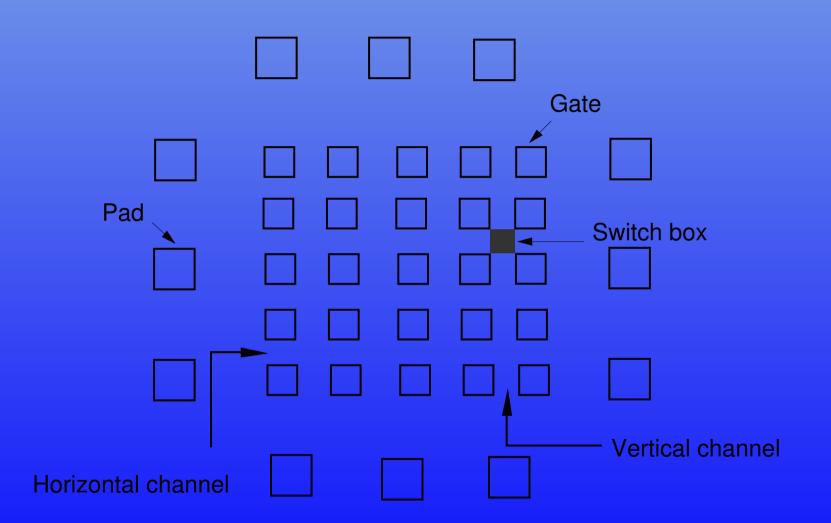
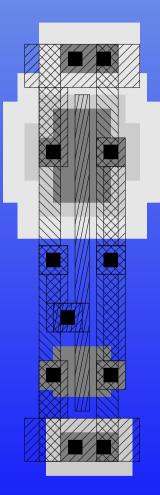


Figure 4: A gate array floor plan.

Chapter 1: Introduction to VLSI Physical Design – p.23


Standard Cell Layout

- A standard cell, known also as a polycell, is a logic that performs a standard function.
- Examples of standard-cells are two-input NAND gate, two-input XOR gate, D flip-flop, two-input multiplexer.
- A cell library is a collection of information pertaining to standard-cells.
- The relevant information about a cell consists of its name, functionality, pin structure, and a layout for the cell in a particular technology such as 2µm CMOS.
- Cells in the same library have standardized layouts, i.e., all cells are constrained to have the same height.
- Description of an inverter logic module named ils.
 Focus only on the profile, termlist, and
 siglist statements.

Standard Cell Layout

```
cell begin ils generic=il primitive=INV area=928.0 transistors=2
function="q = INV((a))"
logfunction=invert
profile top (-1, 57) (15, 57); profile bot (-1, -1) (15, -1);
termlist
a { (1-4, -1) (1-4, 57) }
pintype=input
rise\_delay=0.35 rise\_fan=5.18 fall\_delay=0.28 fall\_fan=3.85
loads=0.051 unateness=INV; q { (9-12,-1) (9-12,57) }
pintype=output;
siglist GND Vdd a q ;
translist
m0 a GND q length=2000 width=7000 type=n
m1 a Vdd q length=2000 width=13000 type=p ;
caplist
c0 Vdd GND 2.000f
c1 q GND 5.000f
c2 Vdd a 2.000f
c3 a GND 11.000f;
cell end ils
```

Layout-Inverter Standard Cell

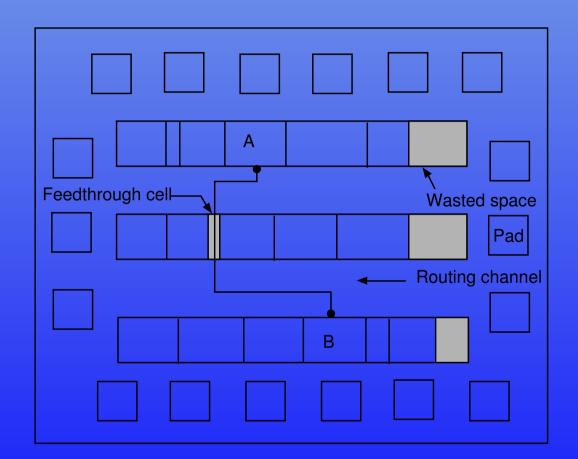


Figure 5: Layout of a standard-cell i1s.

Cell-Based Design

- Similar to designing a circuit using SSI and MSI components.
- Selection is now from a cell-library, and components are placed in silicon instead of PCB.
- Advantage: Designs can be completed rapidly.
- The Layout program will only be concerned with:
 - (1) the location of each cell; and
 - (2) interconnection of the cells.
- Placement and routing is again simplified using a standard floorplan (see Figure).
- The disadvantage in relation to gate-array is that all the fabrication steps are necessary to manufacture.

Cell-Based Design-contd

Figure 6: Floorplan of a standard-cell layout.

Macro-cell Layout

- No restrictions as in gate-array and standard-cell design.
- The cells can no longer be placed in a row-based floorplan.
- This design style is called *macro-cell* design style, or *building-block* design style.

Macro-cell Layout-contd

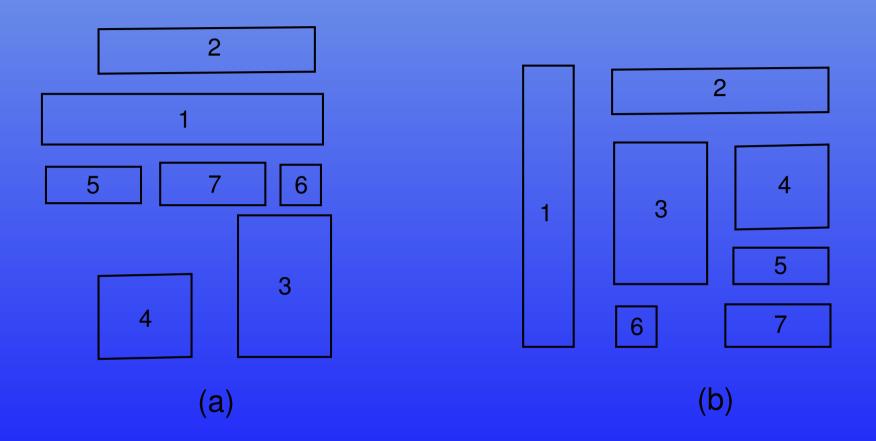
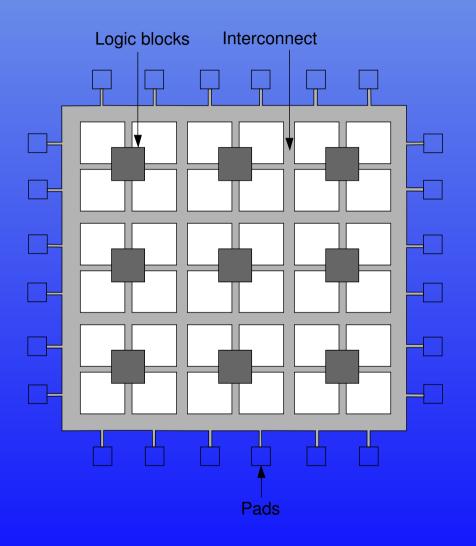


Figure 7: (a) Cells of varying heights and widths placed in a row-based floorplan (b) A more compact floorplan for the same circuit.

Macro-cell Layout-contd

Advantages:

- Cells of significant complexity are permitted in the library (registers, ALUs, etc).
- Building-block layout (BBL) comes closest to full-custom layout.
- Like standard-cell layout style, all the processing steps are required to manufacture a BBL chip.


Disadvantages:

- It is much more difficult to design layout programs for the BBL design style.
- This is because there is no standard floorplan to adhere to. As a result, the routing channels are not predefined either.
- Floorplanning and channel definition are additional steps required in a BBL layout system.

FPGA layout

- Similar to an MPGA, an FPGA also consists of a 2-D array of logic blocks.
- Each logic block (CLB) can be programmed to implement any logic function of its inputs.
- In addition to this, the channels or switchboxes contain interconnection resources.
- They contain programmable switches that serve to connect the logic blocks to the wire segments, or one wire segment to another.
- Furthermore, I/O pads are also programmable to be either input or output pads.

FPGA layout-contd

Figure 8: Diagram of a typical FPGA.

Chapter 1: Introduction to VLSI Physical Design – p.33

FPGA layout-contd

- The main design steps when using FPGAs to implement digital circuits are:
 - 1. Technology Mapping,
 - 2. Placement,
 - 3. Routing, and finally,
 - 4. Generating the bit patterns.
- The main disadvantages are their lower speed of operations and lower gate density.
- FPGAs are most ideally suited for prototyping applications, and implementation of random logic using PALs.

Difficulties in Physical Design

- Physical design is a complex optimization problem, involving several objective functions.
- Some of these objectives are conflicting.

- It is therefore customary to adopt a stepwise approach and subdivide the problem (e.g., Circuit Partitioning, Floorplanning, etc.).
- All of the aforementioned subproblems are constrained optimization problems.
- Unfortunately these layout subproblems (even simplified versions) are NP-Hard.
- Therefore, instead of optimal enumerative techniques, *heuristics* are used.
- Solution quality of heuristics is determined using artificial inputs whose optimal solutions are known or using test inputs comprising of real circuits, called *benchmarks*, (MCNC, ISCAS).

Terminology and Definitions

- A cell.
- A macro-cell.
- The *aspect ratio* of a cell.
- *Logic module*, or *module*, refers to macro or standard cells.
- A module interfaces to other modules through *pins*.
- A *signal net*, or simply *net*, is a collection of pins.
- A *netlist* description is, as the name suggests, a list of all the nets in the circuit.
- A graph is an abstract representation.
- The connectivity information can be represented in the form of an $n \times n$ matrix C.

Full-Adder

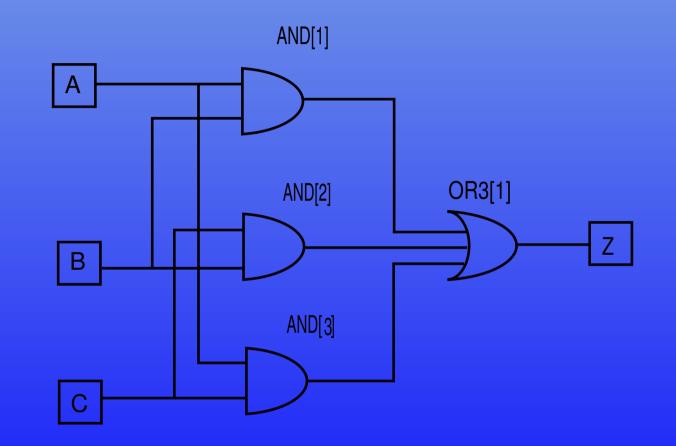


Figure 9: Logic diagram of 'full-adder carry' circuit.

Full-Adder-contd

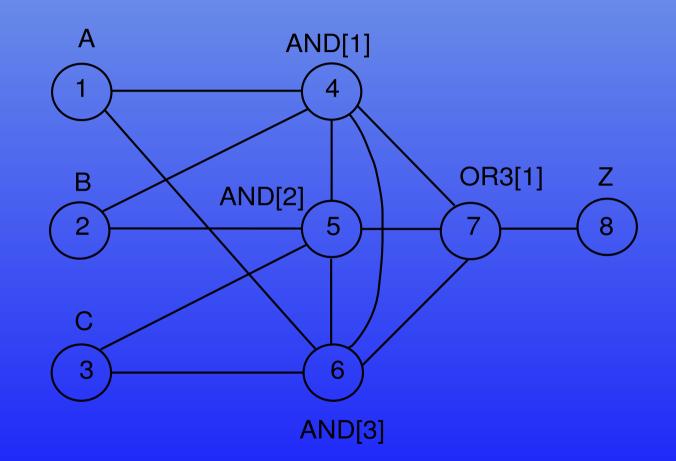
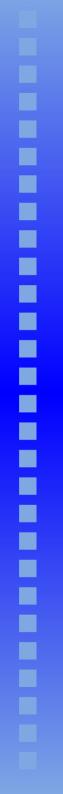



Figure 10: The connectivity graph for the full-adder carry circuit.

Full-Adder-contd

	1	2	3	4	5	6	7	8
1	0	0	0	1	0	1	0	0
2	0	0	0	1	1	0	0	0
3	0	0	0	0	1	1	0	0
4	1	1	0	0	1	1	1	0
5	0	1	1	1	0	1	1	0
6	1	0	1	1	1	0	1	0
7	0	0	0	1	1	1	0	1
8	0	0	0	0	0	0	1	0

Figure 11: The connectivity matrix for the full-adder carry circuit.

Full-Adder-contd

• *Manhattan distance* between the two pins located at coordinates (x_1, y_1) and (x_2, y_2) , is given by:

1)
$$d_{12} = |x_1 - x_2| + |y_1 - y_2|$$

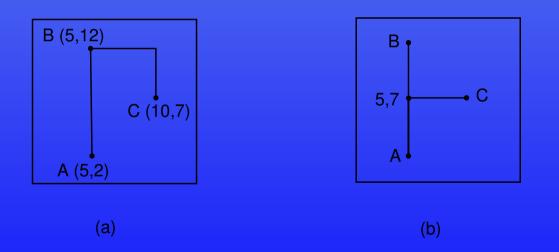


 Figure 12: (a) A minimum spanning tree (b) Steiner

 tree.

Conclusion

- In this session we introduced the basic concepts of VLSI physical design and Design Automation.
- In order to automate the layout procedure, it is common to impose restrictions on the layout architecture.
- Several layout architectures are popular.
- In order to reduce the complexity the layout process is broken into a sequence of physical design phases.
- The important design phases were presented.
- Each of these phases amounts to solving a combinatorial optimization problem.

Conclusion

• Table below assesses and compares several aspects of the various layout styles.

Comparison of Layout styles. The number in parentheses indicates a rank to grade the layout style in comparison to others in the same category.

Design	Appl	Design	Fab	Cost	Performance
Style		time	Effort		
	High				
F-Custom	volume	High(4)	High(2)	High(4)	High(4)
Gate-array	ASICs	Low(2)	Low(1)	Low(2)	Low(4)
Stan-cell	ASICs	Low(3)	High(2)	Low(3)	High(1)
Macro-cell	General	High(1)	High(2)	Low(3)	High(2)
FPGA	ASICs	Low(1)	Nil	Low(1)	Low(1)