

## **Power Electronics & Best Practices**

# Dedicated Adjustable Speed Drive Low-Voltage MCC

EDAS Conference, Bahrain Presenter: Terence Hazel Senior Engineer



© Terence Hazel 10 October 2007 **Presentation Outline** 

**The Site Requirement** 

**Installation of Variable Speed Drives** 

**Active Harmonic Filters** 

Conclusion





# Site description

- Large oil-extraction facility near Caspian Sea
- Total load 88 MW
- Several 10kV motors, largest 12 MW
- Approximately 2000 low-voltage motors
- Low-voltage process loads supplied at 690V (400V for lighting, HVAC etc.)
- 184 low-voltage variable speed drives (VFDs) ranging from 5kW to 37kW
- Process supplied by local generation (gas turbines)









# Low-voltage process load design criteria

- Fully withdrawable technology required, w w w as per IEC 60439-1
- Intelligent MCC with interfacing via redundant serial link:
  - DCS motor control interface for process control
    - Start / stop
    - Speed control
  - Emergency shutdown
  - Electrical Monitoring & Control System interface for maintenance data
- Strong limitation of harmonic currents injected by non-linear loads required due to use of local generation





## Solution selected by client

Install all low-voltage VFDs in dedicated MCCs:

- □ Eliminates harmonic currents in other equipment
- □ Reduces amount of harmonic mitigation equipment
- These particular MCCs supply only VFD loads
- Double-ended MCCs with auto-transfer scheme to provide suitable availability
- Harmonic filtering in each VFD MCC to reduce harmonic currents to acceptable level
- Redundancy in harmonic filtering equipment to avoid shutdown due to failure of a single piece of equipment





**Presentation Outline** 

The Site Requirement

Installation of Variable Speed Drives

**Active Harmonic Filters** 

Conclusion





# Installation of VFDs in MCC

- Withdrawable motor starters required for availability (same concept as all other MCCs)
- VFDs installed fixed-mounted in MCCs for better ventilation
- dU/dt filters
  - $\hfill\square$  for each VFD
  - Characteristics based on distance to motor
- Standard incoming / bus-tie
  - □ ATS as all other MCCs
  - □ ATS logic in protection relays



Schneider



# **ATS** implemented in protection relays

- Relays provide all protection functions
- Relays execute standard automatic transfer functions
- Relays execute no-break reconfiguration
- No additional equipment required
- Same design for highvoltage equipment
  - □ Easier maintenance
  - □ Less engineering time
  - □ More robust







# **Design of VFD cubicles**

- Cabling between VFDs and withdrawable motor-starter units done as internal wiring:
  - Reduces installation time at site
  - □ Allows complete FAT of VFD circuits
  - □ Form IV as per IEC 60439-1
- Transport unit comprised of 3 standard MCC cubicles:
  - □ Central cubicle contains withdrawable motor-starter units
  - □ Left & right cubicles contain VFDs
    - Back-to-back
    - Connected to withdrawable protection units
    - Including all accessories such as dU/dt filters
  - □ Shipped & installed as one unit



### Fixed mounted VFD units, back-to-back



Common busbar, 3-phase 3-wire

VFD dU/dt filters

#### Back-to-back VFD installation

**♦IEEE** 

 $200^{\circ}$ 







#### Front & rear views of transportation units







#### Front view at site



Motor starte drawers (racked in)





#### **Presentation Outline**

The Site Requirement

**Installation of Variable Speed Drives** 

**Active Harmonic Filters** 

Conclusion





### Harmonic currents from VFDs

- Power source supplies current VFDs require for proper operation
- Harmonic current (Ih) is produced by VFD since it consumes current in a nonsinusoidal manner
- The lower the harmonic order the higher the amplitude of the harmonic current



200



# Harmonic voltages Vh



Vh = Harmonic voltage Ih = Harmonic current Zsh = Source impedance for harmonic current Zch = Cable impedance for harmonic current Vh = Ih \* (Zsh + Zch)

- Result of harmonic currents Ih flowing through power system impedance
- Impedance = f(frequency), so each harmonic current Ih develops specific harmonic voltage Vh
- Harmonic voltages Vh cause disturbances throughout power system & must be kept to low values (e.g. < 5%)</p>
- Reduce Vh by reducing Ih or power system impedance





# Solutions to reduce harmonic voltages Vh

Reduce power system impedance:

- Not possible in low-voltage installations due to use of step-down transformers
- Only applicable for high-voltage installations such as arc furnaces
- Reduction of harmonic currents Ih:
  - Use of passive filters which absorb harmonic currents & supply vars
  - Active filter to cancel harmonic currents flowing into transformer low-voltage winding





# Why passive filters were not selected

- Must be switched on & off to avoid over-compensation
- Can cause resonance at certain frequencies:
  - □ Resonance = high system impedance at certain frequency
  - □ Harmonic currents Ih generate high harmonic voltages Vh
  - Resonance frequency varies greatly due to use of local generation (number of generators in service varies)



# **Operation of Active Filters**



Harmonic current Ih measured

Current injected by active filter cancels harmonic current from load

Result is clean current through source impedance eliminating harmonic voltages



#### **Harmonic Performance**







# Active filter power diagram





# Harmonic filter connection

200

- Used autotransformers due to 690V
- 2 each 300A active filters required per bus section
- Additional 300A unit per bus section for redundancy
- Each active filter set controls harmonic current from its busbar
- ~0 harmonic current flows to transformers
- Harmonic voltages ~0



Electric

# Installation of active filter

- Stand-alone active filters used for this project due to redundancy requirements
- Can be integrated into switchgear lineup
- Heat dissipation (9 kW per 300A unit) to be included in HVAC design
- Allow free flow of air for ventilation purposes







#### **Presentation Outline**

The Site Requirement

**Installation of Variable Speed Drives** 

**Active Harmonic Filters** 

Conclusion





## **Advantages of selected solution**

All VFDs in dedicated switchboards:

- Reduced quantity of equipment required for harmonic filtering
- □ Avoided disturbance to linear loads (normal starters)
- Provided optimum design to reduce foot print
- Active filters
  - □ Avoided any resonance problems
  - □ No over-compensation at light process loads
  - Redundancy achieved in simple, easy-to-maintain manner



