Advanced Control of Soft Starters for Industrial Drives

Power Electronics Control Problems and Applications in Industry

Dr.-Ing. Peter Magyar, GE-ADE, Hella KGaA Hueck & Co., Germany

The 4th IEEE GCC Conference and Exhibition Manama, Kingdom of Bahrain 11-14 November 2007

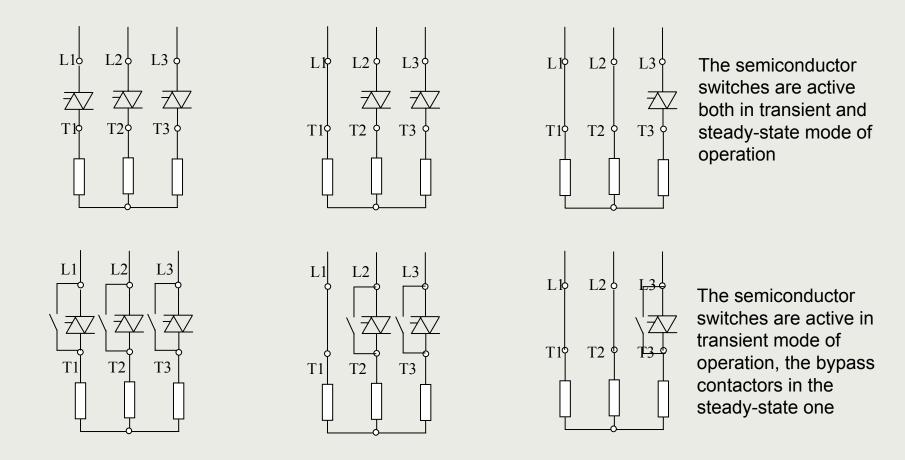
Ideas today for the cars of tomorrow

Agenda

- Soft Starter Introduction
 - Circuit layout examples
 - Appliances
- Operation Modes
 - Soft starter mode of operation
 - Current balancing
 - Comparison of symmetrical and asymmetrical firing angle setting
 - Contactor mode of operation
 - Transients of asynchronous motors
 - Asynchronous direct on-line (DOL) switching
 - Comparison of various DOL switching processes
- Soft Starter Applications
 - Benefits

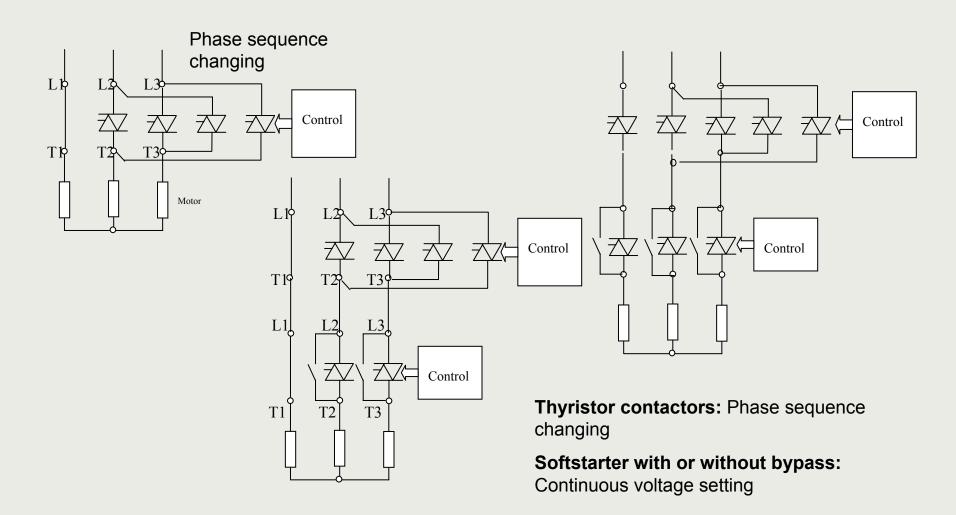
2

Application examples



Advanced Control of Soft Starters for Industrial Drives Soft Starter Introduction

- Soft Starters are electronic starters designed to accelerate, decelerate and protect induction motors by voltage control
- The control of voltage applied to the motor, by means of thyristors' firing angle variation, allows smooth starting and stopping
- With proper adjustment it is possible to optimise the motor starting process, so that
 - starting current and
 - instantaneous torque due to the transient offset in the motor flux linkage remains as low as possible
- Typical applications
 - Industrial / Commercial / Residential
 - Main modes of operation
 - Soft starters for electrical / mechanical saving purposes
 - Qiuck DOL starters for fast and trouble-free start-up


Advanced Control of Soft Starters for Industrial Drives Soft Starter Circuit Layout Examples

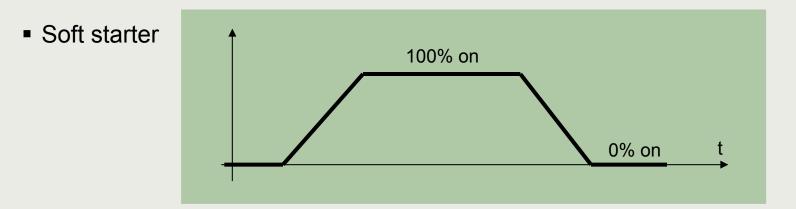
4

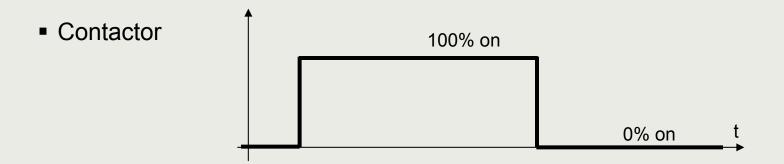
Advanced Control of Soft Starters for Industrial Drives Soft Starter Circuit Layout Examples

Advanced Control of Soft Starters for Industrial Drives Soft Starter Appliances

Advanced Control of Soft Starters for Industrial Drives Soft Starter Appliances

Replacing mechanical contactors

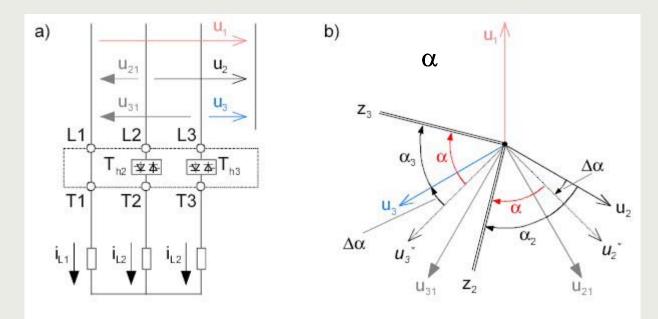

Meets the standard


7

IEC/EN 60947 (Semiconductor AC Motor Controllers and Starters)

Advanced Control of Soft Starters for Industrial Drives Mode of Operations: Soft Starter and Contactor

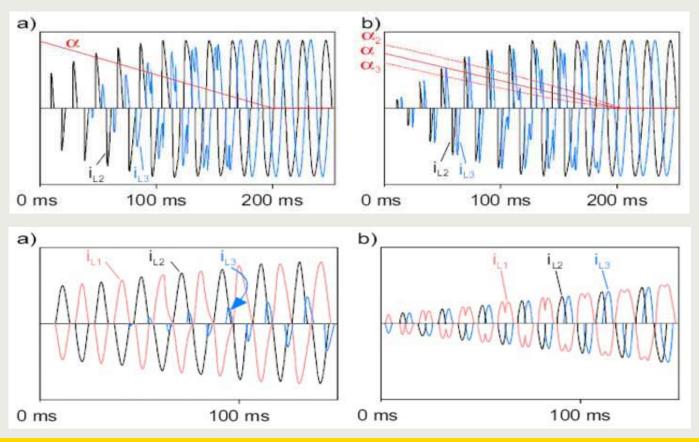
Output voltage level v. time



Advanced Control of Soft Starters for Industrial Drives Soft Starter Mode of Operation

- Continuous firing angle setting
 - symmetrical firing angle, α
 - asymmetrical firing angle, $\alpha_2 = \alpha + \Delta \alpha$, $\alpha_3 = \alpha \Delta \alpha$

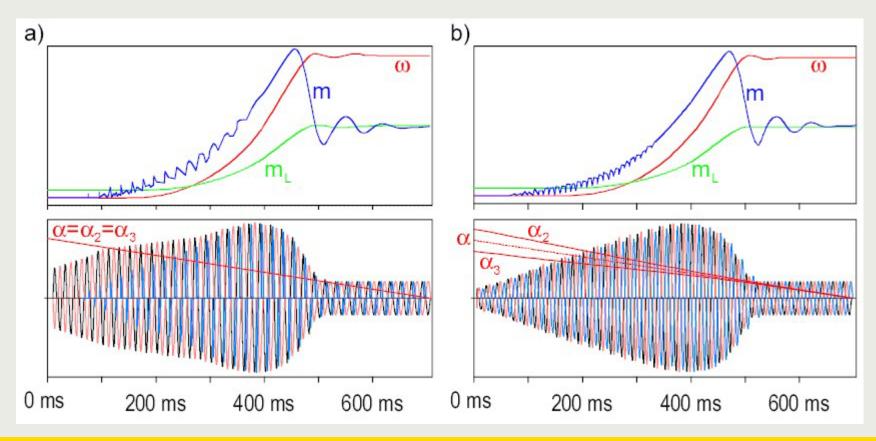
Start Pspice



View Circuit

Advanced Control of Soft Starters for Industrial Drives Soft Starter Mode of Operation

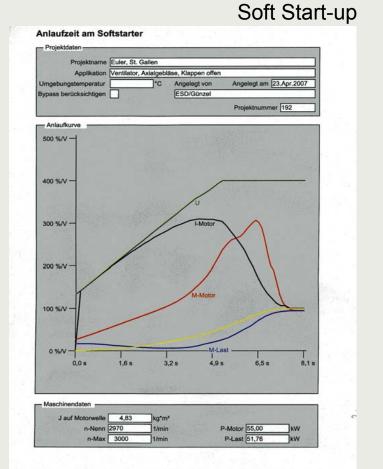
- Continuous firing angle setting
 - a) symmetrical, b) asymmetrical firing angle \Rightarrow current balancing
 - resistive and motoric load



10

Advanced Control of Soft Starters for Industrial Drives Soft Starter Mode of Operation

- Continuous firing angle setting
 - a) asymmetrical, b) symmetrical firing angle ⇒ current balancing
 - soft starting of an 11 kW ASM

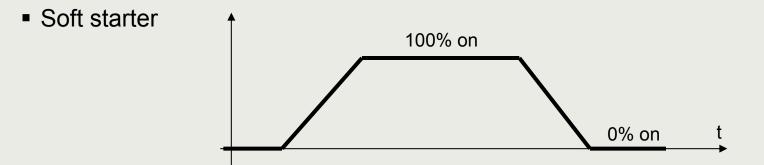

11

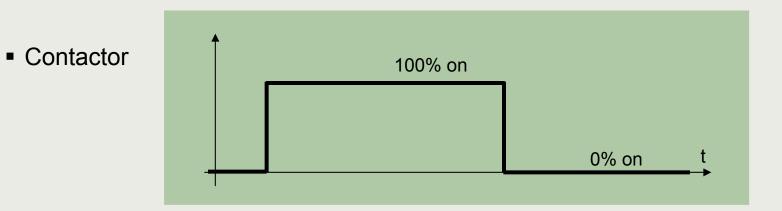
Advanced Control of Soft Starters for Industrial Drives Soft Starter Industrial Application

Data Sheet

55kW ventilator drive

Projektname	Euler, St. Ga	allen				
		Ventilator, Axialgebläse, Klappen offen				
Umgebungstemperatur Bypass berücksichtigen	°C		Angelegt von ESD/Günzel	Angelegt am 23.Apr.2007		
				Projektnum	mer 192	
- Motordaten			enutzte Starterein	stellungen		
P 55,00 U 400 I 95,00	kW V A	1	U-Start 33,50% t-Start 5,00 X 3,10	5 % 5 *le		
cos phi 0,86 Berechnungsergebnis			1			
Startzeit 8,09	s		Tx 4,52	s		
	1					
Motor- und Lastdaten	1.51		1. 19.30	72.3.5		
- Motor- und Lastdaten	1227	15250				
500 % -						
400 %						
400 %	-					
		-				
300 % —		E.S.		-		
			M-Motor			
200 %	Carlos A	/	M-Motor		1	
					1	
					1	
100 %				/	T	
			-	M-Last		
0%		-		1.1	n _{Sync}	
	20 %	40 %	60 %	80 %	100% "Sync	
0%				7. [
Motor-Kennlinie -		330,00		200,00%	100%	
Motor-Kennlinie	370,00%			300,00%	100%	
Motor-Kennlinie I 400,00% M 240,00%	370,00% 180,00%	200,00	% 260,00%			
Motor-Kennlinie I 400,00% M 240,00%	180,00%			1 64.00%	100%	
Motor-Kennlinie I 400,00% M 240,00%		200,00		64,00%] 100%	

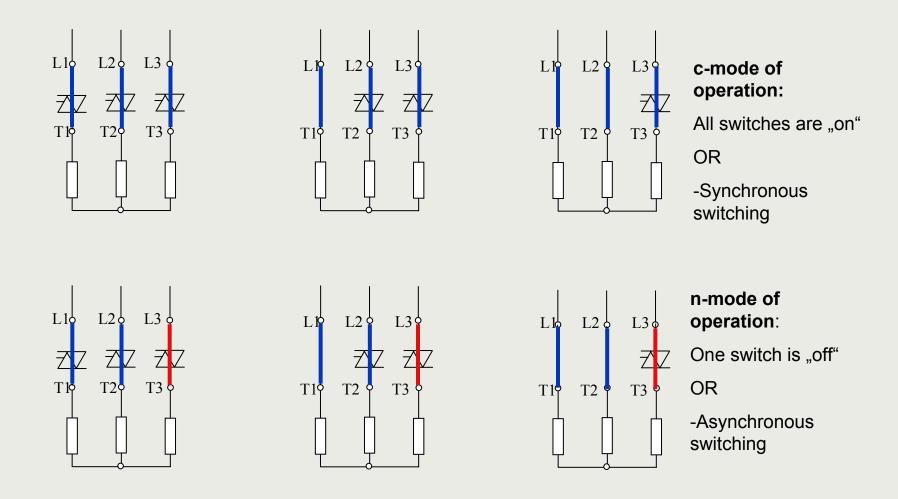




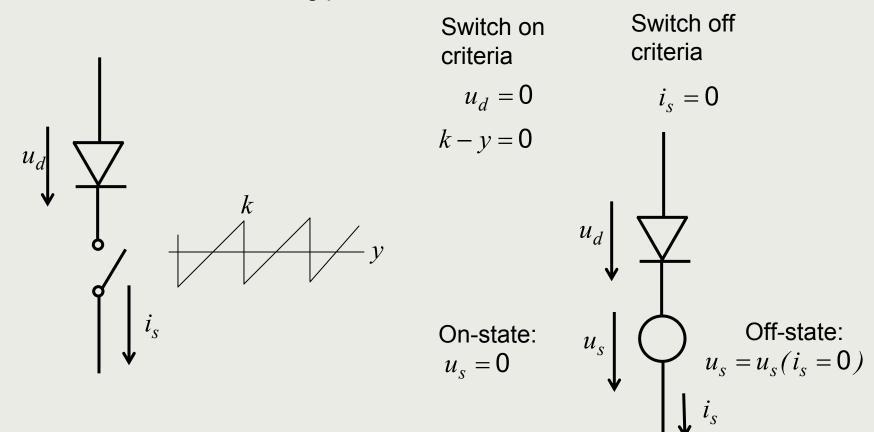
Ausgabedatum 23.04.2007

Advanced Control of Soft Starters for Industrial Drives Soft Starter and Contactor Mode of Operation

Output voltage level

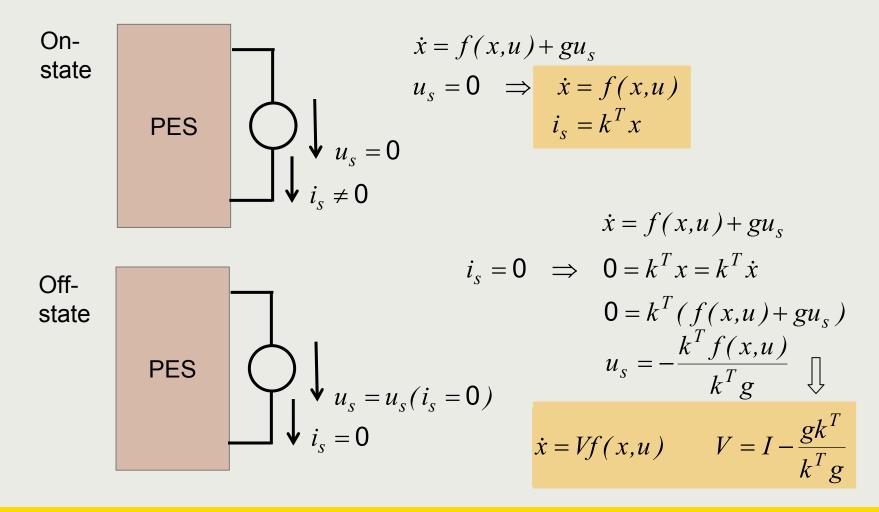


Advanced Control of Soft Starters for Industrial Drives Synchronous and Asynchronous Switch-On

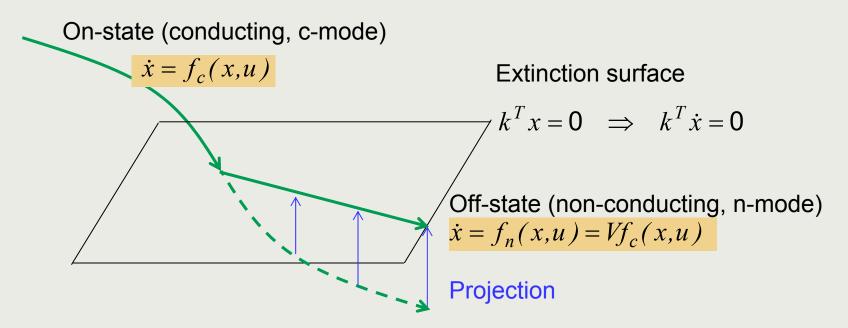

Advanced Control of Soft Starters for Industrial Drives Basic Dynamics of Power Electronics Systems (PES)

- Characteristics of PES in relation to the controllability of PSD
 - PES are characterized by the switching processes of power semiconductor devices (PSDs)
 - PSD can be considered as ideal switches
 - device operation will not obscure the basic operation of the circuit
 - the important converter operation will be clearly understood and depends only on the topology and controllability of the switches
 - Presently available PSDs can be classified into three groups according to their degree of controllability
 - Fully-controllable (transistor-type) switches: both on- and off-state will be generated by control system signals
 - Semi-controllable (thyristor-type) switches:
 - on-state is signal generated triggering ("firing") by gate signal
 - off-state is caused by decreasing the current to zero ("extinction") by power circuit voltage (latching)
 - Diode-type switches:
 - on-state is power voltage generated
 - off-state is current "extinction"

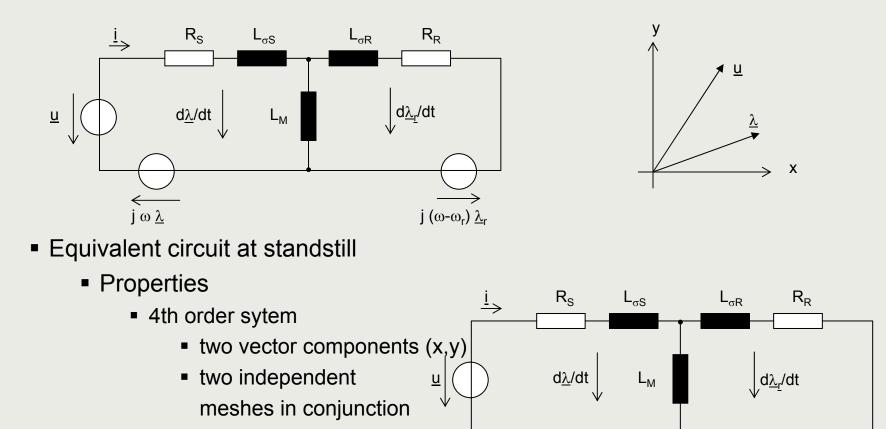
Advanced Control of Soft Starters for Industrial Drives Switch Model


Characteristics of switching processes

Advanced Control of Soft Starters for Industrial Drives System Model


Mathematical model of PES for on- an off-state caused by one switch

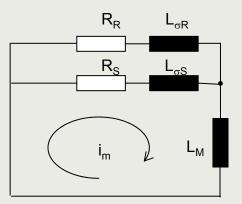
Advanced Control of Soft Starters for Industrial Drives System Models of On-State and Off-State

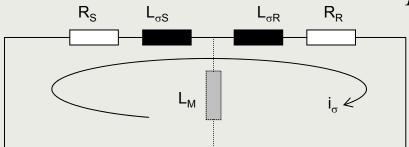

Model of the PES

- The n-state is a "projected state" of the previous c-state
 - The matrix of projection is: V
 - Important rule: the behaviour of the system in a non-conductive mode is *projection of the behaviour in the previous c-mode*

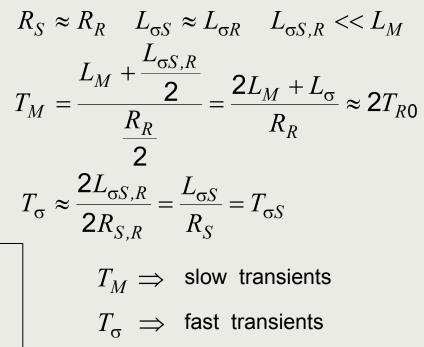
Advanced Control of Soft Starters for Industrial Drives Introduction – Asynchronous Motor

Equivalent circuit with voltage and flux linkage phasors

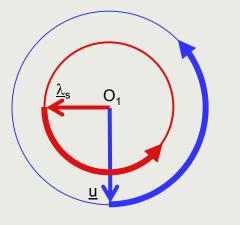


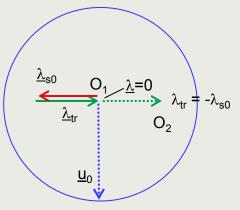


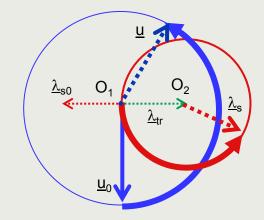
with both components


Advanced Control of Soft Starters for Industrial Drives Introduction – Asynchronous Motor

- Two characteristic current paths in both directions each
 - magnetisation path
 - leakage path


Approx.



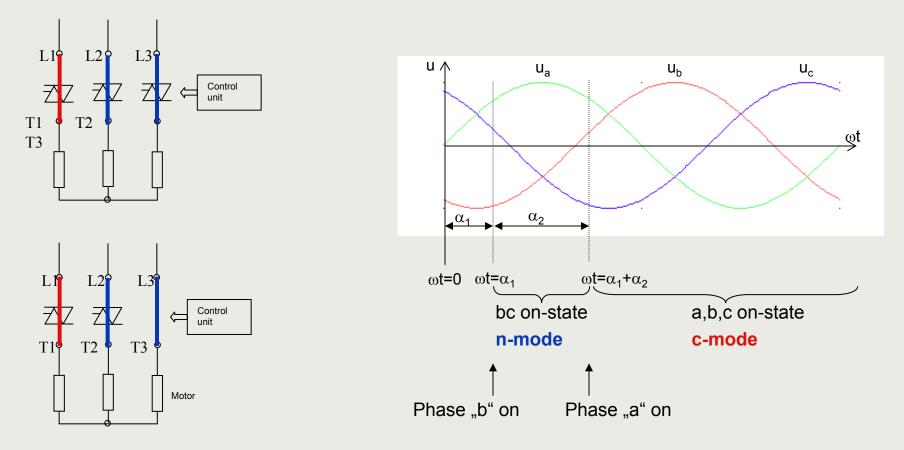


Advanced Control of Soft Starters for Industrial Drives Introduction – Asynchronous Motor

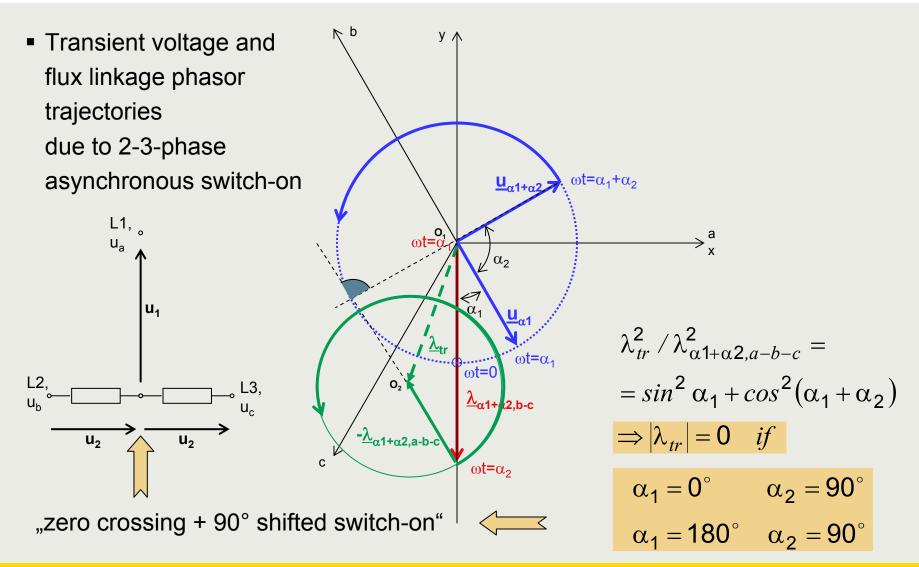
 Transient voltage and flux linkage phasor trajectories due to 3-phase synchronous switch-on

Steady-state 3-phase mode of operation Flux linkage transient due to 3-phase switch-on

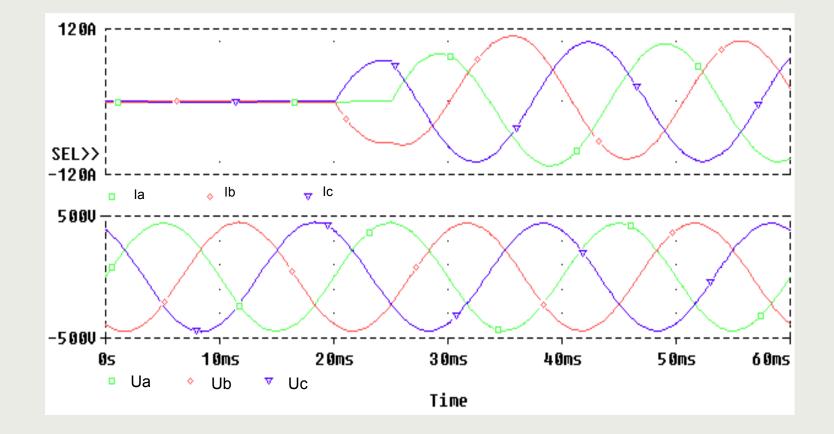
Flux linkage transient mode of operation Time constant: T_M



page 25

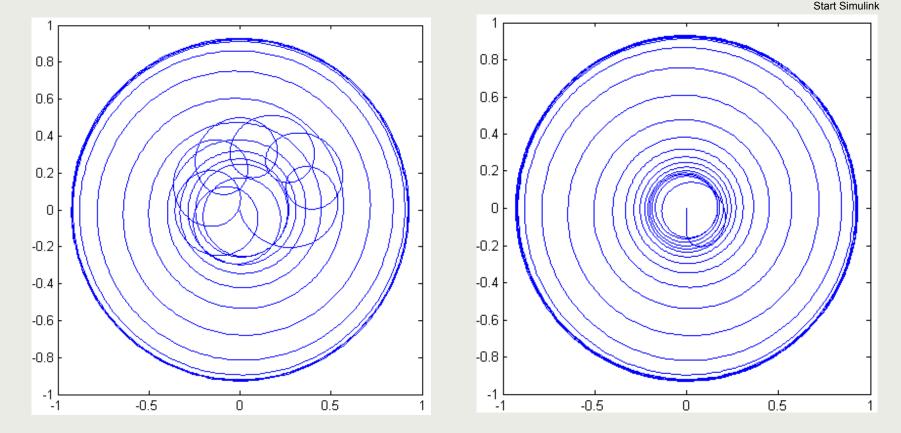

Advanced Control of Soft Starters for Industrial Drives Asynchronous Direct On-Line (DOL) Switch-On

 Transient voltage and flux linkage phasor trajectories due to 2/3-phase asynchronous switch-on

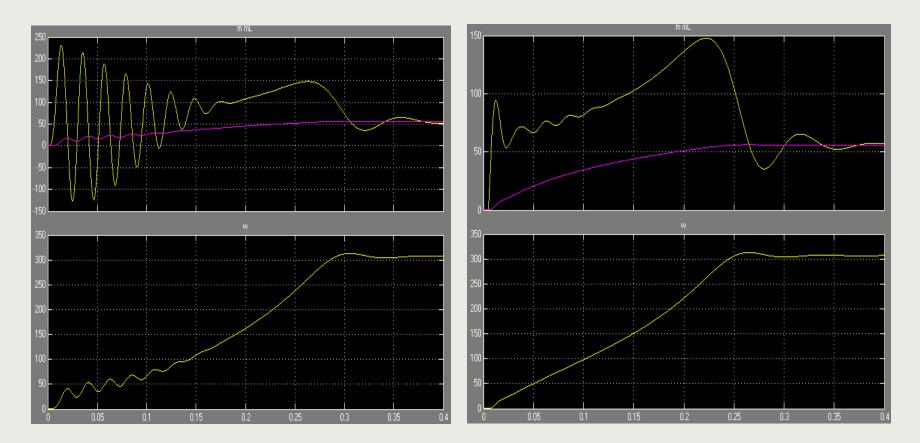

Advanced Control of Soft Starters for Industrial Drives Asynchronous DOL Switch-On

Advanced Control of Soft Starters for Industrial Drives Asynchronous DOL Switch-On

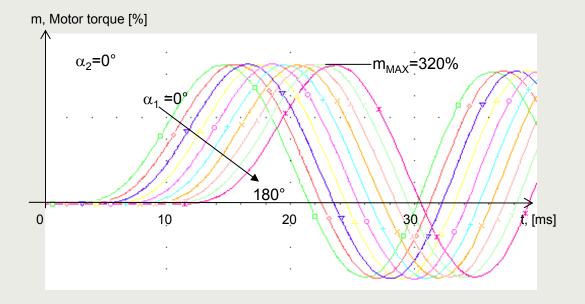
Currents and voltages versus time at asynchronous switch-on



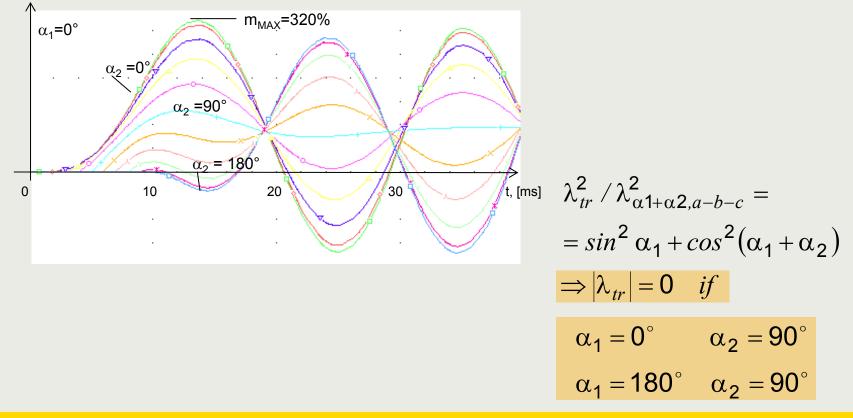
- Rotor flux linkage trajectories of an ASM during starting
 - in synchronous (I) and asynchronous (r) switching mode of operation



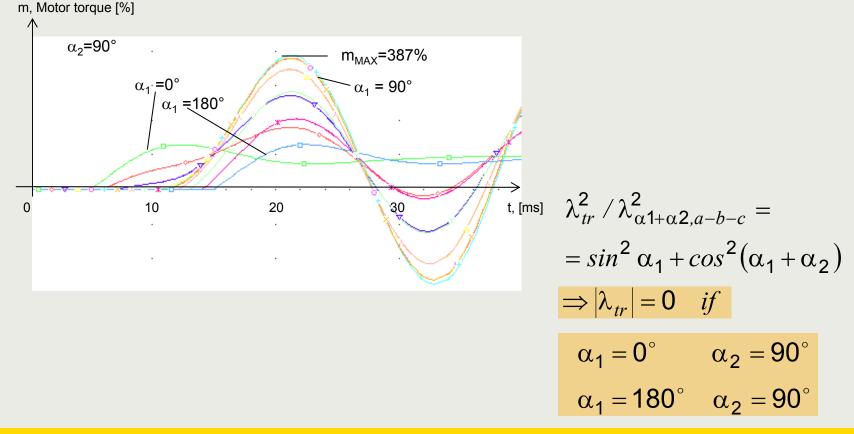
- Rotor flux linkage and stator current versus time
 - in synchronous (I) and asynchronous (r) switching mode of operation



- Dynamic performance (torque and speed versus time)
 - in synchronous (I) and asynchronous (r) switching mode of operation

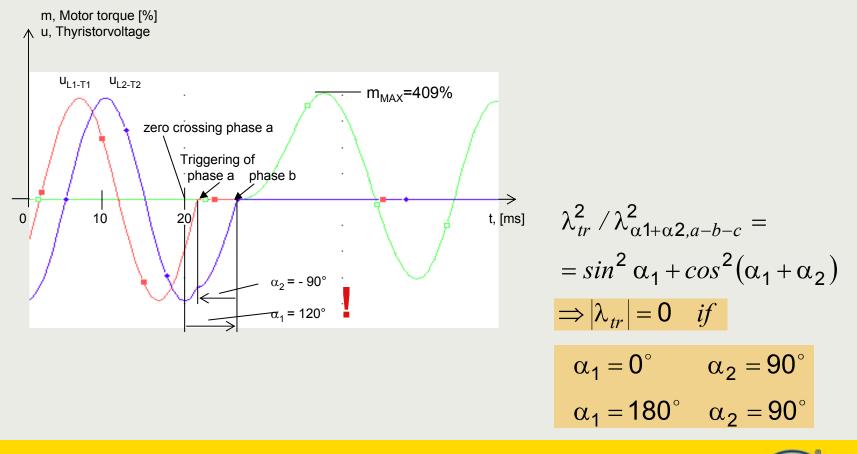


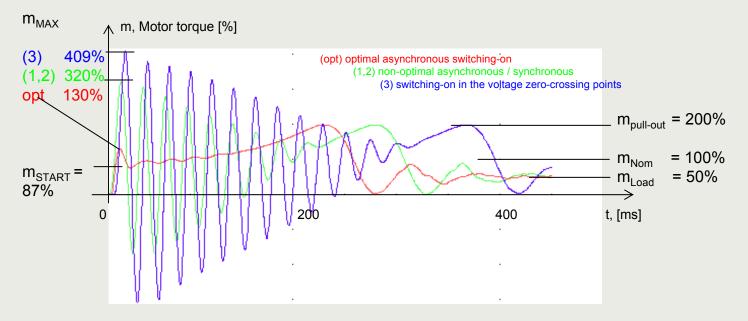
- Torque versus time
 - in synchronous switching mode of operation ("switching in-phase")



- Torque versus time
 - in different asynchronous switching mode of operations
 - (1) various switching delay from the zero-crossing of the phase voltage
 - m, Motor torque [%]

- Torque versus time
 - in different asynchronous switching mode of operations
 - (2) various phase / 90° delay : two optimal switching processes exist

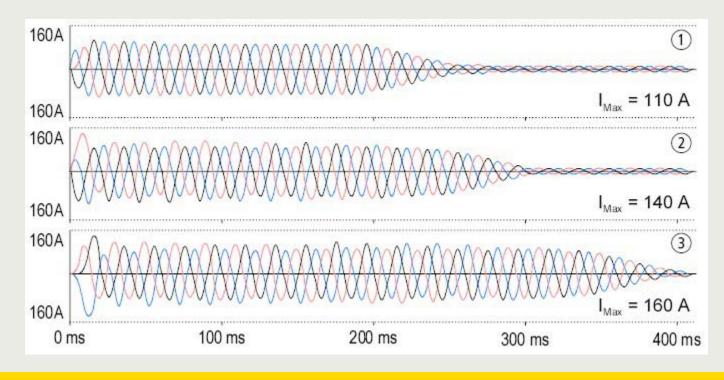



Torque versus time

31

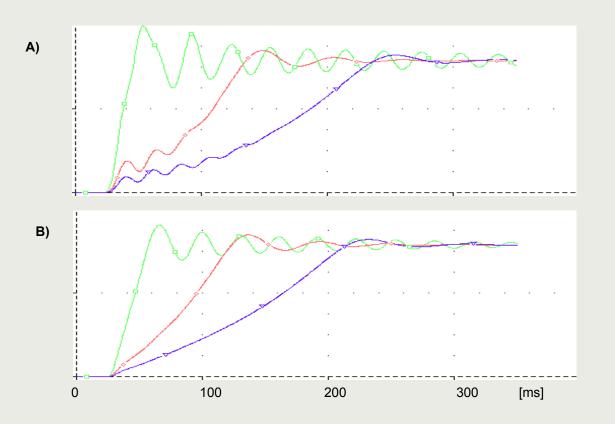
- in different asynchronous switching mode of operations
 - (3) switching in the zero-crossing point of the thyristor voltages

- Dynamic performance (torque versus time, 11 kW ASM)
 - in different synchronous and asynchronous switching mode of operations
 - switching in the zero-crossing points of the thyristor voltages (3): worst-case



Advanced Control of Soft Starters for Industrial Drives

Comparison of synchronous and asynchronous DOL switch-on


- Line currents versus time (11 kW ASM)
 - in different synchronous and asynchronous switching mode of operations
 - (1) optimal asynchronous switching: best case
 - (2) synchronous switching in-phase
 - (3) switching in the zero-crossing points of the thyristor voltages: worst-case

33

- Dynamic performance (speed versus time) of an 0.75 kW ASM with various load in synchronous and asynchronous switching mode of operations
 - (A) in phase, (B) optimal asynchronous

Advanced Control of Soft Starters for Industrial Drives Soft Starter Applications Summary

Benefits

35

- Electrical
 - Reduced starting current
 - Reduced oscillating starting torque (motor winding friendly operation)
 - Reduced voltage dropouts of the net at starting
 - Nominal power increasing by bypass contacts
 - Same technology and structure at wide range of power (0,5kW.....15MW)
 - Wide range of voltage (3x110V.....3x6kV)
 - Robust solid-state devices
 - High switching frequency
- Mechanical
 - Reduced starting shocks
 - No displacing or dropping goods on conveyor belts
 - Stress reduction on couplings and other transmission devices (conveyor belt, cone belt, clutch and driving elements)
 - No hydraulic shocks, Pump water hammer avoiding
 - Intelligent control of pumping systems

Advanced Control of Soft Starters for Industrial Drives

Soft Starter Applications Summary

- Benefits
 - Electrical
 - Mechanical
 - Economical
 - Eliminates electro-mechanical starters and the maintenance required for these devices
 - Extended life of motor and mechanical parts
 - Reduced maintenance, downtime, parts and repairs
 - Smaller dimensions and mass
 - Electrical wiring simplification (3 wires in 3 wires out)
 - Easy handling and adjustment
 - Digital and software based control

Advanced Control of Soft Starters for Industrial Drives Soft Starter Applications Summary

- Main Applications
 - Building technology (air condition, electrical heating equipment, light control)
 - Traffic light control
 - Mining, Opencast mining, Cement, Stone (mills, conveyors, crushers)
 - Marine, Offshore (bow thruster, bilge pumps, winches)
 - Centrifugal Pumps (water, waste water, irrigation, oil, chemical, petrochemical, offshore)
 - Fans, Blowers, Air Compressors (screw, piston) Mixers, Areators, Centrifuges
 - Crushers, Grinders, Wood Chippers, Paper Refiners
 - Rotating Kilns
 - Saws and Planers
 - Ball Mills, Hammer Mills
 - Load Transportation
 - Conveyors, Belts, Chains
 - Roller Tables
 - Monorails

- * Escalators
- * Airport Baggage Conveyors
- * Bottling Lines

- Main Applications
 - Building technology (air condition, electrical heating equipment, light control)
 - Traffic light control
 - Mining, Opencast mining, Cement, Stone (mills, conveyors, crushers)

Main Applications

- Building technology (air condition, electrical heating equipment, light control)
- Traffic light control
- Mining, Opencast mining, Cement, Stone (mills, conveyors, crushers)
- Marine, Offshore (bow thruster, bilge pumps, winches)
- Centrifugal Pumps (water, waste water, irrigation, oil, chemical, petrochemical, offshore)
- Fans, Blowers, Air Compressors (screw, piston) Mixers, Areators, Centrifuges
- Crushers, Grinders, Wood Chippers, Paper Refiners
- Rotating Kilns
- Saws and Planers
- Ball Mills, Hammer Mills
- Load Transportation
 - Conveyors, Belts, Chains
 - Roller Tables
 - Monorails

- * Escalators
- * Airport Baggage Conveyors
- * Bottling Lines

- Main Applications
 - Building technology (air condition, electrical heating equipment, light control)
 - Traffic light control
 - Mining, Opencast mining, Cement, Stone (mills, conveyors, crushers)
 - Marine, Offshore (bow thruster, bilge pumps, winches)
 - Centrifugal Pumps (water waste water, irrigation, oil, chemical, petrochemical,

(screw, piston)

- Main Applications
 - Building technology (air condition, electrical heating equipment, light control)
 - Traffic light control
 - Mining, Opencast mining, Cement, Stone (mills, conveyors, crushers)
 - Marine, Offshore (bow thruster, bilge pumps, winches)
 - Centrifugal Pumps (water, waste water, irrigation, oil, in chemical, petrochemical, offshore applications)
 - Fans, Blowers, Air Compressors (screw. piston)

- Main Applications
 - Building technology (air condition, electrical heating equipment, light control)
 - Traffic light control
 - Mining, Opencast mining, Cement, Stone (mills, conveyors, crushers)
 - Marine, Offshore (bow thruster, bilge pumps, winches)
 - Centrifugal Pumps (water, waste water, irrigation, oil, chemical, petrochemical, offshore)
- Fans, Blowers, Air Compressors (screw, piston)

Mixers, Areators, Centrifuges

- Crushers, Grinders, Wood Chippers,
- Rotating Kilns
- Saws and Planers
- Ball Mills, Hammer Mills
- Load Transportation
 - Conveyors, Belts, Chains
 - Roller Tables
 - Monorails

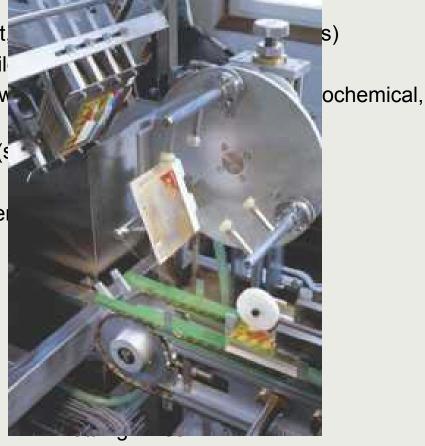
- Main Applications
 - Building technology (air condition, electrical heating equipment, light control)
 - Traffic light control
 - Mining, Opencast mining, Cement, Stone (mills, conveyors, crushers)
 - Marine, Offshore (bow thruster, bilge pumps, winches)
 - Centrifugal Pumps (water, waste water, irrigation, oil, chemical, petrochemical, offshore)
 - Fans, Blowers, Air Compressors (screw, piston)
 - Mixers, Areators, Centrifuges
 - Crushers, Grinders, Wood Chippers, Paper Refiners
 - Rotating Kilns
 - Saws and Planers
 - Ball Mills, Hammer Mills
 - Load Transportation
 - Conveyors, Belts, Chains
 - Roller Tables
 - Monorails

- * Escalators
- * Airport Baggage Conveyors
- * Bottling Lines

- Main Applications
 - Building technology (air condition, electrical heating equipment, light control)
 - Traffic light control
 - Mining, Opencast mining, Cement, Stone (mills, conveyors, crushers)
 - Marine, Offshore (bow thruster, bilge pumps, winches)
 - Centrifugal Pumps (water, waste water, irrigation, oil, chemical, petrochemical, offshore)
 - Fans, Blowers, Air Compressors (screw, piston) Mixers, Areators, Centrifuges
 - Crushers, Grinders, Wood Chippers, Paper Refiners
 - Rotating Kilns
 - Saws and Planers
 - Ball Mills, Hammer Mills
 - Load Transportation
 - Conveyors, Belts, Chains
 - Roller Tables
 - Monorails

- * Escalators
- * Airport Baggage Conveyors
- * Bottling Lines

- Main Applications
 - Building technology (air condition, electrical heating equipment, light control)
 - Traffic light control
 - Mining, Opencast mining, Cement, Stone (mills, conveyors, crushers)
 - Marine, Offshore (bow thruster, bilge pumps, winches)
 - Centrifugal Pumps (water, waste water, irrigation, oil, chemical, petrochemical, offshore)
 - Fans, Blowers, Air Compressors (screw, piston) Mixers, Areators, Centrifuges
 - Crushers, Grinders, Wood Chippers, Paper Refiners
 - Rotating Kilns
 - Saws and Planers
 - Ball Mills, Hammer Mills
 - Load Transportation
 - Conveyors, Belts, Chains
 - Roller Tables
 - Monorails


- * Escalators
- * Airport Baggage Conveyors
- * Bottling Lines

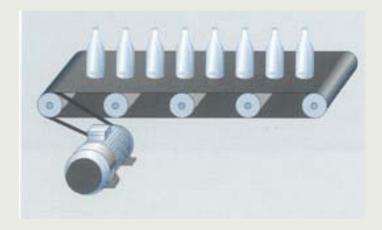
Main Applications

- Building technology (air condition, electrical heating equipment, light control)
- Traffic light control
- Mining, Opencast mining, Cement, Stone (mills, conveyors, crushers)
- Marine, Offshore (bow thruster, bilge pumps, winches)
- Centrifugal Pumps (water, waste water, irrigation, oil, chemical, petrochemical, offshore)
- Fans, Blowers, Air Compressors (screw, piston) Mixers, Areators, Centrifuges
- Crushers, Grinders, Wood Chippers, Paper Refiners
- Rotating Kilns
- Saws and Planers
- Ball Mills, Hammer Mills
- Load Transportation
 - Conveyors, Belts, Chains
 - Roller Tables
 - Monorails

- * Escalators
- * Airport Baggage Conveyors
- * Bottling Lines

- Main Applications
 - Building technology (air condition, electrical heating equipment, light control)
 - Traffic light control
 - Mining, Opencast mining, Cement.
 - Marine, Offshore (bow thruster, bil
 - Centrifugal Pumps (water, waste w offshore)
 - Fans, Blowers, Air Compressors (Mixers, Areators, Centrifuges
 - Crushers, Grinders, Wood Chipper
 - Rotating Kilns
 - Saws and Planers, Mills
 - Mass product appliances
 - Load Transportation
 - Conveyors, Belts, Chains
 - Roller Tables
 - Monorails

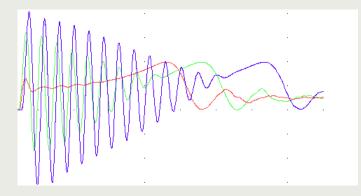
Main Applications



- Load Transportation
 - Conveyors, Belts, Chains
 - Roller Tables
 - Monorails

- * Escalators
- * Airport Baggage Conveyors
- * Bottling Lines

Advanced Control of Soft Starters for Industrial Drives Summary - Motto



Practical Problem

"There is nothing as practical

as a good theory"

Boltzman

Theoretical Solution

Advanced Control of Soft Starters for Industrial Drives

Thank you for your attention

Questions are welcome

50 Dr.-Ing. Peter Magyar, Hella KGaA Hueck & Co, Germany