

IEEE-GCC, Bahrain 25 October 2007

Combining Hazardous Location Practices and Technologies in a Large Capital Project

Introduction

- Global Competitiveness Requires Innovation
- Primary Objectives
 - Capital Cost Reductions
 - Without Compromising Safety
- Blending North American and IEC Practices
 - Installation Methods
 - Electrical Equipment
 - Certified to North American and IEC Based Standards

Reality of the Global Economy

- Industry Must Be More Competitive to Survive
- Both Existing and New Facilities
 - Must Re-examine How Electrical Installations Are Designed, Constructed, Operated, and Maintained
- Rapid Advancements in Technology
 - Cost Benefits of Major Developments Must Be Examined and Incorporated Faster
- Changes Must Be Implemented Without Compromising Safety

Reality of the Global Economy

- Electrical Installations Not the Same Everywhere
- Multiple Electrical Wiring Codes, Recommended Practices and Product Standards Exist
 - Properly Applied, All Result in Safe Installations
- Underlying Objective of All Codes and Standards Organizations, Owner Operators and Regulators
 - Ensure Electrical Safety
 - Protect Workers
 - Protect Property
 - Ensure Reliability

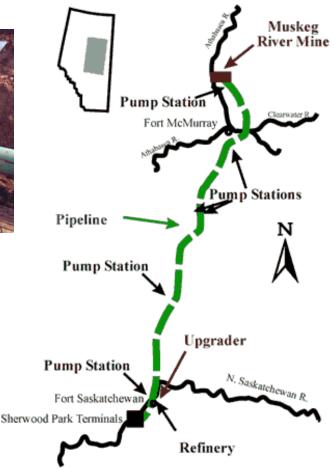
Reality of the Global Economy

- No Single Set of Electrical Codes and Standards
 - Is Absolutely the Best
 - Is the Most Cost Effective
- Many do Have Cost Effective Elements
- In A Perfect World We Would
 - Select the Best Practices From Multiple Documents
 - Determine the Most Cost Effective Solutions

The Project Referenced

- Large Oil Sands Resource In Northern Alberta

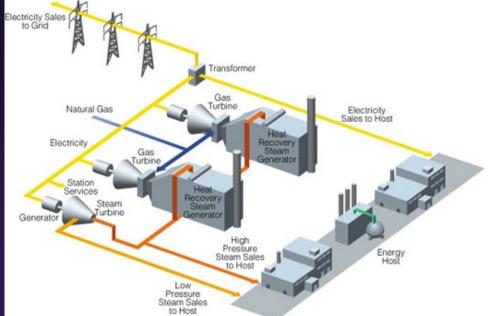
 High Quality, Well-defined Mineable Ore Body
 1.5 Billion M³ (9 Billion Barrels) of Bitumen
 Recoverable Through Surface Mining
- Project Facilities
 - Mine and Extraction Plant
 - Pipelines
 - Upgrader, and Refinery Modifications
 - Cogeneration Plants


Mine, Extraction & Froth Treatment Plant

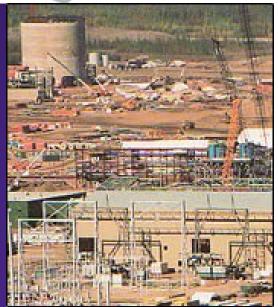
- Approximately 1420 M³/d (215,000 Bbl/d)
 Diluted Bitumen
- 1000 M³/d (155,000 Bbl/d) Equivalent of Undiluted Bitumen

Pipelines

- Transports Diluted Bitumen 470 Km From Mine to Upgrader
- Return Recovered and Make-up Diluent to Mine
- Expanded Pipeline Facilities Between Refinery and Shipping Terminals
 - Feed Supply, Product Delivery,
 Diluted Bitumen Bypass

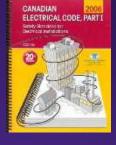


Upgrader


- Upgrade Bitumen From Mine to Synthetic Crude, 1420 M³/d (215,000 Bbl/d)
- Refinery Modifications
 - Necessary to Integrate Upgrading Process to Refinery Process

Cogeneration

- Independent Power Producer
- All Process Steam and Electrical Power Requirements


- Excess Power Sold to Provincial Electrical Grid
 - Back-up Power Available From Grid
- Mine Facility
 - 180 Mw Two 90 MW GTG
- Upgrader Facility
 - 180 Mw 90 MW STG & One 90 MW GTG

Canadian Regulatory Environment

- Very Similar to the NEC
- Canadian Electrical Code
 - Canadian Electrical Code (CEC) Part I
 - Electrical Installation Rules
 - Adopted Individually by All Jurisdictions in Canada
 - Part II Product Standards
 - CEC (Part I) Requires All Electrical Products Installed Be Certified to Part II Standards
- Both Are Written and Administered by CSA

Canadian Regulatory Environment

- Following The CEC Was mandatory
 CEC Required The use of CSA Approved Products
- Any Deviations to This Required Special Approval From The Authority Having Jurisdiction (AHJ)
 - Most Deviation Requests Were Refused
 - Due to Undefined "Safety Concerns"
 - No Appeal Process Available
 - Uncertainty of Obtaining Approval Discouraged Use

Change In Regulatory Environment

- Alberta Passed The Safety Codes Act,
 - New System Went Into Effect In 1996 That Changed The Way The CEC Was Applied
- Corporations Were Permitted To Become "Accredited" To Self Inspect Their Facilities
 - Requires A Quality Management Plan
 - Use Certified Safety Codes Officers For Inspection

Quality Management Plan

- Identifies How The Requirements Of CEC Are Met
- Includes A Variance Policy
 - Allows Deviations To
 - Installation Rules
 - Product Standards (I.E. Certification To CSA)
 - Deviations To The CEC
 - Must Provide Equivalent Or Improved Safety
 - Must Include Detailed Documentation

Inspection

Safety Codes Officers (SCO)

Accredited By The Province
Role Is The Same As Provincial/State Inspector

Can Be Corporation Staff Or Independent Third Party

Operate At Arm's Length
Most Corporations Use Third Party

Safety Codes Officers (SCO)

- Worked Proactively With EPC Engineering Teams
 - Assisted Engineering in Development of Variances
- Worked With Supply Chain to Ensure Correct Hazardous Location Equipment Certification Requirements Were Met
- Inspection Vendor "Packages" at Facilities to Ensure Code and Quality Compliance Prior to Delivery to Site
 - Provided Assistance in the Field to Interpret Rules
 - Assisted in Obtaining Approvals And/or Variances for Equipment That Was Delivered to Site With the Wrong Certifications.
- The SCO Agency Developed and Maintained Project's Records for Codes Variances and Inspection Records

Engineering and Design

- Zone Area Classification System
 - Over 97% of Areas Classified As Zone 2
 - Both Zone and Division Style Equipment Acceptable
- Fundamental Principle
 - Equal or Better Safety Compared to Existing CEC

Engineering and Design

- Traditional Mindsets Challenged
 - Engineers And Designers Encouraged To Apply Knowledge And Experience Towards Innovative And Cost Effective Approaches
 - Explore Alternatives That Are Cost Effective
 - Researched Global Practices For Specific Situations

Without Compromising Safety

- Variances Written If Design Outside CEC
 - Involve SCO To Understand And Approve

Code and Product Variances

- Numerous Variances to CEC Used Throughout the Project
 - Where Significant Cost Advantage Gained
- Key Determining Factors In Applying for Variances
 - System Reliability
 - No reductions in Safety
 - Only Equal or Higher Level

Key Variances Non-approved Equipment

- CEC Code Requirement
 - Only Equipment Certified to CSA Part II Standards
- Variance
 - Allow Equipment Approved to Non-CSA Standards
 - Typically Slight Differences
- Benefits
 - Significant Cost And/or Schedule Savings
- Caution
 - Substandard Equipment Was Found As "Certified"

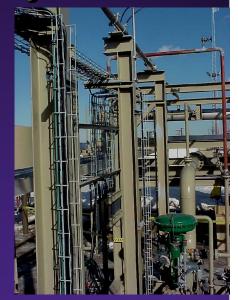
Key Variances Non-approved Cables

- CEC Code Requirement

 Only CSA Certified Cables
- Variance
 - Allow the Use of UL/NEC Approved Cables
- Benefits
 - Depending on the Type of Cable Used
 - Material Savings Of 10%-50%
 - Labour Savings Of 15-50%

Key Variances Minimum Voltage Drop

- CEC Code Requirement


 Branch Circuits Maximum of 3% Voltage Drop
- Variance
 - Permit Higher Voltage Drops
 - Within Rating of Equipment
- Benefits
 - Reduced Cable Size
 - Approx 17% Savings on Applicable Cable Costs

Key Variances Random Fill of Cable Trays

- CEC Code Requirement
 - Significant De-rating of Cables
 - When Cable Spacing in Trays Is Not Maintained
- Variance
 - Use of Load Diversification Factors
 - Allowed Non-maintained Spacing Without De-rating
- Benefits
 - The Estimated Savings to the Project Exceeded
 - 50% of the Applicable Cable Costs

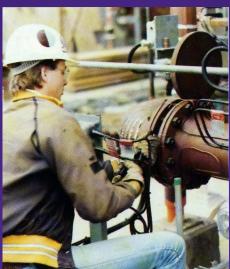
Key Variances Tray Cable Protection by Location

- CEC Code Requirement
 - Tray Cables Must Be Protected by Approved Raceway To End Devices
- Variance
 - Raceway Was Not Required Where Cables Were Protected by Their Location
- Benefits
 - Savings of 16% for the Applicable Cables Were Realized

Tray Cable Protection by Location

Key Variances IEEE Ampacities

- CEC Code Requirement


 Defines Maximum Conductor Ampacities
- Variance
 - Allowed IEEE Ampacities for Power Cables
- Benefits
 - Estimated Savings Approx. 14%
 - On Main Feeder Cables

Key Variances Maximum Temp. For Heat Tracing

- CEC Code Requirement
 - Sheath Temperature Must Be Below the Auto-ignition Temperature in Hazardous Locations
- Variance
 - Allowed Sheath Temperature to Maximum of Pipe Temperature in Zone 2 Areas
- Benefits
 - Savings of up to 50% for Tracing Circuits
 Where Variance Was Applied

Key Variances Bonding to Ground of Instruments in Hazardous Locations

CEC Code Requirement

 Non Current Carrying Parts of Electrical Equipment Must Be Effectively Bonded to Ground

• Variance

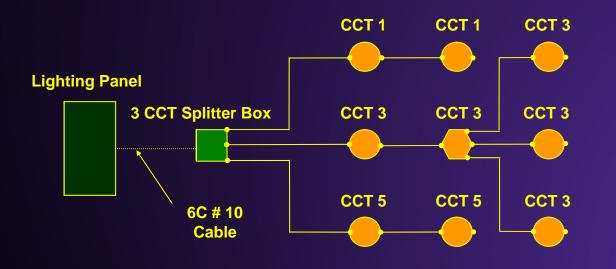
- Instruments Were Effectively Bonded to Ground by Their Connection to the Process Piping and Mounting
- Benefits
 - Reduced Cabling and Termination Costs

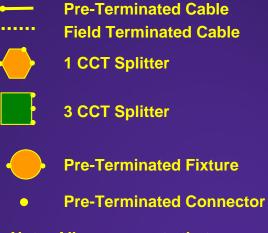


Key Variances Motor Feeder Sizing Reduced to 115% FLA

- CEC Code Requirement
 - Motor Feeders Be Sized to 125% FLA
- Variance
 - Motor Feeders for MV Motors Reduced to 115% FLA
 - Electronic Overload Units Can Be Accurately Set to Protect the Motor Feeder Cables at This Level
- Benefits
 - Recognized Too Late to Be Used on Project

- Modular Wiring System
 - Not New To "Industry"
 - Just New To The "Hazloc Industry"
- Extensively Used In
 - Automotive Manufacturing
 - Packaging
 - Robotics





- Concept
 - Pre-terminated Cables
 - End Devices With Suitable Receptacles
 - For Industrial Installations
- Original Concept
 - Minimize Construction Costs
- Reality
 - Significant Maintenance
 - Operation Savings
 - Safety Enhancements

 Cables Connecting Lights And Boxes Fabricated Off Site In Pre-terminated Lengths Of 5, 10, 15, And 25 Meters

Note: All components that are pre-terminated are "Shop Terminated"

- Faster installation
- Easier maintenance

Installation and Wiring Methods

- Non-metallic Enclosures
 - FRP Enclosures & Non-metallic Cable Glands Used
 - More Corrosion Resistance Than Traditional Metal Products
 - Eliminated the Need for Bonding Conductors
 - When Tray Cables Without Grounding Conductors Were Used
 - Savings in Material and Labour Costs
 - Ranged From 35% to 50% for the Applicable Enclosures

Barrier Gland

- Entry to Explosionproof or Flameproof Enclosures
- Barrier Type Cable Gland
 - For Un-armoured Tray Cables
 - IEC/CENELEC (E)Ex D
- Class 1 Division 2, Groups A, B, C, D
 - Limited By Cable Type
 - For Connecting To a Division 1 Box In Division/Zone 2

Installation and Wiring Methods

- Conventional Aluminum Cable Tray
 - Eliminated Tray Fittings (Drops, Elbows, End Plates)
 - Wherever Possible
 - 10% Savings
- Basket Tray
 - Drops Out of Main Trays and in Congested Areas
 - Significant Labour Savings Achieved

Restricted Breathing Fixtures

- Better Gasketing Restricts Fixture's "Breathing"
- Only Exterior Temperatures Considered
 - Huge Difference In T-Codes
 - Permits Use of Higher Wattages
 - Allows Flexibility in Lighting Design

High Pressure Sodium			
Wattage	Div. 2 Unit T-Code	Ex nR Unit T-Code	Change
400 Watt	T-2A	T-3C	120ºC
250 Watt	T-2A	T-3C	120°C
150 Watt	T-2B	T-3C	100°C
100 Watt	T-3	T-4A	80°C
70 Watt	Т-3	T-4A	80°C

Installation and Wiring Methods

- Division/Zone 2 Panelboards
 - EPC Input into Design
 - Factory Sealed Twin Chamber Style
 - Greater Flexibility
 - Larger Wiring Enclosures
- Later In Project
 - Zone 2 Panels
 - IEC Design
 - FRP Enclosures

Installation and Wiring Methods

- Egress Lighting

 For Indoor, Heated Areas
- Fluorescent Fixtures
 - 120 VAC / 125 VDC
 - Central UPS System
 - Saves Costs of Individual Battery Back-up Units

Training and Education

- EPC's Needed to Better Understand Direction
- Ongoing Meetings and Training Sessions Held With Engineers, Manufacturers, Owners & SCO's
 - Adapt Hazloc Products for Use With Tray Cable
 - Highlight Design Opportunities With IEC Equipment
 - Identify Equipment Options From Traditionally Products
 - Optimize the Blend of IEC/NEC/CEC Equipment
 - Maximize Cost Savings Without Compromising Safety

Maintenance Considerations

- Significant Cost & Safety Benefits
 - Eliminate Explosionproof Equipment Where Possible
 - Use Lighting Systems That Provide Longer Life and Higher Reliability
 - Provide Some Capacity for Future Expansion
 - If Cost of Equipment Was Similar

Summary

- Concepts Discussed Saved Approx.
 10-15% of the Electrical System (\$25 30 Million)
- Critical Elements
 - Trades Resistant to Change
 - Generally EPC's and Manufacturers Open to Change
 - Education and Training Essential
 - Need to Improve (Earlier and Better)
 - More Owner Involvement (With Significant Changes)
 - Opportunities Exist for Further Savings
- Paves the Way for Future Projects

