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Abstract —  Access control lists are core features of
today’s internetwork routers. They serve several purposes, 
most notably in filtering network traffic and securing 
critical networked resources. However, the addition of 
access control lists increases packet latency due to the 
overhead of extra computations involved. This paper
presents simple techniques and algorithms for optimizing 
access control lists that can reduce significantly expected 
packet latencies without sacrificing security requirements. 
These techniques and algorithms can be implemented either 
fully or partially, both online and offline, based on the 
amount of overhead allowed. It also outlines analytically 
and statistically where and why the greatest bulk of 
optimization lies.

Index Terms  —  Communication system operation and 
management, communication system security, access 
control, optimization methods.

I. INTRODUCTION

Routers are the most vital elements of today’s 
internetworks. They operate at layer three of the OSI 
reference model, where they determine the optimal path 
to distant networks using routing protocols and, 
subsequently, route packets from source to destination 
through those optimal paths. Another important function 
of routers, however, is to determine if packets are 
authorized by network administrators to reach their 
intended destinations in the first place. To do this, 
routers check packets against an access control list 
(ACL), defined by a network administrator, that 
specifies which types of network traffic should be 
permitted and which types should be denied. The role of 
ACLs can also be extended to include filtering route 
advertisements and enforcing policies such as network 
address translation (NAT) and traffic shaping [1]. 

With the rapid growth of today’s internetworks, ACLs 
have become increasingly important to network 
administrators. This is in part due to the increase in 
cyber threats and attacks on the one hand, where access 
control technologies play the primary defense 
mechanism, and the demand for cost-effective network 
policies that optimize network performance with
minimal costs on the other hand. ACLs do not come at a 
zero cost, however. They add a computational delay,
which contributes to end-to-end packet latency. An 
optimal access control list is defined to be the access list 
that satisfies security requirements while involving the 
least amount of computational delay. Optimizing ACLs 

can be implemented by both reducing their size and 
changing the order of their rules.

The subject of access control list optimization has 
been awarded a strong interest in the research 
community. The first real attempt at access control list 
optimization came from Cisco ACL Optimizer [2]. 
Although Cisco’s application addresses a wide range of 
optimization scenarios, it has three major drawbacks. 
First, Cisco ACL Optimizer combines only contiguous 
maskable rules, and ignores non-maskable and yet still 
combinable rules, even though combinable rules that are 
not maskable are common in today’s ACLs. Second, 
Cisco application does not predict hit probabilities for 
rules with no hit counts present, e.g. in the case of a new 
ACL. This implies a random arrangement of rules with 
equal hit counts even if their predicted hit probabilities 
are different. Third, as has been previously noted by 
Grout (2006), Cisco ACL Optimizer assumes a constant 
rule latency, which may or may not be accurate 
depending on implementation [3]. On the other hand, 
other research papers only considered access control list 
optimization in limited scenarios. For instance, Al Shaer 
(2004) only addresses anomalies in ACLs, while 
Bukhatwa (2004) ignores rules’ dependencies [3]-[5]. 

II. DEFINITIONS

A. Rule
A typical rule in Cisco extended ACL format is shown 

in figure 1. As shown in the figure, a rule is comprised of 
six fields: (1) action (act), which could be either permit 
or deny, (2) protocol (prtcl), such as IP, TCP, UDP, 
ICMP ..etc, (3) source address range (sa), in the form of 

Fig. 1. A typical rule in Cisco extended ACL format. 

an IP address and a wild card mask, (4) source port 
range (sp), (5) destination address range (da), and (6) 
destination port range (dp). In the case of ICMP, both 
source and destination port ranges are replaced with a 
flag such as echo-request, or echo-reply. In mathematical 
terms, a rule R is a 6-tuple object, R=(act, prtcl, sa, sp, 
da, dp). In this paper, we denote Ri.act to mean the 
action field of the ith rule, Ri.prtcl to mean the protocol 
field of the ith rule … and so on. 

permit   ip  10.1.1.0   0.0.0.255  host 10.2.2.1   eq http



B. Access Control List and Executed Rules

An access control List (ACL) is a set of rules that are 
executed sequentially from top to bottom. In other 
words, if every field in a packet matches the
corresponding field in a rule Ri, the router will take the 
action stated in Ri.act, and ignore all subsequent rules. 
Ri ε pk, read Ri executed for the kth packet, indicates that 
in the specified ACL, the action field in Ri determines 
whether the packet pk will be permitted or denied.

C. Rule Dependency and Superset Rules

Two rules are dependent if there is at least one packet 
pk such that Ri ε pk when i<j and Rj ε pk if j<i. In this 
paper, we write Ri Δ Rj to indicate there is a dependency 
between Ri and Rj. In mathematical terms, 

A rule Ri is said to be a superset to rule Rj if every 
field in Ri is a superset or equal to the corresponding 
field in Rj. In mathematical terms, 

D. Shadowed and Covered Rules

Shadowed rules are rules that will never be executed 
because of a preceding rule whose fields are all supersets 
or equal to the corresponding fields in the shadowed 
rule. In this paper, RjRi  implies that Rj is shadowed 
by Ri. To make the notation easier to remember, Ri is on 
the wider side of the triangle (i.e. a superset rule) and on 
the left (i.e. comes first). Thus, Ri shadows Rj. 

Covered rules are rules that can be safely removed 
because a subsequent more general can still satisfy 
security requirements. This happens if both actions in the 
two rules are similar, while all fields in the covered rule 
are subsets or equal to the corresponding fields in the 
subsequent more general rule. RjRi  implies that Ri is 
covered by Rj. In this notation, Rj is on the wider side of 
the triangle (i.e. a superset rule) and on the right (i.e. 
comes next). Thus, Rj covers Ri. 

E. Hit Probability

Hit probability of a rule Ri, h(i), is the probability that 
a packet will traverse all preceding rules without a match 
and matches all fields in Ri. In other words, h(i) is the 
probability that Ri ε p, where p is any random packet. 
Hit probabilities play a significant role in ACL 
optimization. 

F. Expected Packet Latency

Rule Latency, RL, of a rule Ri is the time taken to 
process Ri, which could be fixed or different from one 
rule to another according to implementation. Rule Packet 
Latency, RPL(i), is the latency a packet goes through 
when it is executed by rule Ri. That is, it is the sum of all 
previous rule latencies, as given in equation 1. 

, where R0 is the first rule in the ACL. Expected 
Packet Latency (EPL) is the standard by which ACL 
optimization is measured. The larger the decline in EPL
attained, the better the optimization. EPL can be 
calculated using equation 2 below. 

, where n is the total number of rules in the ACL.

III. ACL OPTIMIZATION SOLUTIONS

Finding an optimal ACL is an NP-complete problem, 
meaning it cannot be solved in polynomial time [3]. 
Thus, the only alternative is to build heuristic algorithms 
that yield excellent results in polynomial time, which is 
the subject of this paper. We will first outline 
optimization scenarios and provide their algorithms. 
After that, we will show analytically and empirically 
where and why the greatest bulk of optimization lies.

A. ACL Optimization Application

The techniques and algorithms presented next have 
been implemented in C++. The application, called 
ACLO for ACL Optimization, was applied to around 
100 existing ACLs written by average network 
administrators and was found to yield, on average, an
80% reduction in EPL and a 40% reduction in ACL size. 
ACLO is command-line-based and stores both the new 
optimized ACL and a detailed report of how it has been 
optimized in two separate files. The purpose of the 
report is to provide network administrators with a 
detailed description of why the old ACL needed to be 
optimized, and to identify to him/her the configuration
errors s/he has made in the old ACL. 

Table 1 displays the 12 fields used in ACLO. WCM is 
wild card mask. It specifies which bits are examined and 
which are ignored. ICMP flags are treated as pseudo 
ports in the application and given pseudo port numbers 
all larger than 100,000 to ensure they will not conflict
with real port numbers in other rules. Hit Counts, on the 
other hand, are the actual hit counts available on 
deployed logging-enabled ACLs. In addition to actual hit 
counts, the application also adds a Hit Counts Prediction
Factor for every rule. This factor is automatically
calculated by the application based on the values of the 
other fields in a given rule. The value is, then, 
normalized to a ratio over one so that it can only be 
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Action Protocol Src IP Src WCM

Dst IP Dst WCM
Src Port 

Rng
Dst Port 

Rng
Hit Counts 
+ Prediction 

Factor

Rule 
Latency

Rule Up 
Bound

Rule 
Bottom 
Bound

Tab. 1. The fields used in ACLO optimization 
algorithms. 

significant for rules with no actual hit counts present or 
for rules that share the same hit counts. The purpose of 
the prediction factor, as the name implies, is to predict 
future hit counts and optimize accordingly. For instance, 
rules that specify IP protocol are more likely to be 
executed than rules that specify ICMP traffic. Similarly, 
rules that specify traffic between different subnets are 
more likely to match than rules that specify traffic 
between two individual hosts. The relative weight of 
each field was determined empirically by examining 
real-life traffic and hit counts of deployed ACLs. 

Rule Latencies (RLs) and Boundaries are the last three 
fields used in the application. RLs specify the relative 
difference in execution time between different rules. 
Obviously, whether rule latencies are different from one 
rule to another depends on implementation. However, it 
is likely that rules that specify layer 4 header fields such 
as TCP/UDP port number require more processing time 
than standard rules, which only specify layer three fields. 
Thus, for the purpose of generalizing the problem of 
ACL optimization, rule latencies are also considered in 
this paper. It is important to note that the actual values of 
rule latencies are not significant, since we are not 
attempting to calculate the real expected packet latency 
in a given ACL. What is significant, however, is the ratio 
between those values since it does influence how rules 
will be reordered, and, therefore, how the ACL will be 
optimized. Rule Up and Bottom Boundaries define the 
degree of mobility of a rule in a given ACL. In other 
words, it is the boundaries between which a rule can be 
safely relocated without changing ACL semantics. 
Obviously, when two rules need to be swapped, the new 
locations of both rules need to be within their own 
respective boundaries. A more thorough discussion of 
how these fields are determined and how they are used in 
the algorithms will be provided in the next section. 

Aside from the database, ACLO uses five files. The 
first file contains the old ACL, while the second file 
contains the new optimized ACL. In addition, the third 
file has all well-known ports in both text and numerical 
format. The fourth file contains ICMP flags and pseudo 
numbers that will be used during optimization. Lastly, 
the fifth file contains a detailed report of how the old 
ACL has been optimized on a rule-by-rule basis. 

B. Optimization Scenarios

In the subsequent algorithms, we assume that the first 
rule is R0 and the last rule, RACLsize – 1, is the implicit deny 
all statement. Before going into the algorithms and 

optimization results, we first need to show how rules’
boundaries are determined, since this algorithm will be 
executed every time a change is made to the ACL. The 
algorithm is shown in figure 3 below, with a time 
complexity of O(n2). 

Fig. 3. Rule Boundary Update Algorithm

a. Removing Shadowed Rules
Shadowed rules are never executed and, thus, they can 

be safely removed. Removing those rules not only 
reduces the size of the ACL, but also improves RPL for 
all subsequent rules. Consequently, removing shadowed 
rules improves EPL for the entire ACL. Figure 4 shows 
the algorithm used in ACLO. The time complexity of 
this algorithm is O(n4). 

b. Removing Covered Rules
Although, unlike shadowed rules, covered rules could 

be executed, they can still be safely removed because a 
subsequent more general rule can still satisfy security 
requirements. Removing these rules will reduce the size 
of the ACL and improve EPL. The algorithm for 
optimizing an ACL in this scenario is shown in figure 5. 
The time complexity of this algorithm is also O(n4).

Fig. 4. Removing shadowed rules algorithm. 

c. Combining Rules
While finding an exact solution for removing 

shadowed and covered rules is relatively a simple task,
discovering the best possible way of combing rules is a 
lot more difficult. Because we are looking for reasonably 
fast heuristic algorithms, we decided to examine rules on 
a pair by pair basis. In other words, the algorithm will 
determine if two rules could be combined together into a 
more general rule regardless of what the other rules in 
the ACL are. It is true that by looking at all the rules,

Remove_Shadowed_Rules (ACL)
i = 0
while ( i < ACLsize -1 )
    j = i + 1
    while ( j < ACLsize)

if (Ri  Rj)
     report action
     remove (Ri) & Decrement ACLsize
     j = j -1
     Update All Rules Boundaries ()
j = j + 1

    i = i + 1    

Update_Rule_Boundary (Ri)
k = i 
while (((k < ACLsize )AND ( k >= 0)) AND 
((Ri.act = Rk.act) OR NOT(Ri Δ Rk)))

k = k – 1
Ri.UpBound = k + 1
k = i
while (((k < ACLsize) AND (k >= 0)) AND 
((Ri.act = Rk.act) OR NOT(Ri Δ Rk)))

k = k + 1
Ri.BottomBound = k – 1
R0.UpBound = 0
RACLsize-1.BottomBound = ACLsize - 1



Fig. 5. Removing covered rules algorithm. 

better optimization could be inferred than by merely 
looking at each pair on its own, but it would also be 
impractically time consuming. The algorithm shown in 
figure 6 combines rules by manipulating the wild card 
masks even if those rules are not contiguous and not 
maskable. Because a low-level description of the 
algorithm would be too long for the scope of this paper,
a high level description is given instead. The time 
complexity of this algorithm is O(n5).

Fig. 6. Combining Rules Algorithm

d. Hits Optimizer

The Hits Optimizer part of the application reorders the
rules in an ACL based on effective hit probabilities in
order to minimize EPL. It accomplishes this by

swapping rules only if their new positions are within 
their respective boundaries and effective hit probability
of the first rule is less than effective hit probability of the 
next rule. 

Effective hit probability is determined by three factors. 
The first factor is the actual hit counts, since it represents 
real-life traffic patterns and probabilities. Effective hit 
probability of a rule is linearly related to hit counts. The 
second factor is the hit counts prediction factor. As has 
been discussed earlier, this factor is determined by the 
values of the other fields in a given rule, and it is 
normalized to a fraction between zero and one to ensure 
that the prediction factor is only significant when no 
actual hit counts are present or for rules with equal hit 
counts. The details of how the prediction factor is 
calculated should be determined by the application user, 
and are outside the scope of this paper.

The third factor in the calculation of effective hit 
probabilities is rule latencies. How rule latencies are 
handled in ACL optimization can be shown both 
graphically and mathematically. Graphically speaking,
because ACLs are executed sequentially from top to 
bottom, rules with different rule latencies, such as the 
ones shown in table 2, can be duplicated to reflect their 
RL while assuming a fixed RL for each rule, as shown in 
table 3. Obviously, hit probability will have to be 
distributed evenly among the duplicate rules. Thus, 
effective hit probability is directly related to
hitCounts/RL. Mathematically speaking, consider the 
case where there are two rules Ri and Rj, with different 
rule latencies. The EPL for the two rules is given in 
equation 3 if i < j. The minimum of the two EPLs, when 
i < j or when j < i,   determines if Ri should be placed 
before Rj or vice versa. It is clear from equation 3 that 
hitCounts/RL again determines if the two rules should be 
swapped or not.

To sum up, Hits Optimizer, uses equation 4 for 
calculating effective hit probabilities

, where EHP is effective hit probability, RL is rule 
latency, and PF is prediction factor. 
Rule Hit 

Counts
RL

Permit ip any host 10.1.1.1 5 1
Permit ip any host 10.1.1.2 eq 80 20 2
Deny ip any any 100 1

Tab. 2. ACL with hit counts and rule latencies

C.  Optimization Results

When ACLO application was applied to around 100 
ACLs written by average network administrators, it was 
found that the four simple procedures could optimize 
EPL for typical ACLs by more than 80%, while ACL
size is reduced on average by 40%. Table 4 shows how 
much, on average, each procedure contributes to overall

Remove_Covered_Rules (ACL)
i = 0
while ( i < ACLsize -1 )
    j = i + 1
    while (( acti=actj) or NOT(Ri Δ Rj))

if (Rj  Ri)
     report action
     remove (Ri) & Decrement ACLsize
     Update All Rules Boundaries ()
     Break () “this statement breaks 
               the while loop”
j = j + 1

    i = i + 1    

Combine_Rules (ACL)
Do {
Repeat = 0, i = 1
while (i < ACLsize)

j = i + 1 
while (j <= ACLsize)

if((Ri.prtcl = Rj.prtcl) and
(Ri.sp = Rj.sp)and(Ri.dp = Rj.dp))

Is there exactly a one-bit 
difference in both source IP and 
destination IP? 
If (Yes)

If difference in sourceIP set S 
to one. Otherwise, set S to 
zero.
K=position of the bit

If (S=0)
If (j between Ri boundaries)

Rj.dstWCMBit[k]=1
Rj.HitCounts+=Ri.HitCounts
Report action
remove (Ri) & Decrement ACLsize
Repeat = 1
Update all rules boundaries()

If (j Not between Ri boundaries)
AND (i between Rj boundaries)

Ri.dstWCMBit[k]=1
Ri.HitCounts+=Rj.HitCounts
Report action
remove (Ri) & Decrement ACLsize
Repeat = 1
Update all rules boundaries()

If (S=1)
//Similar but for srcWCMBit//

j = j + 1
i = i + 1

} while (repeat > 0)

RLPFHitCountsEHP /)(  (4)

iji RLjhRLjhRLihjiEPL )()()()(  (3)



Rule Hit 
Counts RL

Permit ip any host 10.1.1.1 5 1
Permit ip any host 10.1.1.2 eq 80 10 1
Permit ip any host 10.1.1.2 eq 80 10 1
Deny ip any any 100 1

Tab. 3. ACL with effective hit counts when rule 
latencies are assumed fixed. 

EPL optimization when a single procedure is applied at a 
time. Obviously, Rules Combining procedure and Hits 
Optimizer contribute the most to ACL overall 
optimization. 

There are several reasons why Hits Optimizer and 
Rules Combining procedures contribute the most to ACL 
optimization. First, shadowed and covered rules are not 
only relatively easy to detect by network administrators, 
they are also easily detected by end users upon writing

Reduction
Shadowed 

Rules 
Removal

Covered 
Rules

 Removal

Rules 
Combining 
Procedure

Hits 
Optimizer

EPL 1% 10% 25% 77%
Size 2.5% 5% 37% 0%

Tab. 4. Average optimization by each procedure to 
typical ACLs.

his/her access requirements. These anomalies do not 
require sophisticated technical knowledge to discover. 
Rules Combining procedure, on the contrary, involves an 
excellent background in binary arithmetic and Boolean 
algebra. In addition, they are harder to detect by the 
network administrator, and are not normally considered 
upon writing access requirements by the end user. 
Furthermore, it is a daunting task for network 
administrators to study network traffic and predict hit
probability in order to optimize ACLs accordingly. As a 
result, an automated approach, such as ACLO 
application, yields substantial improvement for typical 
ACLs through these two procedures. 

C.  Timing Consideration

The time complexity of the application is O(n5). This 
is relatively acceptable for small to medium size ACLs 
as shown in figure 7. Also, it is noteworthy to keep in 
mind that the application is a one-time-pass algorithm. In 
other words, once an ACL is written and hit counts are 
available that sufficiently reflect real-life traffic, the 
ACL needs to be optimized only once either online or 
offline. It does not need to be re-optimized in the future 
unless changes are made to it. 

Nevertheless, the algorithms presented so far are 
highly customizable in terms of time versus efficiency. 
If, for instance, the time complexities of the algorithms 
are not acceptable for online optimization, the 
algorithms can be slightly altered to reduce the time 
complexity of the application at the expense of a 
reduction in efficiency. For instance, the Rules
Combining procedure, which is O(n5), is set to repeat the 
entire process whenever two rules were successfully

Fig. 7. The time ACLO takes plotted against ACL size.

combined. This, however, could be changed by setting a 
maximum of two or three repetitions for the entire 
algorithm, which would yield excellent optimization with 
a significant reduction in time. In the latter case, the time 
complexity of the algorithm and the application as a 
whole becomes O(n4). 

IV. CONCLUSION

An optimal access control list is an access list that 
satisfies security requirements with the least amount of 
processing overhead. In this paper, we have presented
several techniques and algorithms for access control list 
optimization. Some of these algorithms look for rules 
that can be safely removed, such as shadowed and 
covered rules, and rules that can be combined in order to 
reduce the size of ACLs and, subsequently, reduce 
expected packet latency. Other algorithms reorder the 
rules in an ACL based on three factors: actual hit counts, 
hit counts prediction factor, and rule latencies. It was 
found empirically that Hits Optimizer and Rules 
Combining procedures yield the greatest bulk of 
optimization since they are harder to handle manually by 
average network administrators. The algorithms can be
easily customized, where time is reduced at the expense 
of efficiency, and can be implemented partially or fully, 
both online and offline. 
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