
Techniques and Algorithms for Access Control List Optimization

Ibrahim M. Al Abdulmohsin

Communications Engineering & Technical Support Department, Saudi Aramco, Dhahran 31311

Abstract — Access control lists are core features of
today’s internetwork routers. They serve several purposes,
most notably in filtering network traffic and securing
critical networked resources. However, the addition of
access control lists increases packet latency due to the
overhead of extra computations involved. This paper
presents simple techniques and algorithms for optimizing
access control lists that can reduce significantly expected
packet latencies without sacrificing security requirements.
These techniques and algorithms can be implemented either
fully or partially, both online and offline, based on the
amount of overhead allowed. It also outlines analytically
and statistically where and why the greatest bulk of
optimization lies.

Index Terms — Communication system operation and
management, communication system security, access
control, optimization methods.

I. INTRODUCTION

Routers are the most vital elements of today’s
internetworks. They operate at layer three of the OSI
reference model, where they determine the optimal path
to distant networks using routing protocols and,
subsequently, route packets from source to destination
through those optimal paths. Another important function
of routers, however, is to determine if packets are
authorized by network administrators to reach their
intended destinations in the first place. To do this,
routers check packets against an access control list
(ACL), defined by a network administrator, that
specifies which types of network traffic should be
permitted and which types should be denied. The role of
ACLs can also be extended to include filtering route
advertisements and enforcing policies such as network
address translation (NAT) and traffic shaping [1].

With the rapid growth of today’s internetworks, ACLs
have become increasingly important to network
administrators. This is in part due to the increase in
cyber threats and attacks on the one hand, where access
control technologies play the primary defense
mechanism, and the demand for cost-effective network
policies that optimize network performance with
minimal costs on the other hand. ACLs do not come at a
zero cost, however. They add a computational delay,
which contributes to end-to-end packet latency. An
optimal access control list is defined to be the access list
that satisfies security requirements while involving the
least amount of computational delay. Optimizing ACLs

can be implemented by both reducing their size and
changing the order of their rules.

The subject of access control list optimization has
been awarded a strong interest in the research
community. The first real attempt at access control list
optimization came from Cisco ACL Optimizer [2].
Although Cisco’s application addresses a wide range of
optimization scenarios, it has three major drawbacks.
First, Cisco ACL Optimizer combines only contiguous
maskable rules, and ignores non-maskable and yet still
combinable rules, even though combinable rules that are
not maskable are common in today’s ACLs. Second,
Cisco application does not predict hit probabilities for
rules with no hit counts present, e.g. in the case of a new
ACL. This implies a random arrangement of rules with
equal hit counts even if their predicted hit probabilities
are different. Third, as has been previously noted by
Grout (2006), Cisco ACL Optimizer assumes a constant
rule latency, which may or may not be accurate
depending on implementation [3]. On the other hand,
other research papers only considered access control list
optimization in limited scenarios. For instance, Al Shaer
(2004) only addresses anomalies in ACLs, while
Bukhatwa (2004) ignores rules’ dependencies [3]-[5].

II. DEFINITIONS

A. Rule
A typical rule in Cisco extended ACL format is shown

in figure 1. As shown in the figure, a rule is comprised of
six fields: (1) action (act), which could be either permit
or deny, (2) protocol (prtcl), such as IP, TCP, UDP,
ICMP ..etc, (3) source address range (sa), in the form of

Fig. 1. A typical rule in Cisco extended ACL format.

an IP address and a wild card mask, (4) source port
range (sp), (5) destination address range (da), and (6)
destination port range (dp). In the case of ICMP, both
source and destination port ranges are replaced with a
flag such as echo-request, or echo-reply. In mathematical
terms, a rule R is a 6-tuple object, R=(act, prtcl, sa, sp,
da, dp). In this paper, we denote Ri.act to mean the
action field of the ith rule, Ri.prtcl to mean the protocol
field of the ith rule … and so on.

permit ip 10.1.1.0 0.0.0.255 host 10.2.2.1 eq http

B. Access Control List and Executed Rules

An access control List (ACL) is a set of rules that are
executed sequentially from top to bottom. In other
words, if every field in a packet matches the
corresponding field in a rule Ri, the router will take the
action stated in Ri.act, and ignore all subsequent rules.
Ri ε pk, read Ri executed for the kth packet, indicates that
in the specified ACL, the action field in Ri determines
whether the packet pk will be permitted or denied.

C. Rule Dependency and Superset Rules

Two rules are dependent if there is at least one packet
pk such that Ri ε pk when i<j and Rj ε pk if j<i. In this
paper, we write Ri Δ Rj to indicate there is a dependency
between Ri and Rj. In mathematical terms,

A rule Ri is said to be a superset to rule Rj if every
field in Ri is a superset or equal to the corresponding
field in Rj. In mathematical terms,

D. Shadowed and Covered Rules

Shadowed rules are rules that will never be executed
because of a preceding rule whose fields are all supersets
or equal to the corresponding fields in the shadowed
rule. In this paper, RjRi  implies that Rj is shadowed
by Ri. To make the notation easier to remember, Ri is on
the wider side of the triangle (i.e. a superset rule) and on
the left (i.e. comes first). Thus, Ri shadows Rj.

Covered rules are rules that can be safely removed
because a subsequent more general can still satisfy
security requirements. This happens if both actions in the
two rules are similar, while all fields in the covered rule
are subsets or equal to the corresponding fields in the
subsequent more general rule. RjRi  implies that Ri is
covered by Rj. In this notation, Rj is on the wider side of
the triangle (i.e. a superset rule) and on the right (i.e.
comes next). Thus, Rj covers Ri.

E. Hit Probability

Hit probability of a rule Ri, h(i), is the probability that
a packet will traverse all preceding rules without a match
and matches all fields in Ri. In other words, h(i) is the
probability that Ri ε p, where p is any random packet.
Hit probabilities play a significant role in ACL
optimization.

F. Expected Packet Latency

Rule Latency, RL, of a rule Ri is the time taken to
process Ri, which could be fixed or different from one
rule to another according to implementation. Rule Packet
Latency, RPL(i), is the latency a packet goes through
when it is executed by rule Ri. That is, it is the sum of all
previous rule latencies, as given in equation 1.

, where R0 is the first rule in the ACL. Expected
Packet Latency (EPL) is the standard by which ACL
optimization is measured. The larger the decline in EPL
attained, the better the optimization. EPL can be
calculated using equation 2 below.

, where n is the total number of rules in the ACL.

III. ACL OPTIMIZATION SOLUTIONS

Finding an optimal ACL is an NP-complete problem,
meaning it cannot be solved in polynomial time [3].
Thus, the only alternative is to build heuristic algorithms
that yield excellent results in polynomial time, which is
the subject of this paper. We will first outline
optimization scenarios and provide their algorithms.
After that, we will show analytically and empirically
where and why the greatest bulk of optimization lies.

A. ACL Optimization Application

The techniques and algorithms presented next have
been implemented in C++. The application, called
ACLO for ACL Optimization, was applied to around
100 existing ACLs written by average network
administrators and was found to yield, on average, an
80% reduction in EPL and a 40% reduction in ACL size.
ACLO is command-line-based and stores both the new
optimized ACL and a detailed report of how it has been
optimized in two separate files. The purpose of the
report is to provide network administrators with a
detailed description of why the old ACL needed to be
optimized, and to identify to him/her the configuration
errors s/he has made in the old ACL.

Table 1 displays the 12 fields used in ACLO. WCM is
wild card mask. It specifies which bits are examined and
which are ignored. ICMP flags are treated as pseudo
ports in the application and given pseudo port numbers
all larger than 100,000 to ensure they will not conflict
with real port numbers in other rules. Hit Counts, on the
other hand, are the actual hit counts available on
deployed logging-enabled ACLs. In addition to actual hit
counts, the application also adds a Hit Counts Prediction
Factor for every rule. This factor is automatically
calculated by the application based on the values of the
other fields in a given rule. The value is, then,
normalized to a ratio over one so that it can only be

 i
kRLiRPL

0
)()(

 


1

0
)()(

n
iRPLihEPL (2)

)..()..(

)..()..(

)..(











dpRidpRjdaRidaRj

spRispRjsaRisaRj

prtclRiprtclRjRjRi

RjRijiRjRi )(

 )..()(:|

)..()(

actRkactRiRkRiNotjkik

RiRjactRiactRjjiRjRi




)..()..()..(

)..()..(

dpRjdpRidaRjdaRispRjspRi

saRjsaRiprtclRjprtclRiRjRi




(1)

Action Protocol Src IP Src WCM

Dst IP Dst WCM
Src Port

Rng
Dst Port

Rng
Hit Counts
+ Prediction

Factor

Rule
Latency

Rule Up
Bound

Rule
Bottom
Bound

Tab. 1. The fields used in ACLO optimization
algorithms.

significant for rules with no actual hit counts present or
for rules that share the same hit counts. The purpose of
the prediction factor, as the name implies, is to predict
future hit counts and optimize accordingly. For instance,
rules that specify IP protocol are more likely to be
executed than rules that specify ICMP traffic. Similarly,
rules that specify traffic between different subnets are
more likely to match than rules that specify traffic
between two individual hosts. The relative weight of
each field was determined empirically by examining
real-life traffic and hit counts of deployed ACLs.

Rule Latencies (RLs) and Boundaries are the last three
fields used in the application. RLs specify the relative
difference in execution time between different rules.
Obviously, whether rule latencies are different from one
rule to another depends on implementation. However, it
is likely that rules that specify layer 4 header fields such
as TCP/UDP port number require more processing time
than standard rules, which only specify layer three fields.
Thus, for the purpose of generalizing the problem of
ACL optimization, rule latencies are also considered in
this paper. It is important to note that the actual values of
rule latencies are not significant, since we are not
attempting to calculate the real expected packet latency
in a given ACL. What is significant, however, is the ratio
between those values since it does influence how rules
will be reordered, and, therefore, how the ACL will be
optimized. Rule Up and Bottom Boundaries define the
degree of mobility of a rule in a given ACL. In other
words, it is the boundaries between which a rule can be
safely relocated without changing ACL semantics.
Obviously, when two rules need to be swapped, the new
locations of both rules need to be within their own
respective boundaries. A more thorough discussion of
how these fields are determined and how they are used in
the algorithms will be provided in the next section.

Aside from the database, ACLO uses five files. The
first file contains the old ACL, while the second file
contains the new optimized ACL. In addition, the third
file has all well-known ports in both text and numerical
format. The fourth file contains ICMP flags and pseudo
numbers that will be used during optimization. Lastly,
the fifth file contains a detailed report of how the old
ACL has been optimized on a rule-by-rule basis.

B. Optimization Scenarios

In the subsequent algorithms, we assume that the first
rule is R0 and the last rule, RACLsize – 1, is the implicit deny
all statement. Before going into the algorithms and

optimization results, we first need to show how rules’
boundaries are determined, since this algorithm will be
executed every time a change is made to the ACL. The
algorithm is shown in figure 3 below, with a time
complexity of O(n2).

Fig. 3. Rule Boundary Update Algorithm

a. Removing Shadowed Rules
Shadowed rules are never executed and, thus, they can

be safely removed. Removing those rules not only
reduces the size of the ACL, but also improves RPL for
all subsequent rules. Consequently, removing shadowed
rules improves EPL for the entire ACL. Figure 4 shows
the algorithm used in ACLO. The time complexity of
this algorithm is O(n4).

b. Removing Covered Rules
Although, unlike shadowed rules, covered rules could

be executed, they can still be safely removed because a
subsequent more general rule can still satisfy security
requirements. Removing these rules will reduce the size
of the ACL and improve EPL. The algorithm for
optimizing an ACL in this scenario is shown in figure 5.
The time complexity of this algorithm is also O(n4).

Fig. 4. Removing shadowed rules algorithm.

c. Combining Rules
While finding an exact solution for removing

shadowed and covered rules is relatively a simple task,
discovering the best possible way of combing rules is a
lot more difficult. Because we are looking for reasonably
fast heuristic algorithms, we decided to examine rules on
a pair by pair basis. In other words, the algorithm will
determine if two rules could be combined together into a
more general rule regardless of what the other rules in
the ACL are. It is true that by looking at all the rules,

Remove_Shadowed_Rules (ACL)
i = 0
while (i < ACLsize -1)
 j = i + 1
 while (j < ACLsize)

if (Ri  Rj)
 report action
 remove (Ri) & Decrement ACLsize
 j = j -1
 Update All Rules Boundaries ()
j = j + 1

 i = i + 1

Update_Rule_Boundary (Ri)
k = i
while (((k < ACLsize)AND (k >= 0)) AND
((Ri.act = Rk.act) OR NOT(Ri Δ Rk)))

k = k – 1
Ri.UpBound = k + 1
k = i
while (((k < ACLsize) AND (k >= 0)) AND
((Ri.act = Rk.act) OR NOT(Ri Δ Rk)))

k = k + 1
Ri.BottomBound = k – 1
R0.UpBound = 0
RACLsize-1.BottomBound = ACLsize - 1

Fig. 5. Removing covered rules algorithm.

better optimization could be inferred than by merely
looking at each pair on its own, but it would also be
impractically time consuming. The algorithm shown in
figure 6 combines rules by manipulating the wild card
masks even if those rules are not contiguous and not
maskable. Because a low-level description of the
algorithm would be too long for the scope of this paper,
a high level description is given instead. The time
complexity of this algorithm is O(n5).

Fig. 6. Combining Rules Algorithm

d. Hits Optimizer

The Hits Optimizer part of the application reorders the
rules in an ACL based on effective hit probabilities in
order to minimize EPL. It accomplishes this by

swapping rules only if their new positions are within
their respective boundaries and effective hit probability
of the first rule is less than effective hit probability of the
next rule.

Effective hit probability is determined by three factors.
The first factor is the actual hit counts, since it represents
real-life traffic patterns and probabilities. Effective hit
probability of a rule is linearly related to hit counts. The
second factor is the hit counts prediction factor. As has
been discussed earlier, this factor is determined by the
values of the other fields in a given rule, and it is
normalized to a fraction between zero and one to ensure
that the prediction factor is only significant when no
actual hit counts are present or for rules with equal hit
counts. The details of how the prediction factor is
calculated should be determined by the application user,
and are outside the scope of this paper.

The third factor in the calculation of effective hit
probabilities is rule latencies. How rule latencies are
handled in ACL optimization can be shown both
graphically and mathematically. Graphically speaking,
because ACLs are executed sequentially from top to
bottom, rules with different rule latencies, such as the
ones shown in table 2, can be duplicated to reflect their
RL while assuming a fixed RL for each rule, as shown in
table 3. Obviously, hit probability will have to be
distributed evenly among the duplicate rules. Thus,
effective hit probability is directly related to
hitCounts/RL. Mathematically speaking, consider the
case where there are two rules Ri and Rj, with different
rule latencies. The EPL for the two rules is given in
equation 3 if i < j. The minimum of the two EPLs, when
i < j or when j < i, determines if Ri should be placed
before Rj or vice versa. It is clear from equation 3 that
hitCounts/RL again determines if the two rules should be
swapped or not.

To sum up, Hits Optimizer, uses equation 4 for
calculating effective hit probabilities

, where EHP is effective hit probability, RL is rule
latency, and PF is prediction factor.
Rule Hit

Counts
RL

Permit ip any host 10.1.1.1 5 1
Permit ip any host 10.1.1.2 eq 80 20 2
Deny ip any any 100 1

Tab. 2. ACL with hit counts and rule latencies

C. Optimization Results

When ACLO application was applied to around 100
ACLs written by average network administrators, it was
found that the four simple procedures could optimize
EPL for typical ACLs by more than 80%, while ACL
size is reduced on average by 40%. Table 4 shows how
much, on average, each procedure contributes to overall

Remove_Covered_Rules (ACL)
i = 0
while (i < ACLsize -1)
 j = i + 1
 while ((acti=actj) or NOT(Ri Δ Rj))

if (Rj  Ri)
 report action
 remove (Ri) & Decrement ACLsize
 Update All Rules Boundaries ()
 Break () “this statement breaks
 the while loop”
j = j + 1

 i = i + 1

Combine_Rules (ACL)
Do {
Repeat = 0, i = 1
while (i < ACLsize)

j = i + 1
while (j <= ACLsize)

if((Ri.prtcl = Rj.prtcl) and
(Ri.sp = Rj.sp)and(Ri.dp = Rj.dp))

Is there exactly a one-bit
difference in both source IP and
destination IP?
If (Yes)

If difference in sourceIP set S
to one. Otherwise, set S to
zero.
K=position of the bit

If (S=0)
If (j between Ri boundaries)

Rj.dstWCMBit[k]=1
Rj.HitCounts+=Ri.HitCounts
Report action
remove (Ri) & Decrement ACLsize
Repeat = 1
Update all rules boundaries()

If (j Not between Ri boundaries)
AND (i between Rj boundaries)

Ri.dstWCMBit[k]=1
Ri.HitCounts+=Rj.HitCounts
Report action
remove (Ri) & Decrement ACLsize
Repeat = 1
Update all rules boundaries()

If (S=1)
//Similar but for srcWCMBit//

j = j + 1
i = i + 1

} while (repeat > 0)

RLPFHitCountsEHP /)( (4)

iji RLjhRLjhRLihjiEPL)()()()( (3)

Rule Hit
Counts RL

Permit ip any host 10.1.1.1 5 1
Permit ip any host 10.1.1.2 eq 80 10 1
Permit ip any host 10.1.1.2 eq 80 10 1
Deny ip any any 100 1

Tab. 3. ACL with effective hit counts when rule
latencies are assumed fixed.

EPL optimization when a single procedure is applied at a
time. Obviously, Rules Combining procedure and Hits
Optimizer contribute the most to ACL overall
optimization.

There are several reasons why Hits Optimizer and
Rules Combining procedures contribute the most to ACL
optimization. First, shadowed and covered rules are not
only relatively easy to detect by network administrators,
they are also easily detected by end users upon writing

Reduction
Shadowed

Rules
Removal

Covered
Rules

 Removal

Rules
Combining
Procedure

Hits
Optimizer

EPL 1% 10% 25% 77%
Size 2.5% 5% 37% 0%

Tab. 4. Average optimization by each procedure to
typical ACLs.

his/her access requirements. These anomalies do not
require sophisticated technical knowledge to discover.
Rules Combining procedure, on the contrary, involves an
excellent background in binary arithmetic and Boolean
algebra. In addition, they are harder to detect by the
network administrator, and are not normally considered
upon writing access requirements by the end user.
Furthermore, it is a daunting task for network
administrators to study network traffic and predict hit
probability in order to optimize ACLs accordingly. As a
result, an automated approach, such as ACLO
application, yields substantial improvement for typical
ACLs through these two procedures.

C. Timing Consideration

The time complexity of the application is O(n5). This
is relatively acceptable for small to medium size ACLs
as shown in figure 7. Also, it is noteworthy to keep in
mind that the application is a one-time-pass algorithm. In
other words, once an ACL is written and hit counts are
available that sufficiently reflect real-life traffic, the
ACL needs to be optimized only once either online or
offline. It does not need to be re-optimized in the future
unless changes are made to it.

Nevertheless, the algorithms presented so far are
highly customizable in terms of time versus efficiency.
If, for instance, the time complexities of the algorithms
are not acceptable for online optimization, the
algorithms can be slightly altered to reduce the time
complexity of the application at the expense of a
reduction in efficiency. For instance, the Rules
Combining procedure, which is O(n5), is set to repeat the
entire process whenever two rules were successfully

Fig. 7. The time ACLO takes plotted against ACL size.

combined. This, however, could be changed by setting a
maximum of two or three repetitions for the entire
algorithm, which would yield excellent optimization with
a significant reduction in time. In the latter case, the time
complexity of the algorithm and the application as a
whole becomes O(n4).

IV. CONCLUSION

An optimal access control list is an access list that
satisfies security requirements with the least amount of
processing overhead. In this paper, we have presented
several techniques and algorithms for access control list
optimization. Some of these algorithms look for rules
that can be safely removed, such as shadowed and
covered rules, and rules that can be combined in order to
reduce the size of ACLs and, subsequently, reduce
expected packet latency. Other algorithms reorder the
rules in an ACL based on three factors: actual hit counts,
hit counts prediction factor, and rule latencies. It was
found empirically that Hits Optimizer and Rules
Combining procedures yield the greatest bulk of
optimization since they are harder to handle manually by
average network administrators. The algorithms can be
easily customized, where time is reduced at the expense
of efficiency, and can be implemented partially or fully,
both online and offline.

REFERENCES

[1] A. Velte and T. Velte. “Cisco: A Beginner’s Guide”,
McGraw-Hill Inc. 3rd edition (2004).

[2] Access Control Lists, Cisco Systems, USA,
(http://www.cisco.com/univercd/cc/td/doc/product/softwa
re/ios113ed/113ed_cr/secur_c/scprt3/scacls.htm).

[3] V. Grout, J. McGinn, and J.Davies. “Real-Time
Optimisation of Access Control Lists for Efficient
Internet Packet Filtering”, Journal of Heuristics, Vol. 12,
2006.

[4] E. Al-Shaer and H. Hamed. “Firewall Policy Advisor for
Anomaly Detection and Rule Editing.” IEEE/IFIP
Integrated Management Conference (IM’2003), March
2003.

[5] Bukhatwa, F., (2004) High Cost Elimination Method for
Best Class Permutation in Access Lists, ICWI 2004,
pp287-294

