
Automatic conversion of XML-based contents into efficient
executables for resource-limited environments

Imran A. Zualkernan, Yaser A. Ghanam, Amir S. Kalbasi, and Mohammed F. Shoshaa

izualkernan@aus.edu

American University of Sharjah, Sharjah, UAE

Abstract — There are two somewhat conflicting
development trends in computer engineering. On one
hand, there is a push towards massively parallel networks
of severely resource-limited devices such as ad-hoc wireless
networks. On the other hand, due to the emergence of web-
services, resource-intensive XML has become a default
representation for communication and processing. The
problem is particularly acute in situations where XML
needs to be processed on resource-limited devices such as
mobile phones. This paper presents an architecture and a
methodology for dynamically generating resource-
optimized native run-time executables for such situations.
A specific implementation based on this approach shows
that size of the resulting executables is reduced by a factor
of four when compared with the raw input XML files.

Index Terms — Mobile Networks, Ad-hoc wireless
networks, resource limited devices, Internet, XML.

I. INTRODUCTION

Due to its support for interoperability and
extensibility, for being the commonly accepted Meta-
language in information technology, XML is being used
in an increasingly broader array of computer
applications. In many instances, XML is making it
possible to implement “write once - run everywhere”
applications where the content is represented in an XML
format that is independent of the technology of the
processing or rendering as shown in Fig. 1.

Figure 1. “write once – run everywhere” model based on XML

For example, Adobe Flex [1] is a presentation server to
enable developers to develop multimedia applications
using an XML-based language. Mozilla’s XUL [2]

which is another XML-based user interface language
that enables building feature-rich XML-based cross-
platform applications. Another instance is IMS QTI [3]
which is an XML-based standard used widely in e-
learning for authoring cross-platform assessments.

However, resource-limited environments such as
mobile phones, PDA’s and smart sensors, have severe
limitations on power and memory resources which
makes delivering, parsing, saving and processing XML-
based contents on the device a difficult proposition.
With the rapid emergence of mobile applications that
depend heavily on XML, the need to develop an
efficient approach to deliver and render XML contents
on handheld devices is becoming critical.

This paper presents a generic approach to dynamically
convert XML-based content into self-contained
executables that consume significantly less power and
size in resource-limited environments. An instance
implementation of the proposed architecture is also
discussed along with the results.

II. BACKGROUND

The problem of handheld devices being inefficiently
used to process and render XML contents due to the
limitations on CPU speed, volatile and non-volatile
memory availability and screen size has been widely
investigated in literature. For example, XMLZip [4] is
an approach based on compression and decompression
for XML documents based on the W3C DOM model.
Other similar approaches include tools like XML-
Xpress[5], Millau[6] and XMILL[7]. However, as [8]
asserts, such tools and approaches require a
considerable amount of RAM and CPU resources which
makes them impractical for mobile devices. An
alternative approach is suggested by XText [8] which is
an efficient encoding and decoding scheme for XML
that is fast and simple to implement.

Another example of efforts highlighting the parsing
issue is kXML [9] which is a small XML pull parser
intended for resource-limited environments to access,
parse, and render XML files for J2ME-capable devices.
Finally, [10] has tried to find properties in XML that
regulate its high cost and tested “a hypothesis that tag-
redundancy can be exploited to make parsing of XML
cheaper.” There are also existing commercial products

such as Efficient XML [11] that propose solutions for
the XML file size issue.

III. APPROACH

The approach discussed in this paper proposes a
physical separation between processing and rendering of
an XML document on a resource-limited device. In this
approach, XML files or packages are processed along
with any associated resources on the server side to
produce an executable file that can be streamed on
demand to a resource-limited device for rendering and
processing. The resource-limited device only needs a
small shell that receives the executable file and runs it.

As shown in Fig. 2, the server receives an XML
package that has a collection of XML files accompanied
with any required resources.

 Figure. 2. System architecture for the general solution

 The XML package handler processes the files within
the package to separate the resources and direct the
XML files toward the Java Architecture for XML
Binding (JAXB) engine [12]. The JAXB engine
produces a tree of java objects corresponding to the
XML tags and attributes used in the package. The
produced tree along with a specialized object model,
which represents a hierarchy of classes used to structure
the code generation process, are subsequently fed into
the code generator, possibly an interpreter or a template
engine.

The code generator constructs the source code as
required for a specific run-time environment such as
J2ME, .Net or Flash Lite [13]. The automatically
generated source code is then compiled, and any
required resources are bundled at this stage if possible.
Alternatively, resources may be brought at a later stage
upon the request of the shell in the handheld device.

The final output of the aforementioned process is a
single file or a set of files that can be streamed on
demand to the resource-limited device where the shell
has to regulate the streaming and rendering process.
Thus, the device does not have to parse or save any raw
XML contents, which implies a substantial reduction of
computational power and storage space on the device.

The next section presents a sample implementation of
the suggested approach for handling a complex XML-
based standard.

IV. SAMPLE APPLICATION

QTI [3] is a popular XML-based standard for
launching and rendering assessments over the internet.
The full-fledged standard has over 400 different XML
tags making the standard very flexible. However,
processing all these tags has become increasingly
expensive in resource-constrained devices.

 Figure 3. Object Model for mobile processing and rendition for QTIv2.1.

 Text Object Tag
wrappingTextOn : Boolean
truncationAllowed : Boolean

Graphic Object Tag
minSize : Integer
dynamicSizeAllowed : Boolean
coordType : CoordType

Shape Tag
shape : Shape
coords : Coords

Image Tag

<gap>

<gapText>

<hotText><simpleChoice> <prompt>

<inlineChoice>
<feedbackI

nline>

<hotspotChoice>

<associable
Hotspot>

<areaMap
Entry>

<gapImage><positionObject
Stage>

Rendering Object Tag
verticalScrollbar : Boolean
horizontalScrollbar : Boolean

<simpleAssociable
Choice>

Static Object

Dynamic Object
maxLength : Integer
multipleLineAllowed : Boolean XHTML

Tags

<itemBody>

As a sample implementation of the proposed
architecture, an engine was developed to convert
QTIv2.1 packages in the XML format into an
executable Flash Lite [13] file to be delivered and
rendered on mobile devices. The process of producing
an executable Flash Lite file for a given QTIv2.1
package was carried out according to the model
previously shown in Fig. 2.

The QTIv2.1 assessment is first packaged as a group
of XML files accompanied with the required resources.
This package is fed into the code generation phase
where JAXB produces java objects corresponding to the
QTI files. After the system automatically recognizes the
type of question under processing (e.g. Multiple Choice,
True/False), the Velocity template engine [14] is
employed to generate source code in Action Script 2.0.
An object model developed especially for QTIv2.1, as
partially shown in Fig. 3, is used to structure the code
generation phase.

Figure 4. An example of an automatically generated Flash Lite
application running on a mobile device.

Besides generating code for each assessment item, the

Velocity engine also produces a shell that holds all the
questions in the assessment, and manages navigation
and response submission. In the end, MTASC [15] is
used to compile the Actionscript 2.0 files created by
Velocity to create a shockwave file (swf) that is ready to
be streamed and rendered on the a resource-limited
device as shown in Fig. 4.

V. EVALUATION

One of the most important objectives of the
architecture proposed is to reduce processing and the
amount of data transmitted to the resource-limited
device, and to thus save the storage space required. This
section presents an evaluation of the sample architecture
presented in the previous section.

To perform the analysis, 60 XML packages were
randomly generated using a pool of XML components.
Furthermore, the packages were used to generate the
Action Script code for the 60 packages which were
automatically compiled to Shockwave files (SWF)
representing self-contained Flash Lite applications.

Fig. 5 shows the size of generated Shockwave files
versus the size of the original XML packages. A linear
regression fits the following equation (R2 = 0.8925 ; p <
0.001) between SWF size and the size of the XML file
(in KB).

 SWF_SIZE = 0.254 * XML_SIZE + 4.8914 (1)

This equation shows that the SWF size increases by

0.254 KB for every 1 KB increase in the XML file size.
This implies a size reduction factor of 1/0.254 = 3.94 or
about four times. The fixed size of the automatically
generated empty shell is about 1.28 KB.

SWF size vs. XML size

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100 120 140
XML file size (KB)

SW
F

si
ze

 (K
B

)

Figure 5. Size comparison of automatically generated SWF
files vs. size of the original XML files.

The processing complexity of an XML file is
approximately proportional to the number of nodes it
has. Similarly, the processing complexity of a Flash Lite
file is proportional to the number of the byte-code
operators.

SWF size vs. XML nodes

0

5

10

15

20

25

30

35

40

45

0 500 1000 1500 2000
XML nodes

SW
F

si
ze

 (K
B

)

Figure 6. Size comparison of automatically generated SWF
files vs. number of nodes in the original XML files.

Fig. 6. shows the relationship between the number of

nodes in each XML file and the size (in KB) of the
generated SWF file. A linear regression fits the
following equation (R2 = 0.8526 with p < 0.001).

SWF_SIZE = 0.0167 * NO_XML_NODES + 5.6897
(2)
 This equation implies that the increase in the size of
the SWF_SIZE is linear with respect to the number of
nodes. In addition, the slope (node/KB) is small. This
means that each additional node in the XML file adds
about 16.7 bytes.

In the 60 XML packages analyzed, the average
number of bytes per XML node was 70.79 (n=56,661).
This means that from a XML-node perspective, there
was a reduction of 70.79 bytes/node / 16.7 bytes/node =
4.24 times in the size.

VI. CONCLUSION

This paper presented an approach and architecture for
dynamic conversion of XML-based contents into self-
contained executables for resource-limited
environments. The produced executables consume
significantly less power and size than XML parsing
engines on resource-limited devices. An instance of a
possible application of the proposed architecture was
discussed along with the resulted outcomes. For the
specific example presented, the size of the transmitted
contents was reduced by a factor of four. Moreover, the
complexity of processing required on the mobile device
was expected to decrease substantially. Future analysis
will involve statistical study of the performance of the
generated executables on handheld devices.

REFERENCES

[1] Flex Developer Center,
http://www.adobe.com/devnet/flex/ , accessed April
30, 2007.

[2] The Joy of XUL,
http://developer.mozilla.org/en/docs/The_Joy_of_X
UL , accessed April 30,2007.

[3] IMS Question & Test Interoperability Specification,
http://www.imsglobal.org/question/#version2.0, accessed
Feb 10, 2007.

[4] D. Lenkov, “Binary XML”,
http://www.w3.org/2003/08/binary-interchange-
workshop/31-oracle-BinaryXML_pos.htm, accessed
April 30, 2007.

[5] ICT, XML-Xpress,
http://www.ictcompress.com/xml.html

[6] Girardot, M., and Sundaresan, N., “Millau: an encoding
format for efficient representation and exchange of XML
over the Web”, 9th International World Wide Web
Conference, XML-Session 2.

[7] H. Liefke, and D. Suciu,, ?XMILL: An Efficient
Compressor for XML Data. SIGMOD, 2000.
http://www.research.att.com/sw/tools/xmill/

[8] D. A. Lee, “XML encoding techniques for storing XML
data on memory limited (mobile) devices”, XML 2006
Conference.

[9] kXML, http://kxml.sourceforge.net/about.shtml ,
accessed April 30, 2007.

[10] A. Knudsen, “Cheaper parsing of XML on Mobile
Devices”,

www.idi.ntnu.no/grupper/su/fordypningsprosjekt-
2003/fordypning2003-Andreas-Knudsen.pdf ,
accessed April 30, 2007.

[11] “Lightning-Fast Delivery of XML to More Devices
in More Locations”,
http://www.agiledelta.com/product_efx.html ,
accessed April 29,2007.

[12] Java Architecture for XML Binding (JAXB),
http://java.sun.com/webservices/jaxb/, accessed Feb 10,
2007.

[13] Flash Lite, http://www.adobe.com/products/flashlite,
accessed Feb 12, 2007.

 [14] The Apache Velocity Project, http://velocity.apache.org/,
accessed Feb 10, 2007.

[15] Motion-Twin ActionScript 2 Compiler,
http://www.mtasc.org, accessed Feb 10, 2007.

