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Abstract  —  In this paper, a new method to control the 
position and internal force of a cooperative parallel-
manipulator system is proposed. The cooperative system 
includes two parallel 6-dof Stewart manipulators and a 
rigid object grasped by the manipulators. Combining 
dynamic equations of Stewart platforms and the object, the 
dynamic equation of the cooperative system is derived. A 
new adaptive strategy using feedback linearization method 
is suggested to control the object position in existence of 
parametric uncertainties in the dynamic model. To control 
the internal force, a linear controller composed of 
feedforward and integral parts, is used. Simulation results 
show the convergence of the object position to the desired 
path while the internal forces remain in the allowable 
bound.  

Index Terms  —  Cooperative Robots, Adaptive Control, 
Parallel Manipulators, Hybrid Control, Stewart Platform. 

I. INTRODUCTION 

Cooperative multi-robot systems have attracted 
considerable attention since 1980s, because utilization 
of such systems provide greater lifting and manipulation 
capability and higher flexibility in assembly tasks or 
object manipulation. Approximately, in all these works, 
only conventional serial manipulators have been 
considered in the cooperative system. These serial-
manipulator cooperative systems lack the strength to 
precisely manipulate heavy and large objects. Using 
parallel manipulators in the cooperative system is the 
best way to overcome this problem due to their 
advantages compared with serial manipulators. High 
accuracy and strength are two important characteristics 
offered by parallel manipulators. Therefore, an accurate 
manipulation and assembly capability of heavy and 
large objects can be obtained through using parallel 
manipulators in cooperative multi-robot systems.  
Several approaches such as hybrid control, robust 
control and impedance control, have been used in the 
position and force control of cooperative serial- 
manipulator systems [1]-[3]. Among these, adaptive 
control is the most popular method used in the existence 
of parametric uncertainties in the dynamic model. 
Uzmay, Burkan and Sarikaya [4] presented a study on 
application of adaptive control methods to a cooperative 
manipulation system, which was developed for handling 
an object by two-link planar manipulators. Zribi and 
Ahmad [5] proposed an adaptive controller that ensured 
asymptotic convergence of the load position to their 
desired values and boundedness of the internal forces. 

They also considered the effects of bounded 
disturbances on the multi-robot system. Yao and 
Tomizuka [6] obtained a set of transformed dynamic 
equations in the joint space. Based on particular 
properties of these reformulated equations, an adaptive 
algorithm was developed with unknown parameters 
updated by both motion and force tracking error. 
The cooperative system in all above works includes only 
serial manipulators. In this paper, two 6-dof Stewart 
platforms, the most popular parallel manipulators, are 
considered in handling a rigid object in a desired path. 
Proposed adaptive strategy uses feedback linearization 
to determine the control law and gradient method to 
derive adaptation law. To control the internal forces 
feedforward and integral controllers are utilized. 
Simulation results show convergence of the object 
position to the desired path and boundedness of internal 
forces.  

II. DYNAMIC MODELING  

The cooperative system including two Stewart 
Manipulators and a rigid object is shown in Fig. 1. 

  

 
 
Fig. 1. Cooperative Stewart platform-based system 
 
A. Multi-Robot Dynamic Equations 

Dynamic equations of two Stewart platforms can be 
stated in the following compact form [7],  

ee FHFηxJ +=+&&  (1) 

Where 12 12J R ×∈  is a diagonal inertia matrix whose 
diagonal elements are the inertia matrices of the each 
manipulator, 12

ex R∈&&  is linear/angular acceleration 
vector of the two Stewart moving platforms, 12Rη ∈  is 
the vector of centrifugal, coriolis and gravity 



force/moment vector of two manipulators, 12H R∈  is a 
diagonal matrix with force transformation matrix of 
each manipulator as its diagonal elements, 12F R∈  is 
the input force vector in Stewart legs and 12

eF R∈  is 
external force/moment vector applied to the object at 
points of contact with manipulators. 

B. Object Dynamic Equation  

We assume that the object is rigidly grasped by the 
manipulators. So, the equations of motion of the object 
is obtained from Newton-Euler approach as, 

∑
=

=+
2

1i
eioo fgMzM &&  (2) 

∑
=

×+=×+
2

1
)()(

i
eiieioo frII τωωω&  (3) 

Where 33×∈ RMo  is a diagonal mass matrix whose 

diagonal elements are the mass of the object, 33×∈RIo  

is the inertia matrix of the object, 3Rg ∈  is the gravity 

force vector, 3Rfei ∈  and 3Rei ∈τ  are contact forces 

and moments, respectively. 3Rz∈  is the position vector 
of the object center of mass and 3R∈ω  is the angular 
velocity of the object. T

iziyixi rrrr ],,[=  represents the 

displacement vector from the center of mass of the 
object and the contact point of the object and ith 
manipulator. 

Defining TTTzx ],[ ω&& = , (2) and (3) can be written in 
the following compact form, 
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Where,  
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126×∈RG  is called grasp matrix and 3I  is the identity 
matrix. 

C. Kinematics of the Cooperative System 

Using (4), the resultant force/moment vector, 
6RFo ∈ , in the mass center of the object is obtained as, 

eo GFF =  (6) 

From (6) and using Duality principle between the 
forces and velocities [8], we can write the following 
equation, 

e
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Differentiating (7) with respect to time, yields to the 
following equation, 
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D. Dynamic Model of Cooperative Multi-Robot System 

Calculating eF  From (1), and replacing it in (4) 
results the following equation, 
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Using kinematic relations in (7) and (8) and 
simplifying the resulted equation, dynamic model of the 
cooperative system is obtained in terms of the object 
variables as follows, 
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Where J , η  and H  are expressed in terms of object 
vectors, x  and x& .  

E. Dynamic Model Considering Internal Force 

The force/moment applied to the object by two 
manipulators is composed of two parts; an effective part 
in the object motion, oF̂ , and internal force/moment 
part, intF , calculated from following equations, 
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12
int R∈ε  is an arbitrary vector determining the 

internal force/moment vector and +G  is the pseudo-
inverse matrix of G . Combining oF̂ and intF and using 
(4) and (6) results in, 
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Finally, (12) is replaced in dynamic equation of multi-
robot system, (1) and kinematic relations are used to 
obtain following simplified equation, 
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(13) is the dynamic model of the cooperative system 
which will be used in the control of internal forces. 



III. CONTROL DESIGN  

A. Position Control 

Considering parametric uncertainties in the object and 
manipulators, dynamic model in (10) can be written in 
the following form, 
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Where Ĵ , M̂ , N̂ , η̂  and lĜ  are the estimated 
unknown variables. (14) is in the known companion 
form [9]. Therefore, position control law can be derived 
using feedback linearization method as, 
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Where v  is defined as, 
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desx  represents the object desired path and λ  is a 
positive control gain. mF  is the part of the control input 
force which contributes to the motion control of the 
object.   

The gradient method is used to derive the adaptation 
law in order to on-line estimation of the unknown 
parameters. Physical parameters of the object and 
manipulators should be selected such that dynamic 
model in (10) can be expressed in the following linear 
form, 
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Where p  Rθ ∈ is the vector of exact parameters and 
6 p( , , )  Y x x x R ×∈& && is the regressor matrix whose elements 

are combinations of the elements of inertia, 
centrifugal/coriolis and gravity vectors. *F  is the input 
vector to the plant and from (10), it is obtained as, 

*
mF GHF=  (18) 

Similarly, the estimated dynamic model can be 
written as, 
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θ̂  is the vector of estimated parameters. Estimation 
error is defined as, 

*ˆE Y Fθ= −  (20) 

In fact, E  represents the difference between the 
current estimated output of the plant, ˆY θ , and plant 
input *F which is determined by preceding information 
of the system. Gradient method [9] is utilized to derive 
adaptation law as follows, 
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Where γ  is a positive constant called estimation gain. 
Replacing (20) in (21) and differentiating with respect 
to θ

)
 yields to, 
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The unknown parameters are estimated on-line 
through adaptation law in (22). 

To prove the stability of the adaptive controller, 
consider a continuous and positive semi-definite 
function such as  1/ 2 TV δ δ=  where ˆδ θ θ= −  is the 
parameter error vector. Differentiating V and using (17) 
and (22) results in, 
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Therefore, V&  is negative semi-definite. It can be 
concluded that V  and the following integral are 
bounded, 
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Assuming that EET  is continuous, differentiable and 
positive, the following is inferred from (24), 
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which results in, 
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Adding and subtracting *F  to right side of (19), the 
following equation is obtained, 
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Using (15) and (18) to replace *F  in (27) and 
simplifying the resulted Eq. yields to, 
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Taking the Laplace transform of (28), 
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Where )(se  and )(sE  are Laplace Transforms of 
)(te  and )(tE , respectively. From (29), we can write 

the following equations, 
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From (30) and using Final-Value Theorem [10], 
convergence of tracking error to zero is ensured, 
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Therefore, the proposed adaptive control system 
including the control law of (15) and the adaptation law 
of (22) guarantees convergence of the object position to 
the desired path. 

B. Internal force control 

The part of the control law which contributes in 
controlling the internal force/moment vector in (13) is 
considered as, 

)( int
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Where df FFe intint −=  is the internal force error, 

dFint  is the desired internal force, and fK  is a positive 

constant gain.  
Total control law is obtained by combining control 

forces in (15) and (32). Substituting this control law in 
dynamic model of (13) and simplifying the resulted 
equation yields to, 
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Where ˆ= −%� � � . Using (17) and (26), the following 
equation is concluded, 
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Assuming that )( MGGJ T +−  is a non-singular 
matrix and using (31), (33) and (34), convergence of the 
internal forces to the desired values is inferred, 
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IV. SIMULATION RESULTS 

In order to prevent computational problems, it is 
assumed in this simulation that all parameters of two 
Stewart manipulators are known and uncertainties only 
exist in the object parameters. These seven unknown 
parameters are the mass and the inertia matrix elements 
of the object. Real parameters of the object is considered 
as, 
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Whereas, initial estimated parameters is selected as, 
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The desired path of the object must be chosen such 
that each Stewart platform moves in the manipulator 
workspace and also, the path does not enter the 
singularity manifolds. In this simulation, following time 
functions has been considered as a desired path, 
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Where dx , dy  and dz are the desired components of 
the position vector of the object center of mass and dγ , 

dβ  and dα  are Z-Y-X Euler angles representing the 
desired orientation of the object. Desired internal 
force/moment vector between the object and each 
manipulator is considered as zero.  

Constant control gains in (16), (22) and (32) are 
selected as 5, 8, 0.05fKλ γ= = = . The simulation 
results are shown in Figs. 2-7. In Figs. 2-5, six 
components of the object position vector have been 
shown. To compare the object trajectory with the 



desired path, they are plotted in the same figure. The 
results show that the object properly tracks the desired  
path. Internal force/moment vector between the object 
and manipulator 1 is shown in Fig. 6. Although there are 
some variations around the desired values, the internal 
forces are in an allowable bound. Finally, the control 

input forces in prismatic joints of the Stewart legs is 
illustrated in Fig. 7 for manipulator 2. Regarding the 
geometric characteristics of Stewart manipulators, these 
forces can be provided by the manipulator's actuators 
and therefore, they are acceptable. 
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Fig. 2.   Control output and desired path 
for x-component of the object position 

Fig. 3.   Control output and desired path 
for y-component of the object position 

Fig. 4.   Control output and desired path 
for z-component of the object position 
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Fig. 5.   Euler angles of the object Fig. 6.   Internal forces and moments 
between the object and manipulator 1 

Fig. 7.   Control input forces for 
manipulator 2 

 

V. CONCLUSION 

In this paper, two parallel Stewart manipulators 
handling a rigid object has been considered as a 
cooperative multi-robot system. A new adaptive 
control system using Feedback linearization and 
gradient method, has been proposed to make the 
grasped object track a desired path. Moreover, a linear 
controller including have been utilized to control the 
internal force. The stability analysis ensures the 
convergence of the object position and internal forces 
to their desired values. Simulation results show that 
the object properly tracks the desired path and internal 
forces remain in an allowable bound while input 
control forces are in an acceptable range. 
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