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Abstract— In this paper we propose a soft sensor for prediction of developing soft sensors. They suggested key steps like
of NOy emission_ from the combustion_unit of industrial boilers. removal of outliers, mapping the data and dimension redncti
The soft sensor is based on a dynamical neural network model. of input variables. Qin et-al [2] discussed a self-validgti

A simplified structure of the dynamical neural network model is ft b d Principal C t Analvsis. Th
achieved by grouping the input variables using basic knowldge SOft sensor based on Frincipal Lomponent Analysis. ey

of the system. Neural network model is trained using real dat suggested that validated principal components can be wsed t
logs of an industrial boiler. Principal Component Analysis(PCA) predict the output variables. Dong and McAvoy [3] discussed

is used to reduce number of input variables. Lag space for the soft sensor based on neural network partial least square and
model is found by using genetic algorithm to find the best ime ,nlinear principal component analysis. They discussed th
delayed model. Lag space obtained from the linear model is -
then used for constriction of the dynamical neural network.The propps_ed sensor based on NNPLS can be .applled for NO
proposed model is validated using different data from the sme Prediction. They used NLPCA for data analysis only. Elshafe
boiler and its ability to accurately predict NO, emission from et-al [4] proposed soft sensor based on polynomial netwark f
the boiler is demonstrated. prediction of NQ and G from combustion unit of a water
tube boiler. They created CFD (Computational fluid dynajnics
model of combustion process and used data from model to
train neural network. Yang and Blasaik [5] developed a soft
sensor for study of variation of excess air on NO formation in
NOy is one of the pollutants which is emitted from thea furnace. Ahmed [6] proposed soft sensors forNv@ediction
combustion units of industrial boilers. Strict environrte#n from industrial water tube boilers. He discussed soft senso
rules regarding air pollution are being implemented inaiight based on different types of static neural networks, trainin
parts of the world. These rules require combustion prosessdgorithms and compared them. Traver et-al [7] used neural
to limit NO, emission to ceratin regulatory limits. Boiler opernetwork for prediction of emission from a 300HP diesel
ators and control systems require on-line N@easurements engine.
to operate the boilers at the best efficiency while maint@ni  In most of the above soft sensors for N@rediction static
the emission level within the regulatory limits. neural neural network has been used. Formation of, N&s
Measurement of NQis traditionally achieved by installing certain dynamical behavior [8]-[5]-[4], and proper modei
hardware sensors or analyzers termed Continuous Emissidrthese dynamics and system time delays could lead to a
Monitoring System (CEMS). CEMS suffer from a number obetter NQ prediction. A dynamical neural network model
drawbacks including significant capital investment, higliel® can capture both the systems nonlinearities and dynarhics[9
ation and maintenance cost of hardware, drift and errorg@ug10]. In this paper, we present a data driven dynamical deura
ambient temperature and humidity, measurement interferemetwork soft sensor.
due to other gases and pollutants, and long sample period. As
such, software-based approaches have been proposedtto infe Il. NO, FORMATION
the emission concentration from other process measurementBoiler unit considered here is a water tube type boiler
These sensors are commonly referred to as Inferential 8endived by natural gas in combination with other fuels [6].
or soft sensors. Boiler unit has temperature sensors at the superheates tube
Soft sensors provide an alternate solution for predictibn and the riser tubes to monitor overheating of these tubes.
a certain quantity, when primary equipment is not working ddowever, there is no direct temperature measurement of the
it is not available due to temporary maintenance. Soft ssnstemperature distribution in the combustion chamber. These
are cost effective as compared to primary equipment used $ar called "skin temperatures” are used as replacement of the
direct measurement. NOformation is a complex process. Itcombustion temperature measurements. Six skin tempesatur
depends on the temperature distribution inside the cordoustwere considered in this study. Firing gas flow rate, secondar
chamber, inlet air flow rate, inlet air temperature, fuel floviuel flow rate, and air flow rates are being measured at the
rate, air-to-fuel ratio, fuel type, etc. input of combustion unit.
Soft sensor methods have been applied for, Nd@diction NO, formation in combustion chambers is due to three
by many researchers. Lin et-al [1] proposed a systematic wangchanisms; thermal, fuel, and prompt NOThermal NQ

I. INTRODUCTION



Temperature Sensors form,
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Mived Gas J\ J\ Where¥ is output (NQ ). ui,us andug are inputs from
. Combustion Delay NOx temperature feature datay,us and ug are light oil flow,
A i 1o | ~1/ ~\/ Analyzer mixed gas set-points and air flow inputs.andby, ..., bs are
Light Oil Flow coefficientsp; andd;, ..., ds are system delays. Coefficients
and delays in the system need to be identified. Above model
Fig. 1. NO. Emission structure is selected based on basic knowledge of system ope

ation. Genetic algorithm is used to find the best linear model
Best system delays are used for construction of dynamical

is controlled by the nitrogen and oxygen molar concentrationeural neural network model.
and the temperature of combustion. Combustion well below Genetic Algorithm
1,300C forms much smaller concentrations of thermal NO
. However, the rate of generation of thermal N@creases
rapidly with higher flame temperatures.

Fuels that contain nitrogen (e.g., coal) create fuelN
that results from oxidation of the already-ionized nitrnge

Genetic algorithm (GA) is population based iterative
stochastic search algorithm. GA were first introduced by
d—IoIIand [12]. GA find the best solution based on survival-

of-the-fittest. The main idea is to represent the candidate
. . solutions in the from of chromosomes. Each solution in the
contained in the fuel. On the other hand, prompt N®

. . : S . Haopulation has #itnessassociated with it. The new population
formed from molecular nitrogen in the air combining wit : .
. IS created by genetic operators calledssoverand mutation

fuel in fuel-rich conditions which exist, to some extent, i . .

. o . ; hromosomes may be represented in real numbers by their
all combustion. This nitrogen then oxidizes along with thFeaI values by using real coded genetic algorithm [13]. @her
fuel and becomes NQ during combustion, just like fuel y g 9 g )

NO, . NO, formation in industrial boilers (over 100 MW) ?re two main operators which reproduce the new population
is dominated by thermal NQO[4]-[8]. Figure 1 shows a basic or next |terat|or_1. L .

';. for NQ emission. NQ | f' din th busi 1) Reproduction:Reproduction is the process of producing

lagram tor emission. IS Tormed in thé combustion y, o "pq,y population for next search iteration, from previous
unit. The dynamics of the system includes the combusti

q ics. the t tation delav. the fi tant of t pulation. The way new chromosomes are generated is
yhamics, the transportation delay, the time constant et Qs cajiedcrossover Reproduction process is combination
analyzer and the analyzer time delay.

of crossover and mutation. BLX- crossover algorithm is
effective as compared to other types of crossovers in resddto
genetic algorithm [13].

Principal Component Analysis [11] is a technique to reducelLet Ci1 = (ci,--.,cy) and Gy = (cf,...,c}) be
high dimension data to a lower dimension feature data. P@¥0 chromosomes, which are selected for crossover. Where
has been successfully applied for dimension reduction by & is n-th gene inp-th chromosome. New chromosomes
searchers [2]-[3]. Data is normalized before applyinggigal H = (h1,...,hs, ..., hy) are generated by BLX-algorithm.
component analysis. PCA is applied to six skin temperaturédieref; is the randomly(uniformly) chosen number between

to reduce temperature data. It was observed that three skitgrval,

I1l. DATA DIMENSION REDUCTION

temperatures had very low eigen values. Correspondingneige h; = random [cmin — I, Craz + 10
vectors were removed from feature matrix. Cmaz = max(cl,c?) (3)
Cmin = min(c},c?)

V. MODEL STRUCTURE Wherea is a number chosen between 0-1. It is GA parameter

Dynamical model in figure 1 can be expressed by following 2) Mutation: Mutation is the changing the solutions in

nonlinear equation. population randomly. It prevents the genetic algorithmtuzls
in local minima. Probability of changing a solution is udyal
y=f(g(),h(.),y* ") (1)  very low. Coefficients and delays in model given by equation

_ o _ 2 can be found using GA. We have 14 parameters which are
Wherey is output(NQ. emission) g(.) andh(.) are nonlinear eqyired for linear model. We are interested in delaysnd
functions of the feature data input. These function will b91 ...,ds. These delays will be used for dynamical neural
discussed in section V. It is very difficult to find the lag spachetwork model. Delays, and dy, ..., ds are obtained by

for the dynamical model. We first find a dynamical lineafinging a best linear model using following cost function,
model that provides best relation between output(N@nd

inputs feature vector in terms of MSE. Linear model have the J = (y—9)? 4)
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V. DYNAMICAL NEURAL NETWORK MODEL Fig. 3. Training and validation results

Neural Networks can be divided into two categories, static
neural networks and dynamic neural networks. Static neut4f]. From simulations it is observed that parallel struetu
networks provide nonlinear mapping between current inpugsovides very good training but when it is validated on new
and current outputs. There are no delayed feedbacks oratblagata it becomes unstable. Several dynamic back propagation
inputs in static neural networks. Dynamical neural networfalgorithms [14]-[16] were used for training dynamic neural
have memory in their structure in the form of delays in fee@etwork in figure 2. Bayesian regulation training algorithm
back or input or output. Memory is introduced by means ¢16] provided best results. Figure 3 shows the performance
delays in inputs layer feedback connections. Dynamicataieuof the proposed dynamical neural network soft sensor on the
network structure is highly dependent on order and comiylexiraining data and validation data.
of the s_ystem [10]: Dyr_1§1m|f:al neural netv_vorkg have been VIl CONCLUSION
applied in system identification and modeling fields by re-
searchers. Jesiis and Hagan [14] discussed various traininin this paper, We presented a soft sensor based on dynamical
algorithms and structures for dynamical neural networktgas neural network model for NO prediction from industrial
et-al [15] used nonlinear dynamical system identificatiasdal boilers. PCA is used to reduce the six temperature varidbles
on hopfield neural network. They also discussed its stgbilihree variables. System time delays were found using geneti
issues. algorithm. The Proposed Dynamical Neural Network Model

Figure 2 shows the proposed neural network. Whef@monstrated performance comparable with the CEM system.
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f(g,h,y*=1) in Equation 1 is nonlinear function of

k—1 k—1 k—1 i ;
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