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Abstract — Several modified LMS algorithms are studied
in order to improve the rate of convergence, increase the
tracking performance and reduce the computational cost of
the regular LMS algorithm. These methods can be divided in
two categories: Clipped data algorithms and variable step
size algorithms. In this paper a new quantized input variable
step size LMS algorithm is introduced. The proposed
algorithm is a modification of an existing method, namely,
VSS LMS, and uses a new quantization function for clipping
the input signal. We showed mathematically the convergence
of the QX-VSS LMS filter weights to the optimum Wiener
filter weights. Also, we proved that the proposed algorithm
has better tracking than the conventional LMS algorithm.
We discuss the conditions which one have to consider so that
he can get better performance of QX-VSS LMS algorithm.
The results of simulations confirm the presented
mathematical analysis.

Index Terms — Least mean square(LMS), Variable step
size LMS, Weiner weights, Tracking.

I. INTRODUCTION

The least mean square (LMS) algorithm [6] has been
widely used in adaptive filtering because of its stability
and simplicity of implementation. It has attained its
popularity due to a broad range of useful applications in
such diverse areas as communications, radar, sonar,
seismology, navigation and control systems, and
biomedical electronics.

But its convergence rate is slow and the performance
varies depending on the statistical characteristics of an
input signal [2]. So, a great number of algorithms have
been proposed to speed up the convergence and reduce the
computational time. These algorithms can be divided in
two main categories: Clipped data algorithms and variable
step size algorithms.

In Clipped data algorithms the clipping of input signal or
error signal is a common approach to improving efficiency
of LMS filters. Reduction of the complexity of the LMS
algorithm has received attention in the area of adaptive
filters [3, 5, 8, 9]. The sign algorithm and clipped data
algorithms are in this category [1, 4, 3, 7, 8, 9].

The choice of step size reflects a tradeoff between
missadjustment and the speed of adaptation [10]. Variable
step size algorithms are another category of modified

LMS algorithms that are simple to implement and are
capable of giving both fast tracking as well as small
missadjustment [10,11].In variable step size LMS
algorithms, the step size, which controls convergence
speed and stability after convergence, is updated as the
iteration time changes.

In this paper a new algorithm called the quantized input
variable step size LMS or QX-VSS LMS algorithm is
introduced which is based on clipping input signal with
a new proposed tgn(.) function and Kwong VSS LMS
algorithm [10], whose tracking is much better than the
VSS LMS and LMS and has less computation as well.
The variants of LMS are discussed in Section 2. The
proposed new algorithm, which is a modification of the
aforementioned algorithm, appears in Section 3. Section
4 deals with computer simulation issues. The final
section presents conclusion and summarizes the main
findings.

IT. LMS ALGORITHM VARIATIONS

In this section we review the Standard LMS and the
VSS LMS Algorithm [10] which is the foundation of
our proposed algorithm.

A. Standard LMS Algorithm

The least mean square (LMS) algorithm [6] has been
widely used in adaptive filtering because of its stability
and simplicity of implementation. The LMS algorithm
has been studied in [12] as:

Wea =W, +pe, X, (D
Where
e =d, —X;W, )

W, =[w, (1), w,(2),...,w,(N)]" is the weight vector of the
predictor, X, is the vector of the input data sequence,
which is assumed to be a stationary random process, N
is the number of filter tapes, ¢, is the estimation error,
d, is the desired response and x is the step size.

B. VSS LMS Algorithm

Kwong and Johnston [10] proposed the VSS LMS
algorithm in which the step size varies based on the



error signal at every iteration. The filter weight updating
formula at each iteration time is given by:
Wia =W, + ue X, 3)
In which the step size, 4, , is time varying with its value
determined by the following equation:
i = Ot + 7€; )
With 0<a<1, >0 And
Hoar I My > H,
My = Hoin 3 By < Moy ®)
., otherwise
Where 0< 41, < u,.. . As can be seen, the step size is
controlled by the size of prediction error and the
parameters « and y . The initial step size u, is usually
taken to be x,, , although the algorithm is not sensitive to
the choice. A sufficient condition for x,  to guarantee
bounded MSE is [13]:
(6)
3tr(R)

4. 1s chosen to provide a minimum level of tracking
ability.

Hax <

III. PROPOSED QX-VSS LMS ALGORITHM

Here we propose a new modification to the VSS LMS
algorithm [10] to further simplify the implementation of
the LMS and decrease the computational complexity of it.

We performed the quantization on the input vector of
VSS algorithm. In Fig.1 our proposed function to
quantizing the input vector is shown.

E
1gn(x. §)

1

Fig. 1.  Quantization scheme for the proposed algorithm

This function is defined as follows:

+1 x>0
tsg(x,0)=4x —0<x<0 (7)
-1 x<-6

Consequently, the weight updating formula of QX-VSS
LMS algorithm has the following form:

Wea =W, + :ukek)?k ®)

Where X, is the modified quantized input signal vector
whose ith component is X, (i) = tgn(x, ({),0) , and g, is the
step size which varies according to (4) and (5). In the
next sections we will discuss the convergence and
tracking properties of proposed QX-VSS LMS
algorithm. We will prove mathematically that the
quantization of the input signal in noisy environments
increases tracking power of the filter and decreases the
computational cost of the algorithm.

The following subsections discuses mathematically
the convergence of QX-VSS LMS weights to Weiner
weights and its tracking performance.

A. Convergence of QX-VSS LMS Algorithm

It is usual in adaptive filter literatures to prove the
convergence of the filter weights to Weiner optimum
weights. Theorem 1 proves the convergence of QX-VSS
LMS weights to optimum Weiner weights.

Theorem 1. [If the QX-VSS LMS weights, W, , is
described by the equation 8 and W, is the Weiner
optimum weight ,then W, converges to W, .

Proof. For convergence prove it sufficient to show
that: Lim E{W,,,} =W,

Substituting e, from Equation 2 into the Equation 2
yields: W, =W, + /uk(dk)?k _)?kXATVVk)

Regarding to expectation of this equation we have:
EW,.}=EW,}+E{u }E{d, X, - XX, W}

Assuming lack of correlation between the W, and
X, X asin[1,7], we have:

E(W,.} = EW,}+ E{u }(E{d X} - ELXX] L E,}) With
regard to Lemma 1 (see Appendix), P=E{d,X,} and
R=E{X,X]} we have:

ar

EW, }=E{Wk}+E{uk}<Z—P—G—.R.E{Wk})

+1

x x

y " ©)
=(I-E{u}—REW, } + E{sy}—P
U< U<

x x

Replacing the Wiener optimum weight [6],
W™ = R”'P in the Equation 9 we have:
o' o' .
EW, .} = (1—E{#k}a—R)E{Wk}w“E{ﬂk}a—R-W
So, based on above relation the error weight vector
[10] ¥, =W, —W" is calculated as:

al
E.)= (I—E{ﬂk};R)E{Vk}
Since R, The covariance matrix of X, , is symmetric,
there exist matrices 0 and A, with A diagonal, such
that R=QAQ" and Q"Q=1[10]. Let ¥, =QV, be the



rotation of ¥} by Q , therefore we have the following
relation: E{QV},} = (I - E{,}— R)E{QV}}

Where O and ¥ are uncorfétated because W and r are
uncorrelated. Thus:

EW, 1 =0" (1—E{uk}:—.R>.Q..E{V;}

E(W],}=(0"10~E{u, }Z—Q*RQ)E{V;}
So, we have:

B0} = - Elu) S MEW) (10)

+1
X

The equation 10 can be written as:

k ’
WL} =110 = Et} =AY EWV)

Therefore, for showing the convergence of QX-VSS
algorithm, it is sufficient to prove that the error weight
vector ( V. ), in the limit converges to zero. In other words
we must demonstrate Lim,  E{V,}=0 . Regarding to
relation of ¥/ and V,, ¥V, =QV,, proving Lim,  E{V/}=0
implies Lim, E{V,}=0.

We have:

k
Lim,_, EV}} = Lim T1(I = E{u,} >~ A E{V;}
>0 Jj= To,
We know that A is diagonal matrix. Suppose that the
diagonal element of matrix A in i™ column denoted by A,
fori=1,..,N . We have:

O<E{y/.}il‘.<1:0<E{y/.}<o-—jL for j=1,..k
o, a' 4

If E{u} satisfies this relation for the largestA  , then
above relation is also satisfied for all others. Thus, the
convergence condition for proposed QX-VSS LMS
algorithm is as follow:
O-.Y
a A,
Hence, the proof is complete.[]

B. Tracking Power of QX-VSS LMS Algorithm

0<E{u}< Sfor j=1..k (11)

Tracking in filter theory, means the tracking of filter
weights. According to [1, 13], Tracking is a steady-state
phenomenon that is different from the convergence, which
is a transient phenomenon. In general, convergence and
tracking are two different properties. That is, if an
algorithm has good convergence, its tracking ability is not
necessarily fast and vice versa. In the tracking phase, a
reasonable assumption is that the optimum weights vary
according to a first-order Markov process [14], and the
filter must track these weights. The following relation
shows the variation of the filter’s optimum weights:

W, =aW +o,

n+l

(12)

Ny
d,=W, X, +uv,

Where a is a constant and w, is the process noise
vector in the nth step, which has zero mean, and v, is
the measurement noise, which is assumed to be white
Gaussian with zero mean and variance o .

Missadjustment criterion as shown in Equation 13 is a
usable measure for tacking performance [14]:

Efox,[}
E{o,|’}
In the following theorem we will show the relation

between our new proposed QX-VSS LMS and the VSS

LMS according to this criterion.

Theorem 2. Let M, . and M, are QX-VSS LMS

and conventional VSS LMS miss adjustment criterion,

(13)

Misadjusment =

2
respectively. Then: M ,; . = (:—] M

Where: o =2 m(1-8)exp6°/26%) +o.erf(5/2 0,) .
Proof.
B0l X[ = Elo] X Xl o,)

n“tnn

With suppose the independency between o, and X,
and by using Lemma 1 we have:

~ |2 ~ o~ ~ ~
E{ol X |} = Elo] X, X] 0,1 = E{o] X }EX ] 0,)

2
- [iE{w: X, }j[iE{)?fw,,}J - [ij E{olx,|
o, o, o

x

}

x

By dividing the equation to £{Jo,|’} :

B0l X[} (oY Efolx.[) A

E{ Unll} [ ] E{Uﬂ 2} 3QX7VSS [O’k ] VsS

and hence the proof is complete.[]

In an instance filter, the reducing of the
missadjustment measure means the increasing of the
tracking performance [14]. Hence, from theorem 2 it is
obvious that if &' <o, , tracking performance of QX-
VSS LMS is better than VSS LMS. But it does not
discuss conditions which one have to consider so that he
can get better performance of QX-VSS LMS algorithm.

Theorem 3 describes the suitable parameter values.
Theorem 3. If 6 = \/Eo-x then tracking performance of

OX-VSS LMS algorithm is better than conventional VSS
LMS algorithm for o, >0.513. Where o, is the variance

o

x

of input signal, and § is the parameter of tgn(x,5) .

Proof. It is obvious that, if the missadjustment of QX-
VSS LMS is lower than the missadjustment of
conventional VSS LMS, then the tracking performance
of QX-VSS LMS is better than VSS LMS. Regarding to
theorem 2 results, we have:



2
M oxX-¥ss = [i] Mg
O-X
Where o =,[2/z(1-8)expe-5°/20%) +0.erf(5/2 5)
Now, it is sufficient to show that if & =\/Eo-x
then«’ < o, , hence:
o' =Y 2(1-V20,)expt- (20, [267) + o erfi 20, [N20) <0,

After some simplification we have:

N2/ 7 exp(-1)
o, >
1-erf (1) + 2/v7 exp(~1)

So, considering o, >0513 and
implies &' < o, and the proof is complete.[]

Following section shows some experimental results
demonstrating the better performance of the QX-VSS
LMS against to some others.

~0.513

0= \/EO’X

IV. EXPERIMENTAL RESULTS: PREDICTING A NOISY CHIRP
SIGNAL

As mentioned earlier on theorem 1, the proposed filter
weights converges to Wiener optimum weights. Also, we
saw in Theorem 3, that the tracking performance of QX-
VSS LMS algorithm is better than conventional LMS,
based on some conditions. The result of running our
algorithm for 40 noisy signals, regarding the theorem 3
conditions, shows that the proposed method can produces
better results comparing to conventional LMS. Fig.2
shows the mean squared error (MSE) of the proposed QX-
VSS LMS and conventional LMS predicted signals with
the original noisy signal. The algorithms were run on 40
random chirp sinusoidal signals and for every signal the
error estimation were computed. As can be seen the
related MSE of the proposed filter is lower than
conventional LMS.

Fig.3 shows the MSE of the LMS, VSS LMS and the
proposed QX-VSS LMS weights. The results show that
the proposed QX-VSS LMS algorithm has better tracking
performance in comparison to VSS-LMS and
conventional LMS algorithm.

V. CONCLUSION

Prediction is a major part of tracking algorithms. One of
the most commonly used algorithms in prediction is the
LMS algorithm. In this paper we proposed a new
quantized input variable step size LMS, namely, the QX-
VSS LMS algorithm. This algorithm uses a quantization
scheme which involves the threshold clipping of the input
signal. Mathematical analysis shows the convergence of
the filter weights to the optimum Wiener weights. Also we
showed under which circumstances tracking performance

of QX-VSS LMS algorithm is better than conventional
LMS. Experimental results on predicting a noisy chirp
signal demonstrated the good performance of the
proposed algorithm.

Fig. 2.
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APPENDIX

Lemma 1. [f two random variables u and v both
have a Gaussian distribution N(0,0,) and  N(0,0,)
respectlvely and E{uv} = po,o,,v =tgn(v,c) then:

E{uv} = —E{uv}

L

Where o =\2/z(1-8)exp(-5°/262) + a,erf(5/2 5,)

Proof. We define the random variable ;=% 1 , "
O O

u v

Now we have:

Efzv) = E{O__ » \,JV}: E{?}E{ /;V}

With regard to assumption of the theorem

2
E{zv} PO, PO, _
u o,
Therefore z and v are uncorrelated. Here we show that
z and ¥ are uncorrelated too. We have to show E{z3}=0.

At first we prove that E{p}=
Ef}= [y = [ w‘OeXp(_—v:)dﬁ

- j . exp(—)dv + j vexp(—)dv + j exp(—h)di = 0
) =

u

E{zv} = E{z}E{v} = O:E{[——p ]}—0
o o,

:GLE{uo}zaiE{vo}

u v

Therefore, we have:

Eud}= p2-E{rd) (A-1)
On the other hand
w=vxtgn(v,0) = ‘Vz’ M>5

ve, M <0

= 2 -5
=I Vo ! exp(Lz)dv = I [v \
= \270, o, -

5,1 —? J‘” 1 —?
VvV ——exp(—)dv+| |v exp(—)dv
j T PGP [ Mv p(zaf)

vexp(— )dv+ j v exp( >)dv
e G
Here we calculate the above two terms:
2 2 -0
\/;d. L vexp( )dv = J;O’V exp( 207 )
S5 1 -52 ,
\/_5 I v exp(2 p )dv ﬂ&v {20 exp( 207 )o,
2
+0o erf( )}——6\/70' exp( )+0' erf (
V2o, J_ 20,

Substituting the 2,3 in 1, and after some
simplifications we have'

E{vO}:\Fa (1= 8)exp( 5 )+aen‘(J— ) (A-2)
O_V

Now we can compute E{uv} .Regarding (A-1) and (A-
2) we have:

E{uﬁ}:pi{( 0.(1-8)exp(s >+ )+0'erf(
GV

)

E{MV} - po—zz O-L{ 1» » \/550-‘,- )}
o1 2 0 (o
E{MV} _O-—VE{MV}{J;(I - 5) GXP( 20_3 )+O'verj(\/ao_v )}

Hence with defining «' as follows:
o' =\2(1-8)expt-5*/207) + o,erf(8/\2 0,)
So: E{uo}ziE{uv}. O
O

v



