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Abstract  —  Several modified LMS algorithms are studied 
in order to improve the rate of convergence, increase the 
tracking performance and reduce the computational cost of 
the regular LMS algorithm. These methods can be divided in 
two categories: Clipped data algorithms and variable step 
size algorithms. In this paper a new quantized input variable 
step size LMS algorithm is introduced. The proposed 
algorithm is a modification of an existing method, namely, 
VSS LMS, and uses a new quantization function for clipping 
the input signal. We showed mathematically the convergence 
of the QX-VSS LMS filter weights to the optimum Wiener 
filter weights. Also, we proved that the proposed algorithm 
has better tracking than the conventional LMS algorithm. 
We discuss the conditions which one have to consider so that 
he can get better performance of QX-VSS LMS algorithm. 
The results of simulations confirm the presented 
mathematical analysis. 

Index Terms  —  Least mean square(LMS), Variable step 
size LMS, Weiner weights, Tracking. 

I. INTRODUCTION 

The least mean square (LMS) algorithm [6] has been 
widely used in adaptive filtering because of its stability 
and simplicity of implementation. It has attained its 
popularity due to a broad range of useful applications in 
such diverse areas as communications, radar, sonar, 
seismology, navigation and control systems, and 
biomedical electronics. 
But its convergence rate is slow and the performance 
varies depending on the statistical characteristics of an 
input signal [2]. So, a great number of algorithms have 
been proposed to speed up the convergence and reduce the 
computational time. These algorithms can be divided in 
two main categories: Clipped data algorithms and variable 
step size algorithms.  
In Clipped data algorithms the clipping of input signal or 
error signal is a common approach to improving efficiency 
of LMS filters. Reduction of the complexity of the LMS 
algorithm has received attention in the area of adaptive 
filters [3, 5, 8, 9]. The sign algorithm and clipped data 
algorithms are in this category [1, 4, 3, 7, 8, 9]. 
 The choice of step size reflects a tradeoff between 
missadjustment and the speed of adaptation [10]. Variable 
step size algorithms are another category of modified 

LMS algorithms that are simple to implement and are 
capable of giving both fast tracking as well as small 
missadjustment [10,11].In variable step size LMS 
algorithms, the step size, which controls convergence 
speed and stability after convergence, is updated as the 
iteration time changes.  
In this paper a new algorithm called the quantized input 
variable step size LMS or QX-VSS LMS algorithm is 
introduced which is based on clipping input signal with 
a new proposed tgn(.) function and Kwong VSS LMS 
algorithm [10], whose tracking is much better than the 
VSS LMS and LMS and has less computation as well. 
The variants of LMS are discussed in Section 2. The 
proposed new algorithm, which is a modification of the 
aforementioned algorithm, appears in Section 3. Section 
4 deals with computer simulation issues. The final 
section presents conclusion and summarizes the main 
findings. 

II. LMS ALGORITHM VARIATIONS 

In this section we review the Standard LMS and the 
VSS LMS Algorithm [10] which is the foundation of 
our proposed algorithm.  

A. Standard LMS Algorithm 

The least mean square (LMS) algorithm [6] has been 
widely used in adaptive filtering because of its stability 
and simplicity of implementation. The LMS algorithm 
has been studied in [12] as: 

kkkk XeWW µ+=+1  (1) 
Where  

k
T
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T
kkkk NwwwW )](),...,2(),1([=  is the weight vector of the 

predictor, kX  is the vector of the input data sequence, 
which is assumed to be a stationary random process, N 
is the number of filter tapes, ke  is the estimation error, 

kd  is the desired response and µ  is the step size. 

B. VSS LMS Algorithm 

Kwong and Johnston [10] proposed the VSS LMS 
algorithm in which the step size varies based on the 
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error signal at every iteration. The filter weight updating 
formula at each iteration time is given by: 

kkkkk XeWW µ+=+1  (3) 
In which the step size, kµ , is time varying with its value 

determined by the following equation: 
2
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Where maxmin0 µµ << . As can be seen, the step size is 
controlled by the size of prediction error and the 
parameters α  and γ . The initial step size 0µ  is usually 
taken to be maxµ , although the algorithm is not sensitive to 
the choice. A sufficient condition for maxµ to guarantee 
bounded MSE is [13]: 

)(3
2

max Rtr
≤µ  (6) 

minµ is chosen to provide a minimum level of tracking 
ability. 

III. PROPOSED QX-VSS LMS ALGORITHM 

Here we propose a new modification to the VSS LMS 
algorithm [10] to further simplify the implementation of 
the LMS and decrease the computational complexity of it.  

We performed the quantization on the input vector of 
VSS algorithm. In Fig.1 our proposed function to 
quantizing the input vector is shown. 
 

  
Fig. 1. Quantization scheme for the proposed algorithm 
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Consequently, the weight updating formula of QX-VSS 
LMS algorithm has the following form: 

kkkkk XeWW ~
1 µ+=+  (8) 

 Where kX~  is the modified quantized input signal vector 
whose ith component is )),(()(~ δixtgnix kk = , and kµ  is the 
step size which varies according to (4) and (5). In the 
next sections we will discuss the convergence and 
tracking properties of proposed QX-VSS LMS 
algorithm. We will prove mathematically that the 
quantization of the input signal in noisy environments 
increases tracking power of the filter and decreases the 
computational cost of the algorithm. 

The following subsections discuses mathematically 
the convergence of QX-VSS LMS weights to Weiner 
weights and its tracking performance. 

A. Convergence of QX-VSS LMS Algorithm 

 It is usual in adaptive filter literatures to prove the 
convergence of the filter weights to Weiner optimum 
weights. Theorem 1 proves the convergence of QX-VSS 
LMS weights to optimum Weiner weights. 

Theorem 1. If the QX-VSS LMS weights, nW , is 
described by the equation 8 and  oW  is the Weiner 
optimum weight ,then nW converges to oW . 

Proof. For convergence prove it sufficient to show 
that: okk

WWELim =+∞→
}{ 1  

Substituting ke  from Equation 2 into the Equation 2 
yields: )~~(1 k

T
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Regarding to expectation of this equation we have: 
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Assuming lack of correlation between the kW  and 
T
kk XX~  as in [1,7] , we have: 
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Replacing the Wiener optimum weight [6], 
PRW 1* −= in the Equation 9 we have: 
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So, based on above relation the error weight vector 
[10] *WWV kk −=  is calculated as: 

}{).}.{(}{ 1 k
x

kk VEREIVE
σ
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Since R, The covariance matrix of kX , is symmetric, 
there exist matrices Q  andΛ , with Λ  diagonal, such 
that TQQR Λ=  and IQQT = [10]. Let kk VQV ′=  be the 
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rotation of kV ′  by Q  , therefore we have the following 
relation: }{).}{(}{ 1 k

x
kk VQEREIVQE ′

′
−=′+ σ

αµ  
Where Q  and kV ′ are uncorrelated because W  and R  are 

uncorrelated. Thus: 
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The equation 10 can be written as: 
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Therefore, for showing the convergence of QX-VSS 
algorithm, it is sufficient to prove that the error weight 
vector ( kV ), in the limit converges to zero. In other words 
we must demonstrate 0}{ =∞→ kk VELim . Regarding to 
relation of  kV ′  and kV ,  kk VQV ′= , proving 0}{ =′∞→ kk VELim  
implies 0}{ =∞→ kk VELim .   

We have:  
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We know that Λ is diagonal matrix. Suppose that the 
diagonal element of matrix Λ  in ith column denoted by iλ , 
for Ni ,...,1= . We have: 
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If }{ iE µ  satisfies this relation for the largest maxλ , then 
above relation is also satisfied for all others. Thus, the 
convergence condition for proposed QX-VSS LMS 
algorithm is as follow: 
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Hence, the proof is complete.  

B. Tracking Power of QX-VSS LMS Algorithm 

Tracking in filter theory, means the tracking of filter 
weights.  According to [1, 13], Tracking is a steady-state 
phenomenon that is different from the convergence, which 
is a transient phenomenon. In general, convergence and 
tracking are two different properties. That is, if an 
algorithm has good convergence, its tracking ability is not 
necessarily fast and vice versa. In the tracking phase, a 
reasonable assumption is that the optimum weights vary 
according to a first-order Markov process [14], and the 
filter must track these weights. The following relation 
shows the variation of the filter’s optimum weights: 
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Where a  is a constant and nω is the process noise 
vector in the nth step, which has zero mean, and nυ  is 
the measurement noise, which is assumed to be white 
Gaussian with zero mean and variance 2

vσ  . 
Missadjustment criterion as shown in Equation 13 is a 

usable measure for tacking performance [14]: 
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In the following theorem we will show the relation 
between our new proposed QX-VSS LMS and the VSS 
LMS according to this criterion.  

Theorem 2. Let VSSQXM −  and VSSM  are QX-VSS LMS 
and conventional VSS LMS miss adjustment criterion, 

respectively. Then: VSS
x
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and hence the proof is complete.  
In an instance filter, the reducing of the 

missadjustment measure means the increasing of the 
tracking performance [14]. Hence, from theorem 2 it is 
obvious that if xσα <′ , tracking performance of QX-
VSS LMS is better than VSS LMS. But it does not 
discuss conditions which one have to consider so that he 
can get better performance of QX-VSS LMS algorithm. 
Theorem 3 describes the suitable parameter values. 

Theorem 3. If xσδ 2=  then tracking performance of 
QX-VSS LMS algorithm is better than conventional VSS 
LMS algorithm for 513.0>xσ . Where xσ  is the variance 
of input signal, and δ is the parameter of ),( δxtgn . 

Proof. It is obvious that, if the missadjustment of QX-
VSS LMS is lower than the missadjustment of 
conventional VSS LMS, then the tracking performance 
of QX-VSS LMS is better than VSS LMS. Regarding to 
theorem 2 results, we have: 
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Now, it is sufficient to show that if xσδ 2=   
then xσα <′ , hence: 
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 After some simplification we have: 
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So, considering 513.0>xσ  and xσδ 2=  
implies xσα <′ , and the proof is complete.  

Following section shows some experimental results 
demonstrating the better performance of the QX-VSS 
LMS against to some others. 

IV. EXPERIMENTAL RESULTS: PREDICTING A NOISY CHIRP 
SIGNAL 

As mentioned earlier on theorem 1, the proposed filter 
weights converges to Wiener optimum weights. Also, we 
saw in Theorem 3, that the tracking performance of QX-
VSS LMS algorithm is better than conventional LMS, 
based on some conditions. The result of running our 
algorithm for 40 noisy signals, regarding the theorem 3 
conditions, shows that the proposed method can produces 
better results comparing to conventional LMS. Fig.2 
shows the mean squared error (MSE) of the proposed QX-
VSS LMS and conventional LMS predicted signals with 
the original noisy signal. The algorithms were run on 40 
random chirp sinusoidal signals and for every signal the 
error estimation were computed. As can be seen the 
related MSE of the proposed filter is lower than 
conventional LMS.  

 Fig.3 shows the MSE of the LMS, VSS LMS and the 
proposed QX-VSS LMS weights. The results show that 
the proposed QX-VSS LMS algorithm has better tracking 
performance in comparison to VSS-LMS and 
conventional LMS algorithm.  

V. CONCLUSION 

Prediction is a major part of tracking algorithms. One of 
the most commonly used algorithms in prediction is the 
LMS algorithm. In this paper we proposed a new 
quantized input variable step size LMS, namely, the QX-
VSS LMS algorithm. This algorithm uses a quantization 
scheme which involves the threshold clipping of the input 
signal. Mathematical analysis shows the convergence of 
the filter weights to the optimum Wiener weights. Also we 
showed under which circumstances tracking performance 

of QX-VSS LMS algorithm is better than conventional 
LMS. Experimental results on predicting a noisy chirp 
signal demonstrated the good performance of the 
proposed algorithm. 

 

 
Fig. 2. Comparing MSE of the proposed QX-VSS LMS, 
conventional LMS and VSS LMS predicted signals with the 
original noisy signal. 

 
Fig. 3. Weight estimation error, MSE of the difference 
weight vector between proposed QX-VSS LMS, conventional 
LMS, VSS LMS weights and Wiener optimum weights. 
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APPENDIX 

Lemma 1.  If two random variables u  and v   both 
have a Gaussian distribution ),0( uN σ  and  ),0( vN σ  
respectively and ),(ˆ,}{ σσρσ vtgnvuvE vu ==  then: 
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Therefore z and v are uncorrelated. Here we show that 
z  and v̂  are uncorrelated too. We have to show { } 0ˆ =vzE . 
At first we prove that { } 0ˆ =vE . 
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Here we calculate the above two terms: 

)
2

exp(2)
2

exp(
2
2

2

2

2

2

v
v

vv

dvvv
σ
δσ

πσδπ δ

−
=

−
∫
+∞

+
 

 

)
2

()
2

exp(2)}
2

(

)
2

exp(2{
2
1)

2
exp(

2
1

2
2

2
3

2
2
ˆ

2

2
ˆ

2
2

v

v
v

v

v

v

v
vvvv

erferf

dvvv

σ
δσ

σ
δσ

π
δ

σ
δσ

σ
σ
δδ

δπσδπ

δ

δ

+−−=+

−
−=

−
∫
+

−

 

Substituting the 2,3 in 1, and after some 
simplifications we have: 
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Now we can compute { }vuE ˆ .Regarding (A-1) and (A-
2) we have: 
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Hence with defining α′  as follows: 
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