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Abstract—In this paper, we propose a robust Kalman and [5] presented the fast LTS algorithm to compute the
filter and smoother for the errors-in-variables (EIV) state  multivariate linear regression model. For the EIV state
space model subject to observation noise with outliers. space model where the outliers acts in the observed

We introduce the EIV problem with outliers and then . .
we present the Least-Trimmed-Squares (LTS) estimator input data to the best of our knowledge, there is no

which is highly robust estimator to detect outliers. As Paper has been published in this area.
a result, a new statistical test to check the existence of In this paper, we consider a filtering and smoothing
outliers which is based on the Kalman filter and smoother - problem in the presence of observation outliers with the
has been formulated. Since the LTS is combinatorial opti- 5y of the | TS procedure. It is well known that the LTS
mization problem the randomized algorithm has been pro- . . . . S
posed in order to achieve the optimal estimate. However, 1S & highly robust estimator and its objective is to find
the uniform sampling method has a high computational observations out oV whose square errors Is minimum.
cost and may lead to biased estimate, therefore we apply However, the high computational complexity makes the
theKZUbsoarlgyiEﬁOTseitrr]‘C:/C;nables el Least.Trimmed LTS estimator impractical and useless. Therefore [2]
Squa)r/(\aNs, Kalman filter and smoother,’outliers, random proposed the random search algorithm tc.) solve the
search algorithm, subsampling method. LTS problem for the SISO linear regression model.
However, applying the randomized algorithm [2] for
. INTRODUCTION the EIV state space model may lead to bias estimate
A basic numerical routine for the classical EIVsince the structure of the data will be lost. Hence, we
Kalman filter [1], [7] and smoother computes the conpropose the subsampling method [8] which keeps the
ditional expectation which is a least squares (LS) eststructural of the original data, decrease the computation
mate. Since the LS method is rather sensitive to outlietime and less sensitive to outliers. Another feature of the
(non Gaussian disturbances), so is the Kalman filter argtoposed algorithm is that the algorithm can be applied
smoother. Moreover, it is well known in real applica-to clean and dirty data as well. A minor contribution of
tions that most practical data contain outliers with ahe paper is that we derive the Kalman smoother for the
low probability, so that a standard Gaussian assumptidalV state space model which is required for the new
for observation noises might fail. Following Rousseevstatistics.
[6], we define the outliers to be the observations which This note is organized as follows. Section 2, gives the
deviate from the pattern set of the majority of the dataerrors-in-variables problem in the presence of outliers,
There are many reasons for the occurrence of outlierand introduces the LTS estimator for the EIV state
e.g. misplaces decimal points, recording or transmissiaspace model. In section 3, we proposed the randomized
errors, expectational phenomena such as earthquakesaijorithm as a method to solve the LTS problem and
strikes, or members of different population slipping indiscuss the disadvantages of the algorithm. Section 4,
the sample etc. is dedicated to the Kalman filter and smoother with
Several algorithms have been proposed to deal witdutliers and propose the subsampling method. Appen-
outliers in the output data [2], [3], however, usually thedix A is devoted to Kalman filter and smoother without
input data are observed quantities subject to randogutliers and proof of the proposition.
variability. Thus, there is no reason why gross errors
would only occur in the response data. In a certain Il. ERRORSIN-VARIABLES MODEL
sense it is more likely to have outlier in one of observed ) o ) . .
input data, because usually its dimension greater thanAs depicted in Fig. 1, consider the errors-in-variables

one, and hence there are more opportunities for sorr‘?('E:‘ate space model described by

thing to go wrong. As a technique for coping with this z(t+1) A B x(t) w(t)
problem, Rousseeum [6] suggested the LTS estimato[ 9(t) } = [ C D ] { a(t) } + [ 0 ] - @)



wherez(t) € R”, 4(t) € R™ and§(t) € RP are un-

known state, true input and output vectors respectivel
Furthermorew(t) is the white Gaussian noise acting”"’ )
on the state whose mean is zero and has a covariargglimator Is

Y. The measured input-output signal§t) and y(t)

]
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Fig. 1.

are modelled as
u(t) = a(t) + a(t), @)
y() = 4(t) + (1), @)
where i(t) € R™ and g(t) € RP are non-Gaussian

white noises with zero mean and finite positive definit
covariance matricex; and>;, respectively;
] o(7).

IE{[ a(t) ] [@"(t) §°(t) ]}:[ i S
4)

4(t) DIEER I
We will assume in the sequel, thatt) and g(t) are
uncorrelated withw(t). Furthermore, the input and
output noisesi(t) andg(t) contain outliers with a low
probability, therefore we write

a(t) = (Im — (t))a" (t) + ¢(t)a’(t),
g(t) = (Ip —y@)F™ (&) +v(H)F° (1),
where I, is the s x s identity matrix for s

{m.,p}, »(t) = diag{ey;} = diag{thp1, -, Y1 s}
and ¢,; = {0,1} for all ¢ and wherey) = {v, ¢}.
Moreover, Proly),; = 1} is small, i.e. the ma-
jority of the observed data is clean. The noise

U y

{ﬂ’;}(t)ﬂo(t) g™ (t),9°(t)} are Gaussian white noises
wit
a"(t) € N(0,%%), a’(t) € N(0,%3), %)
§"(t) € N(0,%3), §°(t) € N(0,%3), (6)

where {¥7, %2, 57,52} are positive definite covari-
ance matrices. Furthermor& (i,i) and X5 (i,4) are
much larger than¥j(i,i) and X7 (i,i) respectively.

€ To redefine the LTS estimator for EIV state s

L

h
éLTS = argming Z(TT : T)[i] (©),

=1

wheren, (t)
¥i(t). Leto =

—Ba(t) +w(t) andn,(t) = —Da(t) +
é g , then the least trimmed squares
efined as

(8)

where (r™ - r);)(©) represents thé-th order statistics
amongry (©) - r1(0),--- ,r5(0) - rx(6) and where

TN
ri(0) = [ x(Z(J;)l) }f{ A B } { zgg }.The so-called

c D
trimming constant: have to satisfy% < h < N. This
constant determines the breakdown point of the LTS
estimator since the definition (8) implies that — h
observations with the largest residuals will not affect the
estimator (except of the fact that the squared residuals
of excluded points have to be larger than théh order

statistics among the squared residuals).

ace
model, considesS = {S C {1,--- ,N} : #£5 = h} X
be the collection of all subsets with cardinalfiyfrom

the set{1,--- ,N} 2. For anyS € S, let ©(S)rs be
the least square estimate based on the observed data in

O(S)Lrs = argming ZT;F(@) -13(0©). 9)
i€S
i.e. the LTS searches for a subset S of sizeh that
fits the observed data.

In most cases, it is not feasible to generate all
possible subsets provided that is large due to com-
putational cost. In the next section, we will generate
finite number of subsets which will lead to a feasible
solution that will converge with probability one to the
true solution by using the randomized algorithm.

IIl. THE RANDOM SEARCH ALGORITHM

It is obvious that the objective functio(S)irs
in (9) can be found by searching for the best subset
S € § that minimizes the squares of the errors. In
fact there areS; subsets inS fori =1,---, N), SO
that finding the best subset that minimizes tI%Je value of
the objective function is a very difficult combinatorial

Then, the problem of interest is to find an optimalproblem. However, we can easily calculate the value of

Kalman filter and smoother estimate(t), 3*(¢) and
Z(¢t) for the input-output datai(t), y(t) and the state

vector z(t) given the observed input-output data. The 4
fact that we account for the possibility that the input
signal is not exactly known and it may contain outliers,
makes the problem difficult, and is often referred to as

an outlier-errors-in-variables (OEIV) problem.
A. Least-trimmed-squares

the objective function (9), for each subsgte S and
then sort them in increasing order, i.e.

©(S)p) = argming Zr?(@) (@) <---
i€S
. T . _
< argming Zezs r; (©)-r;i(©) = max det cov(S).
Now we think of S; € S as a random variable that is
uniformly distributed, and hend@(.S;) is also a random

The LTS technique has been introduced by [6] tqariable depending orf;. Let F(O(S;)) denote the

detect the outliers for the EIV linear regression model

Substituting (2) and (3) into (1) yields

e [=le Bl ]

y(t) ¢ D || u®)

ng (1)
ny(t)

], ™)

unknown probability distribution function ab(.S;) for

14 .= cardinality of the subses.
2[] is the greatest integer number.



i =1,---,L be L, independently generated sampleghe value of the objective function (9) for each subset
of 5; € S. Furthermore, letS € {S}L_, be such that 9i € Sr, a subsetS ¢ Sy with minimum value of

o(8) = minlgrgL@(Sr). We can derive the following the objective function (9) will improve our estimate.

: : However, it may be noted that in the worst case this
theorem by using the result of Bai [2]. The theoreny,, o ement is not considerable comparing to the LS

finds the sample sizé& so thatO(S) converges to the estimate by using all observed data. In fact, if the

true solution with probability close to one. number of the observed data is very large, then the
Theorem 1:For the EIV model (1), we can show probability of finding a subse$ € S with cardinality
that the following(i) ~ (ii) hold: equal toh that does not contain any outlier approaches
. zero, i.e.
(i) For all 0 < F (minges ©(S)) < e < 1 and for W
all0<d<1,if [ > 20/ then pp= ) DN prIog g
’ = W(1/(-e)’ ) @-mint - U=y
h 7=0
Prob{F < min (Q)(Sr)) < e} >1-—0. whereZ stands for the number of clean data. According
1<r<L

to (10) the random search algorithm can be improved
(ii) Let S, for r = 1,--- k be k-th disjoint by taking S with small cardinality and by finding the

subsets such that*_, S, = {1,---,N} and run smallesth relative Mahalanobis distancés. This will

the randomized algorithm in each subset. Then thicrease the probability of finding a subsgtfrom S

overall probability that the confidence statement arthat does not contain any outliers.

simultaneously true i§ — Zle ;. At this stage, we will derive the optimal estimate for
Proof: (i) Let é(s)[k] denote the maximur®(S) that  the true input-output and the associated error covari-
satigfiesp(@(g)) <e e ances for the OEIV model using the Kalman filter and

smoother.

F (é(S)[(ﬁ)]) > > F(@(S)[k+1]) > e.

IV. KALMAN FILTER FOR THE

It is easy to see thaf’ (IninlgigL é(S)) < ¢ if and ERRORSIN-VARIABLES MODEL WITH OUTLIERS

A A Let z(t) = y(t) — Du(t), then (7) can be written as
only if min<i<;, O(S;) < Oy, implying that 2(t) = y(t) — Du(t), then (7)

z(t+1) | [ A B x(t) na(t)
Prob{F (1?§L®(Si)> ge} [ 2(t) } B [ ¢ 0 ] { u(t) } - { ny (1) ] )
) In addition, let Z(t) = {2(0),--- ,2(t)}, ®(t) —
:Prob{lgi_lélL@(Si) < G(S)m} é(ﬁlg_o)vé“ o)} and T'(t) = {7(0),---,~(t)} and
efine
= 1-prob { min, 6(5) > 6y a(t] 1) = Ele(t) | Z(2), ®(1), T(1), (12)
— 1 Prob {6(51) 2 6(S)gey ) ot+1]0) = Elalt+1) | Z(0), 8(0), (1), 13)
. A yt+1|t)=Ejyt+1) | Z(t),®(t), ()], (14)
x o x Prob {O(S1)) > &(S)jura) | P(t| £) = E[(w(t) — #(0))(a(t) — 2(1)" | Z(1), 9(), T(D)],
>1—(1—¢)".

>1-(1-¢F (Tl5)

", P+1]0)=E[(@(t+1) — &t + 1) (@t +1) — 3t + 1))
Now L > ((E)E) = (1— )" < 5. Consequently, 2. 80,00, (16)

rob {F ( min é(si)) - 6} S 1_(—of>1-s then the Kalman filter is given by

1<isL 2(t+1|t)=Cx(t+1]t), (17)
2(t+1] 1) = Aw(t | £) + Bu(t), (18)

(i) Let &, (: = 1,---,k) be theith statement _
corresponds to the subs§f, and assume that theh, ~ and we could compute the covariance of the errors as

statement;, (i =1,--- , k) is correct, i.e. E{(2(t+1) — 2(t + 1 | ) (2t + 1) — 2(t+ 1] )T}
Prob[&] =1 — i, =CP(t+1]1),
E{(z(t+1) — 2zt + 1| ) (=z(t+1) — 2zt +1|8)T}

and let&; be the complementary event &f, then T
=CPt+1|)C" +v)ZF + (Ip — v()E3

Prob[N&;] =1 — Prob[N;&;] = 1 — Prob[U;&]

B + D[¢(t)2% + (Im — (1)) 52] D", (19)
>1-) Probl&] =1-3 o, where
if j=afori=1.--- k. Then P(t+1]8) =B[(x(t+1) —a(t+ 1] 6)(x(t+1) —at+1] )T
- APtltAT +%w + Bo()SEBT 4 Bl — 652 BT,
Prob[N&;] > 1 — ka. (20)

Theorem 1 means that, whenever we genefatede- 3The Kalman filter and smoother without outliers is given in
pendent random subsefy, = {S;}%, and compute Appendix .



The optimal Kalman filter estimate for the statg) is It should be noted that if is included in the subset
S+ 1]t+1)=alt+1|8)+Pt+1]|CTs () er), O theno(i) and (i) will be the identity matrices,
( otherwise they are the zero matrices. In Proposition 1,
while €(t) and ¥, (¢) denote the innovation of(t) and if we apply the uniform sampling method then we will

its covariance matrix given by lose the structure of the original data and consequently
e(t) = 2(t) — Ca(t | ©) the estimate will be biased. Therefore, we apply another
— Ca(t) + ny(t) — Ca(t | ) (227 sampling method which is called subsampling method
Ee(t) = Ele(t)e(t)] 8]
= COP(t | )CT +y(D)SF + (Ip — ()25 A. Subsampling method
+DIg()T]; + (Im — ¢(£)) T3] DT (23)

Instead of generating a random subsets from
The optimal smooth estimate&(t | N), §(t | N) the observed input-output data we generate blocks
of a(t), g(t) that can be obtamed from o contiguous observations of fixed dimensidn

éf)(? 3ya9g’éj\)é#£,]>\,7)’y(]v)}’ under  constraints .+ is “we divide the las{N — n) observations
R B _ _ _ into k& subsets, where each subset contains the
u(t‘N)_u(t)_u(”N)_u(t)_E{u(t)lz(o)"“’Z(]\g};{) first initial data (w(1),---,w(n)) and a set of
Gt N) = y(t) — §(t | N) = y(t) — E{@i(6) | 2(0),--- ,=(\)}, (N — mn)/k] contiguous observations. In other

(25 words, the subsets can be described Sé?") =

where i(t | N) =| Il%b{ i(t) | 2(0),---,2(N)} and  {w(l), -, w(n),wn+1+(r—1)b), - ,w(n+br)},

u
g(t | N) = E{g(¢) ),---,2(N)} are the optimal wherer = 1,--- k. Then we perform an exhaustive
estimate fora(t) and g(t) respectlvely To compute search of all possible blocks and choose the one which
a(t| N) andy(t | N) we replace:(t) by its innovation  yives the minimum value for the objective function. It
at| N) = E[a(t )I ( )y e 2(1), et + 1), -+, e(N)] should be noted that, ifN — n)/k is an integer then
=E[a) | (0) s 2(t )} +E[@(t) [ et +1), -, e(N)] we have exacthk subsets. In general there atet 1
} } . subsets, where the firtof sizen + [(V —n)/k], and
=atle)+ glcov{”(t)’e(s)}zf(s) «(s) 26) " the last of sizeN — [(N — n)/k]k. For the seek of
G| N :E[;(;)TZ(O)’.__ (), e(t+1), - e(N)] simpli(_:ity and without loss of generality we assume
ZE[(E) | 2(0),- -+, 2(8)] + E[(E) | e(t+ 1), , e(N)] thatb is an mteger wheré = (N —n)/k. _
N Furthermore, if the number of the subseétss large,
=gt + > cov{i(t),e(s)}Se(s) " e(s), (27)  then the probability of having at least a clean subset of
s=t+1 data which does not contain any outlier will increase.
whered(t | t) andg(t | ¢) are given in Appendix . Now However, ifk is large, then the cardinality of each sub-
the covariances can be found as follows set will be small, and consequently the estimate of the
cov{a(t), e(s)} = cov{a(t) — a(t | t) + a(t | t),e(s)} parameters can be unstable. P. Heagerty and T. Lumley
= cov{a(t | t),e(s)} = [Say — SaDT|Se(t) ' e(t, 9) [8] suggest thab ~ /N to ensure a balance between
= Sy — SaDTS ()" CP(t | t — 1)L(s — 1,5)TCT, the statistical properties of the estimated parameters and
(28)  the robustness of the method.
cov{7i(t), e(s)} = cov{ii(t) — 5t | ) + 5t | 1), e(s)} Theorem 2:Let | S{"*" |= h and put
=cov{y(t|t),e(s)} = [Z5 — E:»fv DT]EE(t)flze(t, s) ) ] n T
=[2; - =L DTz (t)’lyCP(t |?j:— 1)L(s—1,t)TCT Ji= Y ({ uld) } - { u(? | Sgini) D
Lo @ i \LVO Ty )
where 3 = (I, — ¢(t))X2 + ¢(H)Xg and X5 = y ({ u(i) } B { u(i ] sH) D _
(Ip—v(ﬁ))ZIjﬂ(t)E;j andXg; = (Im—0(t)) X7 (I - v(®) y(i | syt

v(t) + o(H)25 y(t).TheL(s—lt)andZ( s) . n n
are defined and calculated in Proposition 2(given inNow let (i) € S{"*™ and takeSé“ ! such that

Appendix ) {Ii) i € S5 = [, 1)), where

roposifion 1: Let 7, be a random integer number (7"1)[1] < - < (r1)p. This y|eld5r2( ) for all i =

from 1 to N, and formulate the sef = {m, : t = N and32 _ Z wim rT(0) - 14(O). Then
S n .

,h} € S. Furthermore, lete(m; | S) andy(m |
S) be the Kalman smoother as in (24) and (25). Then

the LTS cost function can be written as J2 < J 1 ) o
} The proof of Theorem 2 is a direct application of
O(S)irs = argming Y, ({ Zég } - [ “(Z|| )) D Theorem1 from [4]. It should noted that constructing

a new subsets{"™™ from S\"*™ is called C-step

% ({ ug; } { D (30)  where following Rousseeuw and etc [4], C stands for



“concentration” because the new subS’é ) gives a APPENDIX

o Step 1. Generate all subsamples of;
and for each sub- sampleS‘§b+"), calculate
O(S"™) s and consequently fin@(S)yrs = _
mingo e g Orrs(SEH™). ga\?éjntg}e/ Kalman smoother for= NN —1,--- ,1is

« Step 2: Using Chi-square distribution detect the
outliers and putS; = {m; :i=1,--- ,h}. e(t—1|N)=a(t -1t =1+ J(t - Dt | N) —2(t |t —1)]

« Step 3: Repeat step 1 to step 2, until convergent. (35)
Pt—1|N)=Pt—1|t—1)+J({t—1)[P(t]|N)

—P(t|t—1)]Jt—-1)T (36)

lower value for the objective thaﬁf’*”) does. The Kalman filter is given by
Random search algorithm: 2(t+1|t)=Ca(t+1]1) 31)
Let Uk_ 1S(b+") {1,2,---,N}, z(t+1|t) = Ax(t |t —1) + Bu(t) + K(t)e(t) (32)
(btn) K(t) = [AP(t | t = )CT + S(1)]Se(t) ™! (33)
)

Pt+1]t)=AP(t|t—1)AT + Q(t) — [AP(t |t — 1)CT + S(¢)]
X Be(t) AP |t —1)CT + 5()T (34)

V. CONCLUSION Jt—1)=Pt—1]|t—1APE|t—1)""
) _ i a(t | t) = [Saz(t) — SaDT]Se(t) " e(?) (37)
In this paper, we have studied the Kalman filter g6 =[5, - =L DT]E () e(t) (38)

and smoother for the Error-In-Variables state space ) _
models with outliers. The outliers have been detected@Y USing (37) and (38), the minimal variance estimates
of ¢(t) anda(t) can be written in the form
using highly robust estimator called minimum covari-
ance determinant which requires the Kalman filter and at [t) = u(t) — [Sg — TaD TS (t) 'e(t) (39)
smoother to be computed. In order to achieve the Gt t) =y@) — [Z5 —EIyDT}E ()" te() (40)
optimal solution of the LTS problem, the random search
algorithm has been proposed. However, applying the
uniform sampling method to the randomized algorithm
leads to complex calculation and biased estimate. Thus, P(t,s) = E{(z(t) —a(t | t — 1))(z(s) — z(s | s = 1))}
we applied the subsampling method in order to keep =P(t|t—-1)L(s—1,0)". (41)
the same dependence structure as the original data - .
The subsampling method leads to unbiased esnmatt\g e)reL( t) = L(s)--- L{t) andL(s) = A=K (s)C.
and decrease the complexity issue of calculations. The - -
proposed algorithm is highly robust to the effect of e gf-s)(i): E{e(®e(s)"} =CP|t=DL(s =1L, C" (42)
outliers. '
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