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Abstract  —  In this paper an optimal integrated control 
and filtering approach is investigated for performance 
improvement of a weighcell based dynamic weighing 
system. The weighcell is a controllable weighing device that 
operates according to the principle of electromagnetic force 
compensation. The two main aims for improvement are: (1) 
to increase the speed of weighing and (2) to achieve good 
measurement accuracy. These goals are contradictory and 
are addressed through an integrated control and filtering 
approach by employing Linear Quadratic Gaussian (LQG) 
design method. The method is further blended with classical 
control scheme creating a frequency shaped LQG approach. 
In order to use LQG technique a mathematical model of the 
weighing system is developed. Moreover, an analytical 
solution for weight filter is derived. Finally, obtained results 
are compared to the results of controllers employed in the 
contemporary dynamic weighing systems. 

Index Term — Checkweighing systems, Dynamic 
weighing systems, Instrumentation, LQG controller, 
Measurement, Modelling, Optimal control and filtering. 

I. INTRODUCTION 

In the area of mass production, products are weighed 
dynamically using dynamic weighing systems, also called 
checkweighing systems. The weight of an article is 
estimated while it has been carried by a transport system 
over a weightable mounted on the weighing sensor. 
There are several types of weighing sensors and all of 
them are divided into two groups  [1]: (i) uncontrollable 
weighing devices termed as load cells, and (ii) 
controllable weighing devices termed as weighing cells.  

The load cell is based on a strain gauge, which makes 
use of the property of a conductive material that changes 
the electrical resistance in response to deformation by a 
mechanical load  [2]. As such, the displacement of the 
weighing table, however it is small, tends to amplify the 
environmental noise and the accuracy of dynamic 
checkweighers based on load cells goes up to 0.02% at 
most  [3]. Load cells, however, offer a cheaper solution. 
Within the weighing cell the weight of an article causes a 
motion of a beam balance. This motion is sensed by a 
position sensor and then electrodynamically compensated 
to as near as zero  [4]. Consequently, the weighing cell 
actively compensate for vibration noise and the accuracy 
of dynamic checkweighers based on weighing  cells goes 
up to 0.0004%  [3]. 

The main objectives of a dynamic weighing system are 
to increase accuracy and throughput rate of article 

weighing. The accuracy of a dynamic weighing system 
based on the weighing cell depends on the performance 
of the position control loop, in particular steady-state 
error. At the same time, however, high performance of 
the position control loop slows down the overall transient 
response, hence decreasing throughput rate. Current 
solutions are primarily based on Proportional Integral 
Derivative (PID) controller to stabilise the system and to 
provide fast transient response  [4]. Additional filters are 
often used to further increase accuracy  [5] and to provide 
stable results. However, these solutions based on control 
and filtering approach have not been able to keep in step 
with the current weighcell, the resolution of which has 
been improved up to 105-107 steps.  

In this paper a novel method for improvement of 
performance of the positional control loop of a 
checkweighing system based on the Linear Quadratic 
Gaussian (LQG) approach is presented. The performance 
was experimentally verified and compared with 
published results. 

II. MODELLING 

In order to apply the LQG method, a model of 
weighing cell based dynamic checkweigher is needed. A 
dynamic weighing cell used in this study is based on a 
controllable electromagnetic compensated weighing 
device employing a beam balance (Fig. 1), which can be 
described by a second order differential equation as 
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and with compensation force produced by the coil 
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Combining equations (1) and (2) gives 
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Where w(t) is the mass of the article to be weighted, 

m1-m8 are the masses of the mechanical structure, k is 
damping coefficient, c is spring constant, a, b, c, d, d’, e 
are particular dimensions of mechanical structure, F6, F7, 
F* are reaction forces in the joints of the mechanical 
structure, Fc is compensation force produced by 
electromechanical compensator, Θ is position of beam 
balance, Θb, Θk are inertia moments of weighcell, Θtot is 
total inertia moment of weighcell, Bl is the coil constant 
and ic is the control current through the coil. 
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Fig. 1. Mechanical structure of the weighing cell 
 

Defining the state variables as x1(t) = Θ(t) and 
.

2 )()( ttx θ= , the state differential equations of the 

system from equation (3) are 
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where xn(t) (n=1,2) are states of the systems, y(t) is the 

output of the system and v(t) is the measurement noise, 
Gaussian with zero mean and variance Rv. For the 
measured parameters of the weighing cell given in  [6], 
the state equations (4) became 
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 is the system input, and z is the 

system noise, Gaussian system noise with zero mean and 
variance Rz. In discretised state space form, the equations 
(5) becomes 
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III. LQG CONTROL DESIGN 

It becomes apparent from equation (6) that the 
checkweighing system based on weighing cell has two 
inputs, and one output. One input is the weight, w(k), 
which is uncontrollable input, and the other is the current 
ic(k) which is a controllable input. In general, an optimal 
linear state-variable-feedback-control law is an attempt to 
find the optimal input u(t) (=-L(k)x(k)), which minimizes 
the quadratic cost function 
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where L is a feedback gain matrix, SN is a non-negative 

symmetric matrix, Q is a non-negative symmetric 
weighing matrix that determines how much weight is 
attached to each of the components of the state and R is a 
positive definite symmetric weighing matrix that 
determines how much weight is attached to each of the 
components of the input. Following the procedure given 
in ref.  [7], the optimal feedback gain matrix L(k) is found 
as 
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where the symmetric non-negative definite matrix S(k) 

satisfies the matrix Riccati equation 
 

 )]()()()][1()1()[()( kkkkkkk T LBASQAS −+++=  
                                 NN SS =)(                                 (9) 

 
Basic structure of an LQG controller applied to 

checkweighing systems is presented in Fig. 2. The 
approach adopted in this paper was to treat the weight as 
an unknown disturbance and let the input current ic of the 
system neutralise it over time. In this case, the overall 
problem is refereed to as regulator. Furthermore, a 
separate weight filter was designed to get an estimate of 
the weight. This weight filter is connected to the LQG 
controller as shown in Fig. 2. 

From a control point of view, this is SISO system, and 
we found that the appropriate cost function is of the form 
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and R is the positive scalar 

value. The actual range of Q22 values depend on 
mechanical characteristics of a particular weighcell. 
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Fig. 2. LQG controller for the system in discrete time state 
space description 
 

The value of R directly effects the value of the control 
input ic(k): smaller the value of R, the larger is the current 
ic(k). Therefore, in reality the value of R is heavily 
dependent on the electrical characteristics of weighcells. 
In order to get the optimal value of the control input ic(k) 
(=-Lx(k)), which minimises the cost function given in 
(10), the feedback gain matrix L was calculated 
according to equation (8). Once the feedback gain matrix 
had been determined, equations for the closed loop were 

obtained by substituting values for the current ic(k) into 
equation (6) that gives 
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Consequently, the closed-loop characteristic values can 
be calculated as 
 

                   ZI-A+BicL=0                           (12) 
 

Different loci of the closed-loop characteristic values 
can be obtained by varying the control gain matrix L. The 
matrix is completely controllable by weighting matrices 
Q and R. Therefore, by changing the value of matrices Q 
and R, the system response and steady-state error change. 

IV. EXPERIMENTAL RESULTS 

In the regulator problem, the control input, current, ic(k)  
which keeps the position of beam balance close to zero, 
follows the changes in the value of the forcing function. 
Therefore, the current ic(k) is used for estimation of a 
product weight. The fact that an estimator of Kalman 
filter is used for estimation of the states (Fig. 2) means 
that the value for current ic(k) is already filtered. Figure 3 
shows the values for the control input for the case 
without estimator, as well as with estimator. 
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Fig. 3. Control input of the closed-loop system 
 

However, an additional weight filter, as shown in 
Figure 2, is needed for further performance improvement. 
The algorithm for the weight filter was derived as 
follows. From equation (6), the states of the system are: 
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In the steady state, with no movement of the balance 
beam, x2=0. Consequently, equations (13) become 
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and the control input current ic(k) is calculated as 
 

               )()()( 1111 kxLkxLki ec −=−=               (15) 
 

where xe1 is the estimate of x1, which takes into 
account the system and measurement noise. Substituting 
values for ic(k) from equation (15) into equation (14), the 
expression for the weight filter is obtained as 
 
             [ ] )(925.2875.21)( 11 kxLkw ee −=               (16) 
 

In order to reduce the steady state error further, an 
integrating action was included in LQG design method as 
shown in Fig. 4. The outputs with and without integral 
action are shown in Figure 5 indicating that the output of 
the system controlled with additional integral action is 
balanced to zero, whilst the output of the system 
controlled without integral action exhibits a steady state 
error of 0.0008 V. 
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Fig. 4. LQG controller with integral action 
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Fig. 5. Output of the controlled system with and without 
integral action included 
 

The performance of a dynamic weighing system is 
specified by accuracy and throughput rate. This can be 
translated as the steady state error and transient response 
of the controlled system, respectively. To evaluate the 
performance of the developed LQG controller with 
respect to existing alternatives, a comparison was made 
to the PD controllers designed in ref. [6]. Performance of 
the controllers were analysed by using the step response, 
and the results are summarised in Table 1.  
 

TABLE I 
COMPARATIVE PERFORMANCE  OF LQG CONTROLLER 

 
The performance of the controller is characterized in 

terms of rise time tr, overshoot, and the time taken for the 
output to come within a defined percentage of its final 
value, tss=X %.  The output signal used is a step response 
to a noise-free input. ikd corresponds to ic in this paper. 

It becomes apparent from Table 1 that the LQG 
controller performance exceeds the performances of both 
controllers designed in ref.  [6]. However, the overshoot is 
slightly higher than the one obtained by a controller 
tuned using function I5. 

V. CONCLUSION 

This paper investigates the suitability of using LQG 
design method in weighcell based checkweighing 
systems. The method is based on a linear optimal control 
law, which takes state variables of a system as its inputs. 
The regulating aspect of control problem, with included 

 tr in ms Overshoot (%) tss=1% ms 
Mass kg 0.1 1.5 0.1 1.5 0.1 1.5 

   
R

ef
[6

]  
  

 1.4 2.4 0.128 0.162 112.4 111.4 

 1.4 1.4 0.128 0.143 8.4 9.4 

LQG Controller 1.2 1.2 0.130 0.150 2.2 2.9∫= dttiI kd )(4

∫= dttitI kd )(5



stochastic disturbances, was presented. The known 
mathematical model of checkweighing system was 
adapted for the required state space model representation. 
An LQG controller was designed and its characteristics 
presented. In order to reduce the steady state error 
further, an integrating action was included in LQG design 
method. Furthermore, an algorithm for weight filter was 
derived. Finally, this method was compared to the results 
of previous work. The comparison showed that additional 
performance improvement could be achieved by adopting 
the LQG design method 
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