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Abstract  —  In this paper, first, the dynamic equations 
of a submarine periscope will be extracted and verified 
with real data. These data are acquired from an 
experimental setup. Then, using a neural network, an 
intelligent control method will be developed to control the 
periscope model. For steady state error reduction of the 
main controller a Fuzzy Gain Scheduling (FGS) integrator 
scheme has been used. This integrating controller is 
parallel to the main controller. The main issue is to adjust 
the integrator gain using fuzzy logic to decrease the steady-
state error, while maintaining stability of the closed-loop 
system. Fuzzy IF-THEN rules are used to adjust the gain of 
the integrator based on the tracking error and its 
derivative. Simulation results on the plant model indicate 
good performance of the proposed method. 

Index Terms  —  Marine systems, Fyzzy systems, Neural 
control, Scheduling algorithms, Kinematics. 

I. INTRODUCTION 

Line-of-Site (LOS) stabilization has been widely used 
by many researchers for varieties of applications. 
Periscope, which is important equipment in submarines, 
is an optical instrument, which is considered to be an 
LOS device. In periscopes, image sequences, taken by a 
camera, must be stabilized for better views by operators 
[1]. A common periscope structure has been depicted in 
Figure 1. Image sequences, taken from the sea surface, 
are reflected by the mirror to the camera, and observed 
inside the submarine by the operator. Structure of a 
periscope is like the gyro mirror LOS stabilization [2]. 
Major application of periscope is in submarines but 
tanks use them too. 

Extracting dynamic equations of submarine 
periscopes has advantageous for research, computer 
simulation and model-based controller design. The 
structure of this system is like a robot manipulator. 
Therefore, to obtain the dynamic equations, one can use 
the well-known methods like the Newton-Euler and 
Lagrange-Euler methods. In this paper, the latter method 
is employed. 

Gain scheduling is an important form of nonlinear 
control methods in many applications areas, such as in 
commercial and military flight control, jet engine 
control, missile control, vehicular engine control and 
process control [3]. One technique to define gain 
scheduling is fuzzy logic, which is based on human 

knowledge [4]. The main advantage of this method is 
that the control law can be presented as IF-THEN rules 
using human expertise.  

One of the simple techniques in classical control 
methods, to reduce steady-state error, is using integral 
term in control law. But the main difficulty is defining 
precise integrator gain, especially for highly nonlinear 
systems. It is well known that high integrator gains can 
push steady-state error towards zero; but any sudden 
changes in the reference signal and/or system 
parameters can jeopardize stability of the system.  

In this paper, fuzzy logic is employed to define 
integrator gain in on-line method, in order to 
considerably reduce the steady-state error. Hence, the 
fuzzy gain integrator is in parallel with the controller for 
better performance at the steady state. In this paper, the 
main controller is a neural network. 

The proposed method is applied to the extracted 
periscope model. 

Although the proposed compensator will be applied to 
an image stabilization problem, it can be applied to 
other control methods for steady-state error reduction.  

This paper in organized as follows. Section II 
describes forward kinematics of a typical periscope 
followed by derivation of dynamic equations in section 
III. Section IV describes the main controller, which is a 
neural network. Section V gives the proposed method 
(i.e. the fuzzy gain-scheduling integrator). Simulation 
results are shown in section VI, followed by conclusions 
in section VII. 

 

 
Fig. 1. Structure of a submarine periscope 
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II. FORWARD KINEMATICS 

For obtaining the homogeneous transformation 
matrices, the basic method is used. Figure 2 shows the 
link coordinate frames of the periscope shown in Fig. 1. 
The transformation matrices of three links are defined as 
follows: 
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where 0
1T  is the transformation matrix from coordinate 

one to coordinate zero (the base coordinate), 1 1cos( )c θ= , 
1 1sin( )s θ=  and so on. 

III. DYNAMIC EQUATIONS OF PERISCOPE 

To derive the dynamic equations, the Lagrange-Euler 
method is employed [5]. Hence, the kinetic and the 
potential energy of the all links must be determined. 

A. The Potential and Kinetic Energy of the First Link 
Since the body of periscope is fixed, the kinetic 

energy of the first link is just due to the energy of the 
servo motor. Equations (2) and (3) represent the kinetic 
and the potential energy of the first link, respectively.  
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where 1J  and 1ω  are the moment of inertia and the 
angular velocity of the first link, respectively, and d is 
the height of periscope (Fig. 1).  

B. The Potential and Kinetic Energy of the Second Link 
The movement of the second link is like a see-saw. 
Hence, for finding the kinetic and potential energy of 
this link, it is divided in two pieces, with half mass on 
either side. After finding the kinetic and potential energy 
of each piece, the kinetic energies will be added together 
and the potential energies will be subtracted from each 
other, to find the kinetic and potential energy of the 
whole link. The velocity of the second link is calculated 
at 2 / 2y b= −  with respect to the first coordinate 
system, where b is depicted in Fig. 2. Equation (4) 
represents the position of this coordinate with respect to 
the zero coordinate system. 
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Fig. 2. Link coordinate frames of the periscope, shown in Fig. 1. 
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Therefore, the kinetic energy of the second link is 
equal to 
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The potential energy of the second link is equal to 
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C. The Potential and Kinetic Energy of the Third Link 
The third link is treated like the second link. Equation 

(8) represents the position of the right half piece of the 
mirror coordinate. 
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Hence, the velocity of this link is equal to 
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And the kinetic and potential energy of this link is  
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D. Lagrangian Equation 
The Lagrangian equations for the periscope can be 

written as 
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.
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Solving (13) yields dynamic equations as   
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Dynamic of the servomotors are as follows 
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Motor and plant parameters are written in table I and 
II, respectively. A comparison between the data 
acquired from an experimental system (Fig. 3) and the 
proposed model in this paper, taking the dynamics of 
servomotors into account, has been depicted in Fig. 4. 
The modeling error has been shown in Fig. 5. As this 
figure shows, the error between the experimental data 
and proposed model is relatively very small.  

 

 
Fig. 3. Experimental setup 
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TABLE II 

PLANT PARAMETERS 
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Fig. 4. Comparison of real and model response 
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Fig. 5. Modeling error 

IV. THE MAIN CONTROLLER 

An MLP neural network is the main controller to 
control the nonlinear system. This network consists of 
an input layer, one or two hidden layers, and an output 
layer (Fig. 1). The mathematical equations of the MLP, 
with one output and one hidden layer, can be written as   
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where y and u are the output and input of the NN, I
ijW  

and O
jW  are the hidden and output layer weigths and  

finally I
jb and Ob  are the hidden and output layer bias 

weights. 
Error backpropagation training algorithm is the most 

common method used in literature to train MLP neural 
networks; hence, the same training method has been 
employed in this paper to control the nonlinear plant.  

The NN will be trained off-line, using some data 
acquired from the plant, to obtain an inverse model of 
the system. Then, the trained NN is used as the main 
controller in the closed-loop system.  In order  to  obtain 
a very accurate inverse model of a highly nonlinear 
system, one would need many neurons in the hidden 
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layer of NN. On the other hand, too many neurons might 
hinder real-time control in most applications. 

For controlling the plant, we should train the neural 
network with plant data in off-line case. Unfortunately, 
the numbers of neurons are few and the neural network 
can not capture the complete dynamic response of the 
plant, which causes some steady state error in reference 
tracking. 

To compensate the steady-state error, an integral term 
will be added to the control signal. It is well known that 
integral term can push the steady-state to very small 
numbers. But the gain of the integral term is very 
crucial. Small gains are not very effective, and large 
gains may destabilize the system, when some changes 
occur in the system parameters. In the next section, a 
gain scheduling will be presented, which adjusts the 
integral gain according to the performance of the closed-
loop response. 

V. FUZZY GAIN SCHEDULING STRUCTURE 
Figure 6 shows the control block diagram. Inputs of 

the fuzzy system are the tracking error and its 
derivative. Experience shows that with decreasing the 
tracking error and its derivative we should increase the 
integrator gain for reducing the steady state error. 
Therefore it is obvious that the membership functions 
for the inputs should be concentrated around zero. 
Moreover, the fuzzy IF-THEN rules must be selected in 
such a way that the fuzzy output surface be a mountain 
like with large slops. Figs. 7, 8 and 9 show the 
membership functions for the inputs and the output, 
respectively. Fuzzy rules are given in Table III. Also 
fuzzy output surface is depicted in Fig. 6. In the 
structure of the fuzzy system, the Mamdani product 
inference engine, singleton fuzzifier, and center average 
defuzzifier is used. 
 

 
 

Fig. 6. Control block diagram 
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Fig. 7. Membership functions for the error input 
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Fig. 8. Membership functions for the derivative of the error input 
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Fig. 9. Membership functions for output of the fuzzy system 

TABLE III 
Fuzzy tunning rules for integrator gain 

 Derivative of error 
 NB NM NS Z PS PM PB 
NB Z Z Z PM Z Z Z 
NM Z Z PM PB PM Z Z 
NS Z PM PB PB PB PM Z 
Z PM PB PB PH PB PB PM 
PS Z PM PB PB PB PM Z 
PM Z Z PM PB PM Z Z 

 

PB Z Z Z PM Z Z Z 

VI. SIMULATION RESULTS 

Also in simulations, the dynamic equations of 
common servo motors are considered. We use on joint 
of the periscope to show the performance of the 
proposed method. Figs. 10 and 11 depict the desired and 
the plant response, and the tracking error for controlling 
the angle 5θ , respectively, when only the neural 
network is used as the controller. The mean-squared 
error is about 0.53% of the reference signal and some 
steady-state error can be observed. 

Now, the performance of the proposed fuzzy gain 
scheduling will be tested. Figs. 12 and 13 show the 
desired, the model output, and the tracking error, 
respectively, when fuzzy gain scheduling is added to the 
control law.  
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The proposed fuzzy system has decrease the mean-
squared tracking error from 0.53% to 0.024% while 
maintaining the system stability. 

The fuzzy system increases the integrator gain up to 
220 for the steady-state case and decreases that for the 
transient case(i.e. when a sudden change occurs in the 
tracking signal). Also, in order to show the effect of the 
fuzzy system, a fixed integrator gain equal to 115 has 
been used. As Fig. 14 shows, small change in the 
tracking signal has destabilized the closed-loop system. 

VII. CONCLUSION 

In this paper, a new Fuzzy Gain Scheduling (FGS) 
integrator scheme had been proposed for steady state 
error reduction. This scheme is parallel to main 
controller. Fuzzy IF-THEN rules were used to adjust the 
gain of the Integrator based on the system error and its 
derivative to reduce the steady state error along keeping 
total stability. This compensator system can be applied 
to reduce error for the other controllers that have the 
steady state error. Simulation results on an image 
stabilization platform indicated that the proposed 
method could reduce the steady state error of the 
designed main controller.  
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Fig. 10. Desired and model output with neural network controller 
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Fig. 11. Tracking error with neural network controller 
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Fig. 12. Desired and model output with FGS 
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Fig. 13. Tracking error with FGS 
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Fig. 15. .Desired and model output with neural network controller 

and fixed gain integrator equal to 115 
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