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Abstract- There continues to be substantial interest in 
wireless communication systems that employ multiple 
transmit and receive antennas, due to their promise for 
dramatically increasing the performance and capacity to 20-
40 bit/s/Hz when the system design is optimal. However, 
performance can deviate significantly from the ideal 
performance due to Rician fading and antenna correlation. 
In this paper we review the main developments related to the 
effect of non-ideal propagation conditions on the spatial 
multiplexing and diversity gains of MIMO systems. Various 
correlation and fading channel models are reviewed, for 
small and large number of antennas, various conditions on 
signal power and various performance criteria. 

Index Terms-Correlation, Diversity methods, MIMO 
systems, Multiplexing, Rician channels 

I. INTRODUCTION 

Designing very high-speed links that offer good range 
capability on the wireless channel is a hard problem for 
several reasons. The wireless channel is a harsh time-
varying propagation environment. A signal transmitted on 
a wireless channel is subject to interference, propagation 
path loss, delay spread, doppler spread, shadowing and 
fading. While it is possible to increase data rates by 
increasing the transmission bandwidth or using higher 
transmit power, both spectrum and transmit power are 
very constrained in a wireless system. The bandwidth, or 
spectrum, is prohibitively expensive. Increasing transmit 
power adds interference to other systems and also reduces 
the battery life-time of mobile transmitters.  

The solution that has emerged over the past seven 
years is to exploit space, i.e., use multiple transmit and 
receive antennas. Pioneering work by Foschini and Gans 
[1], and Telatar [2] ignited much interest in this area by 
predicting remarkable spectral efficiencies for wireless 
systems with multiple antennas when the channel exhibits 
rich scattering and its variations can be accurately tracked. 
Multiple-input multiple-output (MIMO) systems can 
provide maximum capacity and/or diversity gains over 
channels with independent Rayleigh fading. When the 
fading is correlated or not Rayleigh MIMO gains are 
considerably reduced. Section II summarizes the main 

capacity results for ideal and actual channels. Section III 
provides similar results for MIMO diversity gain. 

II. CAPACITY OF MIMO CHANNELS 

Since the work of Foschini and Gans [1], and Teletar 
[2], there has been intense research activity in the area of 
MIMO systems. Here we will list some of the important 
capacity and diversity results obtained by the researchers 
in the area of MIMO systems.  

 
A. Idealized Channels 
 

Foschini and Gans analyzed the information-theoretic 
capacity of a multiple-antenna point-to-point wireless 
system in a narrow-band slowly Rayleigh-fading 
environment. They assume independent and identically 
distributed (i.i.d.) fading at different antenna elements, 
and assume that the transmitter does not know the channel 
while the receiver is able to track the channel perfectly. 
With T transmit and R receive antennas, the system is 
described by the matrix equation 

   nHsy +=
T
Es        (1) 

where Es is the total energy available at the transmitter, y 
is the R x 1 vector of signals received on the R antennas, s 
is the T x 1 vector of signals transmitted on the T transmit 
antennas, n is the R x 1 noise vector consisting of 
independent complex Gaussian distributed elements with 
zero mean and variance σ2, and H is the R x T channel 
matrix with components modeled as i.i.d. zero mean 
circularly symmetric complex Gaussian random variables 
(ZMCSCG) with unit variance. The capacity for this 
system is shown to be 
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Where EH{.} denote the expectation over H, m = min(T, 
R), and the operator HH indicates the hermitian of the 
matrix H. The above equation can be decomposed using 
singular value decomposition (SVD) as 
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Where k, (k ≤ m) is the rank of H, and λi (i = 1, 2, ….., k) 
denotes the positive eigenvalues of HHH. Foschini and 
Gans show that the capacity C grows linearly with min(T, 
R) for a given fixed transmitter power and bandwidth. In 
other words, without increasing the transmit power or 
bandwidth the capacity of the wireless channel can be 
increased by simply increasing the number of transmit and 
receive antennas. This is an enormous improvement 
compared to a logarithmic increase in more traditional 
systems utilizing receive diversity or no diversity. 
 

Teletar [2] assumed that the channel state information 
is available only at the receiver and showed that for i.i.d 
slowly Rayleigh fading channels with T transmit and R 
receive antennas, 
• Capacity C grows linearly with min(T, R) for a given 

fixed transmitter power and bandwidth. 
• For T = 1, Capacity increases logarithmically with the 

increase in the number of receive antennas R.  
• For R = 1, Capacity does not increase at all with the 

increase in the number of transmit antenna T.  
However, Teletar also showed that when the channel 

parameters are known at the transmitter, i.e., if the channel 
state information (CSI) is available at the transmitter, the 
capacity given by (4) can be increased by assigning the 
transmitted power to various antennas according to the 
“water-filling” algorithm [2].   
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Where µ is chosen to satisfy: 
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and “+” denotes taking only those terms which are 
positive. 
 
B. Channels with Correlated Fading 
 

Shiu et al. [3] investigated the effects of fading 
correlations in multi-element antenna (MEA) 
communication systems. They characterized the fading 
correlation for narrow band Rayleigh fading. They 

modeled correlated fading using one-ring scattering model 
as  
 

 ( )ωHRH vecvec 2/1)( = .      (7) 
 

Where vec(H) is the vector form of the H matrix and 
( )( )HR veccov= , and Hω represents  independent and 

identically distributed (i.i.d) Rayleigh fading channel. 
They showed that the effective degree of freedom i.e., the 
number of independent paths reduces as the correlation 
increases thus leading to the reduction of the system 
capacity. 
 

While [3] provides a useful insight on the effect of 
correlated fading, the results are limited to the case of one 
end (i.e., either transmitter or receiver) correlation only. 
The analysis by Gesbert et. al. [4] accounts for both 
transmitter and receiver correlations using the eigenvalue 
decomposition technique, and modeling the MIMO 
correlated fading as 
 

2/12/1
tωrcorr RHRH =                 (8) 

 
where Rt and Rr are the correlation matrix at the 
transmitter and at the receiver side, respectively. 
 

Lokya  [5] investigated the MIMO channel capacity 
in correlated channels using the uniform and exponential 
correlation matrix model. Using uniform correlation 
matrix model, the correlation matrix R is defined as 
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While using exponential correlation matrix model, the 

correlation matrix R is defined as  
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where r is the correlation coefficient between any two 
adjacent antennas, and “*” denotes the complex 
conjugate. Using the Jensen’s inequality and 
approximations, the capacity of n x n MIMO Rayleigh 
fading channel in the presence of correlation is shown to 
be 
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The paper compared the two models and showed that the 
exponential model predicts better MIMO performance, 
which is obvious. The other findings were as follows 
• As the correlation increases, the capacity decreases. 

In other words, the increase in correlation is 
equivalent to the decrease in SNR. 

• Uniform correlation model predicts the worst-case 
scenario. 

• For the exponential correlation model, correlation 
coefficient of 0.7 (r = 0.7) is same as 3dB reductions 
in SNR. 

• For the exponential correlation model, the MIMO 
capacity decrease significantly for r > 0.6 which is in 
accordance with the measurement of MIMO 
channels. 

 
C. Channels with non-Rayleigh Fading 
 

Farrokh and Foschini [6] modeled the Rician fading 
channel as  

 scsp ba HHH +=             (12) 
 

where the specular and scattered components of H are 
denoted by superscripts, a > 0, b > 0 and a2 + b2 = 1. The 
Rician factor, K is defined as a2/b2. Thus, the above H 
matrix can be written as  
 

scsp

KK
K HHH
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1
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+
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Khalighi’s et al. [7] used a model similar to the above 

for the Rician fading channel. Using simulation, they 
showed that for uncorrelated Rician fading and with CSI 
being available only at the receiver, an increase in Rician 
factor: 
• Reduces the capacity of the MIMO system. 
• Increases the capacity of the SIMO system. 
 
D. Channels with Correlation and non-Rayleigh Fading  
 
Channels with non-Rayleigh Fading 
 

Ayadi’s et al. [8] derived an upper bound on the 
average Rician channel capacity for n x n MIMO system 
with CSI available at the receiver only, and showed that a 
limit of this capacity is given by the sum of the capacities 
corresponding to the LOS and Rayleigh components when 
they are considered separately. The upper bound is given 
as 

RayLOSRic CCC +≤     (14) 

where: 
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They selected two cases, one when the antenna elements 
are uncorrelated and the other when they are perfectly 
correlated. They found that the upper bound is more 
optimistic to be reached in the correlated antenna elements 
case than in the fully correlated antenna situation. They 
also found that for both the cases,  
• Average upper bound on the Rician channel capacity 

is almost reached for small values of SNR. 
• For low values of Rician factor, the average upper 

bound seems to be less tight than the one obtained in 
the case of high values of Rician factor. 

 
Qaseem and Ali [9] used Monte Carlo simulation to 

calculate the capacity of MIMO systems, subject to 
Ricean fading, when the elements of the antenna systems 
experience correlated fading at the transmit, receive, or 
both sides. Ergodic and 10% outage capacities are 
obtained as functions of SNR for various values of the 
Ricean factor, K, with or without correlation at either the 
transmitter or at the receiver side or at both sides. The 
effect of CSI is considered as well. Ergodic and 10% 
outage capacities shows the same trend; however, ergodic 
capacity is nearly 3 dB higher than the 10% capacity. 
 

III. DIVERSITY OF MIMO CHANNELS 

 
Alamouti [10] presented a new diversity scheme 

(Alamouti’s scheme). It assumes independent and 
identically distributed (i.i.d.) fading at different antenna 
elements, and that the transmitter does not know the 
channel while the receiver is able to track the channel 
perfectly. The important results obtained were as follows: 
• Using two transmit antenna and one receive antenna, 

the new scheme provides the same order of diversity 
as the maximal-ratio receive combining (MRRC) with 
one transmit antenna and two receive antenna. 

• The scheme can be easily generalized to two transmit 
antennas and R receive antennas to provide a 
diversity of 2R. 

• When compared with MRRC, if the total radiated power is 
to remains the same, the transmit diversity scheme has a 
3-dB disadvantage because of the simultaneous 
transmission of two distinct symbols from two antennas. 
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Tarokh et al. [11]–[12] first introduced Space-time 
codes to provide transmit diversity in wireless fading 
channel using multiple transmit antenna. They showed 
that for i.i.d slowly Rayleigh fading channels: 
• Space–time block codes (STBCs) constructed from 

known orthogonal designs achieves full diversity and 
are easily decodable by maximum likelihood 
decoding via linear processing at the receiver, but 
suffers from the lack of coding gain. 

• Space–time trellis codes (STTCs) posses both 
diversity and coding gain, yet is complex to decode 
and arduous to design.  

 
Tarokh’s et al. [13] showed that orthogonal space-

time block codes (OSTBCs) decouple the vector detection 
problem into scalar detection problems, i.e., it converts a 
MIMO system to a corresponding SISO system, without 
any degradation in the performance, thereby significantly 
reducing decoding complexity. Thus, the diversity 
performance of the scalar codes is the same as that 
corresponding to vector codes. Applying OSTBC to the 
vector equation in (1), the corresponding scalar equation 
is   
 

       nx
T
Ey

F
s += 2H           (17) 

 
where y denotes the scalar processed received signal, x is 
the scalar transmitted signal, n is AWGN, and 

F
H  is the 

Frobenius norm of MIMO channel matrix H.  
 

Sun and Reed [14] recently presented diversity 
analysis for MPSK in Rician fading channels. The error-
rate performance using maximal-ratio combining (MRC) 
was expressed as a function of the mean signal-to-noise 
ratio (SNR), the Rician factor K, and the order D of 
diversity. The analysis made was not confined to any 
particular mode of channel diversity i.e., transmit, receive, 
frequency, space, polarization, and space-time codes. 
They assumed the fading channel to be identically 
independent i.e. the channels are uncorrelated, slow and 
frequency non-selective and perfect channel information 
is available at the receiver. The probability of symbol 
error for coherent MPSK over a Rician fading channel 
with Rician parameter K and diversity D is as follows: 
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where Ps(E) is the probability of symbol error, D is the 
order of diversity, K is the Rician factor, sγ  is the average 
value of the SNR, and M  represents M-ary PSK 
Modulation. 
 
In a companion paper [15], Qaseem and Ali used Monte 
Carlo simulation to calculate the diversity of MIMO 
systems, subject to Ricean fading, when the elements of 
the antenna systems experience correlated fading at the 
transmit, receive, or both sides 

 
Table I presents the gain in capacity as the fading 

statistics changes from Rayleigh (K=0) to Rician (K>0), 
for several vales of the spatial multiplexing gain (m). With 
no diversity (m=1), capacity increases as K increases and 
reaches its maximum value for Gaussian channel. With 
spatial multiplexing (m>1), the capacity reaches its 
maximum value on rich scattering (Rayleigh) channel, and 
decreases (negative gain) as the scattering component 
decreases. 

TABLE I 
CAPACITY GAINS FOR RICIAN FADING  

COMPARED TO (K = 0, R = 0) 
SNR = 10 dB, R = 0  

  Gain     dB  
 

 
m 

Capacity 

Bps / Hz 

K= 0,  r= 0 

 
K = 0 

 
K = 2 

 
K = 4 

 
K =10 

1 2.903 0 0.203 0.32 0.449 

2 5.546 0 - 0.250 - 0.47 - 0.74 
4 10.932 0 - 1.605 - 2.53 - 3.73 

6 16.372 0 - 3.220 - 4.92 - 7.08 

 
 

Table II presents the decrease in capacity (negative 
gain) for correlated Rayleigh fading Channels. It can be 
seen that the decrease in capacity, in dB, is more for larger 
m and increased correlation 

 
TABLE II 

CAPACITY GAINS FOR CORRELATED CHANNELS 
COMPARED TO (K = 0, R = 0) 

SNR = 10 dB, K=0 
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IV. CONCLUSION 
 

This paper reviewed the main developments related to 
the effect of non-ideal propagation conditions on the 
spatial multiplexing and diversity gains of MIMO 
systems.  
Various correlation and fading channel models have been 
presented. 

For MIMO systems, as the value of K increases, 
capacity decreases for all values of SNR. For SIMO, 
MISO, and SISO systems, however, the existence of LOS 
component enhances the capacity.  Correlation is seen to 
reduce the capacity of the system as expected. However, 
the correlation at the transmitter or at the receiver has the 
same effect on the capacity of the system. It is also 
interesting to note that the water-filling gains i.e., when 
the CSI is available at the transmitter over equal power 
i.e., when no CSI is available at the transmitter are 
significant at low SNR and reduces at high SNR. 
 

The essence of the results is that correlation always 
reduces capacity, whereas the existence of LOS 
component can reduce MIMO capacity and enhances 
capacity for SIMO, MISO, and SISO systems. 
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Gain  dB  
m 

Capacity 
bps/Hz 
K =0 r= 0 

r=
0 

r= 
 0.3 

r = 
0.5 

r = 
0.7 

r = 0.9 

1 2.903 0 0 0 0 0 
2 5.546 0 -0.1 -0.4 -0.9 -1.5 
4 10.932 0 -0.4 -1.2 -2.6 -4.9 
6 16.372 0 -0.7 -2.1 -4.4 -8.4 
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