INFORMATIVE ERROR MESSAGES

Essam M. Arif * and Martha Evens **
*Umm Al-Qura University Makkah, Saudi Arabia.

**Illinois Institute of Technology, Chicago, IL U. S. A

ABSTRACT. Reporting error messages about problems detected by the syntax analyzer is not an easy process no matter what technique is used. In addition to the time and space that are needed, the process becomes more difficult when we try to report informative error messages. This paper not only discusses the importance of producing informative error messages, but it also solves some problems that impact language design. Reporting informative error messages to beginners leads to better program development. Observation of programming students working in a laboratory using C++ showed us that they had these significant problems in understanding error messages delivered by Borland C++ compiler. Analysis of these problems led us to design more informative error messages for beginning programmers. Our experience has strongly influenced the design of Al-Risalah, an Arabic object oriented programming language for beginning programmers. Reporting informative error messages to beginners can help them write better programs from the start.

1. INTRODUCTION

We set out to observe student programmers with the intent of improving the design of Al-Risalah, an Arabic object-oriented programming language for beginners. we were surprised to discover that these students had serious difficulties in understanding error messages from Borland C++ compiler, which has been most favorably received by professional programmers because of its user-friendly interface. Beginning students did not have the background to understand these messages. Our experience caused to design a special set of error messages to deal with some of these problems and also to modify some features of Al-Risalah to increase its clarity.

2. OBSERVATION AND ANALYSIS

In an attempt to design really good error messages, I decided to observe actual students using the Borland C++ compiler, which has a reputation for being particularly helpful and user-friendly. I observed students at Illinois Institute of Technology taking CS 200, the first C++ course, and CS 331, a course in data structures. There are 10 laboratories for CS 200; each laboratory contains about 12 students and is an hour and fifty minutes long. I observed 20 laboratory sessions. Each laboratory is organized in terms of prelab exercises and an in-lab exercise. Prelab exercises must be solved during the week and submitted to the TA for testing and grading. The in-lab exercise must be done within the time period of the lab and when finished submitted it to the TA for testing and grading. During the first laboratory most of the students spent their time learning how to use the system's graphical user interface, which was essential to any interaction with the system. From the second week on students started programming. Although the C++ compiler produced some excellent error messages, other error messages seemed unclear and ambiguous to the students. In this section I will describe real examples and student input that I observed while watching and observing. Also in this section I will describe some error message issues and problems.

2.1 Incorrect or Unexpected Symbol

C++ requires a semicolon at the end of each statement. Several students had problems understanding the error messages provided by the compiler when they left out a semicolon or typed another symbol instead of a semicolon.

// Compute from square feet to acres

#include <iostream.h>

void main()

{

const float sqfeet_per_acre = 4356.0;

float sqfeet, acres,

cout << endl;

cout << "Enter The area in square feet: ";

cin >> sqfeet;

// calculate the acres

acres = sqfeet / sqfeet_per_acre;

// out the result of calculation

cout << "The acreage is " << acres << endl;

}

In this example the student typed a comma instead of a semicolon at the end of a float declaration. The compiler displayed three error messages and a warning.

Compiling ..\EX\CLAB2.CPP:

Error ..\EX\CLAB2.CPP 7: Declaration syntax error

Error ..\EX\CLAB2.CPP 8: Illegal use of floating point

Error ..\EX\CLAB2.CPP 13: Illegal use of floating point

Warning ..\EX\CLAB2.CPP 14: 'acres' is assigned a value that is never used

Beginning students were particularly confused here. Each input line in the above example has a line number starting from the beginning of the program until the end. Input lines are numbered in sequence order. That is, the first input line is given line number one; the second input line is given line number two, and so on. Here the first input line, which contains a comment, is line number one. The second input line, which contains the include directive is line number two, and so on. Error messages in the Borland C++ compiler are displayed in a separate window. When the student finishes a program and is ready to compile, he or she can click on the compile command. If the program has errors a new window will appear with the error messages. To analyze the problem in the above example we need to discuss each error message. The first error message says Declaration Syntax Error in line seven but line seven is an output statement. The second error message says Illegal use of floating point in line 8 and it is obvious that line 8 is also an output statement. The third error message says Illegal use of floating point in line 13, which is an output statement also. The warning says "acres" is assigned a value that is never used in line 14, but line 14 has the "}" symbol. As we can see none of the above the error messages and the warning have explicitly addressed the problem.

Clearly the Borland syntax analyzer considers cout another identifier in the float declaration list because there is an unexpected symbol, which is the comma after acres, where the student made the mistake. The parser expected another comma or a semicolon after cout. When it detects the "<<" symbol, which is not allowed in a declaration, it issues the first error message. Then it makes a recovery from that error and continues parsing. The second and third error messages are produced because the compiler thinks cout is a floating point declaration. Finally it reports a warning based on its misunderstanding of the use of cout in line 13.

The problem can be solved if cout is a predefined reserved word in the output statements. Cout is not a reserved word in C++ but predefining cout to be a reserved word makes it easy for the parser to recover from such an error. A simple error recovery method called panic mode recovery can be used in which the compiler skips to the end of the current construct or to the beginning of the next line looking for a token that starts the line such as begin or while. For this reason it is good to have cout a predefined reserved word. If cout is a predefined reserved word, then using panic mode recovery the parser will detect the error in line six, report it, make a recovery by skipping to the beginning of the next line where it finds cout and continues parsing. If cout is not a predefined reserved word, as in the above example, more errors will be reported. These observations influenced the design of the Al-Risalah programming language [Arif, 1995] we choose to add more reserved words to simplify the language for the beginning programmers. This is the error message that the Borland C++ compiler reported in this case:

Error in Line 6: Possibly Missing statement terminator ";" in Float Declaration

 Part. Add ";" and Check Float Declaration Part help topic.

There are many examples where the syntax analyzer encounters an unexpected symbol. In such a situation the syntax analyzer can detect the error, produce an error message, and make a recovery from that error. I observed another situation when the student entered a semicolon instead of a comma in the middle of a float declaration part.

// Convert the weight from carats to ounces.

include <iostream.h>

void main ()

{

float caratwt, milliwt; gramwt, ouncewt;

cout << endl;

cout << "Enter a precious stone's weight (in carats) : ";

cin >> caratwt;

milliwt = caratwt * 200;

cout << "This stone weights " << milliwt << " milligrams. " << endl;

gramwt = milliwt * 1000,

cout << "This stone weights " << gramwt << " grams. " << endl;

 ouncewt = gramwt / 28.35;

cout << "This stone weights " << ouncewt << " ounces. " << endl;

 }

The following error messages were issued by the C++ compiler:

Compiling ..\EX\LAB3.CPP:

Error ..\EX\LAB3.CPP 5: Undefined symbol 'gramwt'

Error ..\EX\LAB3.CPP 5: Undefined symbol 'ouncewt'

Although these error messages are correct, the original problem has not been identified. When the syntax analyzer found the first semicolon in line 5 it marked only caratwt and milliwt as declared but not gramwt and ouncewt. Here I should point out that our system Al-Risalah [Arif, 1995] will encourage students to put every new statement on a new line. This will enhance programming style and will reduce errors. Since there is a semicolon instead of a comma our system will also report the same errors that Borland found plus one of the following two error messages, if possible, telling the student where is the error and what kind it is.

Error in Line 5: Unexpected symbol ";" in Float Declaration Part.

 Check Float Declaration Part help topic.

Alternatively the system may produce the following error message telling the student that you have missed a data type in the declaration part because the students might want to have a new data type for gramwt and ouncewt.

Error in Line 5: Missing data type in declaration. Do

 you want to declare a new Data Type?

In case of the first error message, it will be simple for the student to fix the error and learn more about the language syntax by checking the Identifier list syntax in the help system, which explains that a sequence of identifiers may only be separated by commas. In the case of the second error message we informed the student that there is something wrong in the declaration and we ask if the student wants to declare a new data type for gramwt and ouncewt.

Most programmers miss symbols while programming. Some languages require a special symbol after reserved words. For example, Pascal [Arif, 1989; Wirth, 1980] requires the symbol "(" after the write or read reserved words. Other languages such as C++ require different symbols, depending on programmer needs, after cout or cin. One of the symbols we can have after the cin statement is ">>" . However, when this symbol is missed by a student the C++ compiler produced an error message that the student found to be confusing:

// Compute from square feet to acres

#include <iostream.h>

void main()

{

const float sqfeet_per_acre = 4356.0;

float sqfeet, acres;

cout << endl;

cout << "Enter the area in square feet: ";

cin sqfeet;

// Calculate the acres

acres = sqfeet / sqfeet_per_acre;

// Output the acreage

cout << "The acreage is " << acres << endl;

}

The C++ compiler issued this error message:

Compiling ..\EX\CLAB2.CPP:

Error ..\EX\CLAB2.CPP 9: Statement missing ;

But line 9 has a semicolon and a better error message can be reported such as:

Error in Line 9: Input statement missing a symbol. Add symbol

 and check Input Statement help topic.

2.2 Unwrapped Compound Statement

The C++ syntax makes it hard for the Borland compiler to identify missing braces.

// Weather Selection

include <iostream.h>

void main ()

{

char sunny;

int temp;

cout << endl << "Enter Is it sunny Y/N? ";

cin >> sunny;

cout << endl << "Enter the degree temperature ";

cin >> temp;

if (sunny == 'Y' && temp >= 70)

 cout << "Go out" << endl;

 cout << "Have a Good Time" << endl;

else

 cout << "Stay home" << endl;

}

The following error message was reported by the C++ compiler:

Compiling ..\EX\CLAB4.CPP:

Error ..\EX\CLAB4.CPP 14: Misplaced else

The error message Misplaced else is not informative about the problem, which is that there are no braces wrapping the compound statement that follows the IF part. The problem gets even more complicated in the case of nested IF's. However, in the Al-Risalah programming language [Arif, 1995] we have a different design approach in order to avoid this ambiguity. Since most of these issues and problems (such as the dangling else problem and the indentation syntax mismatch problem) impact language design, we have decided to apply a different design approach. The syntax for the conditional statement for the Al-Risalah language [Arif, 1995] states that both the if part and the else part must be wrapped by begin and end whether they contain one statement or several statements. Accordingly, in our design approach such an error will be captured and reported easily. Al-Risalah [Arif, 1995] can then give the following error message:

Error in Line 12: Missing "{" symbol. Compound

 statements must be wrapped with braces.

(Note that the symbol "{" will be replaced by "begin" in the Al-Risalah language.) The above error message fully informs the student about where the problem is and what kind it is. We even conveyed some information about compound statements.

2.3 Misspelled or Undeclared Variable

A common error comes from using a misspelled or undeclared variable. For example, in a warm up exercise one of the students declared a variable width to be of type integer and later in the program misspelled the name as in the following example:

// Calculate the perimeter and area of a rectangular

#include <iostream.h>

void main()

{

float length, width, perimeter, area;

cout << "Enter Length : " << endl;

cout << "Enter Width : " << endl;

cin >> length >> width;

// calculate perimeter and area

perimeter = 2 * length + wiedth;

area = length * width;

// Output the calculated perimeter and area

cout << "The perimeter is " << perimeter << "Yards." << endl;

 cout << "The area is " << area << "Yards." << endl;

}

The C++ compiler reports the following error message:

Compiling ..\EX\CLAB5.CPP:

Error ..\EX\CLAB5.CPP 10: Undefined symbol 'wiedth'

The error message was precise but not clear to some students. A beginning programmer needs more information about the mistake and giving an error message with the misspelled word is not enough. Since wiedth is an identifier we need to explain to the student that wiedth is first of all a variable. Secondly, this identifier is either misspelled or undeclared. In this way the error message can be made precise, clear, and understandable. For example, the error message could be:

Error in Line 10: Identifier "wiedth" is misspelled or not declared in advance.

 Correct spelling or declare the variable.

With this error message we will be sure that we have given the student an accurate explanation that will help in correcting the problem.

2.4 Undeclared Method

Misspelling a variable name, forgetting to declare it, or putting that declaration in the wrong place causes the C ++ compiler to give an error message. A misspelled, misplaced, or undeclared method will also provoke an error message. These messages are often confusing. In the following example one of the students misplaced the declaration of the method sumsequence, but the error message does not say that.

// Calculate the sum of sequence integers

include <iostream.h>

#include <math.h>

void main ()

{

 int num;

cout << endl << "Enter n : ";

cin >> num;

cout << "The sum of integer 1 to " << num << " is "

 << sumsequence(num) << endl;

}

int sumsequence (int n)

{

int sum = 0;

for (int j = 1; j <= n; j ++)

 sum +=j;

 return sum;

}

The Borland C++ compiler issues the following message:

Compiling ..\EX\CLAB6.CPP:

Error ..\EX\CLAB6.CPP 10: Function 'sumsequence' should have a prototype

Unfortunately not all beginners know what the word "prototype" means, which may cause ambiguity and misunderstanding. Since the syntax analyzer detects the error it should be possible to produce a simple error message that is clear to all users. The following error message would be clearer to the student:

Error in Line 11: Undeclared function. Member functions must be declared at the top of the

 program. Declare the function and check Function Declaration Part.

2.5 Unexpected Symbols

Sometimes the student may not know the syntax of the while, if, or send statement in the case of the Al-Risalah language [Arif, 1995]. This kind of misunderstanding leads to errors because of not applying the right syntax. C++ requires that expressions should be wrapped with parentheses. One of the students made a mistake in the syntax of the while statement while entering it:

// Secret characters

include <iostream.h>

void main ()

{

char ch;

cout << "Enter the string: " ;

while (ch != 'c') || (ch != 's')

{

cin >> ch;

if (ch == 'c')

{

cin >> ch;

 if (ch == 's')

cout << "Door Open" << endl;

}

}

}

These error messages were issued by the C++ compiler:

Compiling ..\EX\CLAB13.CPP:

Error ..\EX\CLAB13.CPP 7: Expression syntax

Error ..\EX\CLAB13.CPP 17: Statement missing ;

Error ..\EX\CLAB13.CPP 17: Compound statement missing }

The problem is that the student did not include the logical operator in the expression, which causes all the above errors. The syntax of the C++ while statement requires that logical operators must be within the parentheses. The first error message says that there is an error in the expression syntax of the while statement, which is right, but this error message is not enough to explain the problem. My point here is that the error message did not precisely inform the programmer where the error is in the expression. Besides, the above while statement expression syntax is correct in some other programming languages such as Pascal [Wirth, 1980] and Al-Risalah [Arif, 1995]. How would the programmer know that the above syntax is wrong? The second error message says statement missing semicolon but all statements have semicolons. The third says compound statement missing "}" but the compound statement has the symbol "}". It will be clearer and more informative for the programmer if we can report the following error message to solve the problem:

Error in Line 7: Unexpected symbol "||" in While statement.

 Check While Statement help topic.

The above error message fully informs the student about the error, the problem, and where to find more information about the problem.

2.6 Type Mismatch

The worst case is when a compiler does not report an error message where there is an error in the program. This kind of problem makes students very confused. The following example was very confusing. It took a lot of time to understand the problem because the Borland C++ compiler died and we had to reboot the system again in order to get back to the program.
// Secret characters

include <iostream.h>

void main ()

{

int ch;

cout << "Enter the string: " ;

while (ch != 'c' || ch != 's')

{

cin >> ch;

if (ch == 'c')

{

cin >> ch;

 if (ch == 's')

cout << "Door Open" << endl;

}

 }

}

The problem is that the student declared ch to be of type integer, but later in the program assigned the character c to ch. In such a problem, since ch is already declared of type int and later assigned a character value, the C++ compiler can easily report this error telling the student:

Error in Line 7: Mismatched type. Assigning a character "ch" to an integer.

 Replace by integer value. Check Integer Declaration Part.

This is an informative error message that will tell the student exactly what the problem is and what kind it is. The student in this case will know that there is a mismatched type problem.

3. CONCLUSION

Observation of students learning to program showed that they are often confused by error messages designed by experts. These insights have helped us not only in producing informative error messages that contribute in helping students to solving their mistakes, but also in understanding some issues and problems that impact language design. We have discussed these problems in details including incorrect or unexpected symbols, missing statement delimiters or terminators, undeclared variables or methods, type mismatches, indentation syntax mismatches, and the dangling else problem. We have applied what we have learned to the design of the Al-Risalah language and in the production of the informative error messages within its GUI environment.

REFERENCES

Arif, E. 1986. Computer True Concepts. Saudi House Publishing, Jeddah, Saudi Arabia.

Arif, E. 1989. Pascal Language and Usage. Saudi House Publishing, Jeddah, Saudi Arabia.

Arif, E. 1995. Design of An Arabic Object-Oriented Programming Language and A Help System for

Pedagogical Purposes. Ph.D. thesis, Illinois Institute of Technology, Chicago, IL.

Booch, G. 1991. Object-Oriented Design with Applications. Benjamin
Cummings, Menlo Park, CA.

Borland. 1994. Borland C++ for DOS, Windows, and Win32. Borland International, Inc. Scotts Valley, CA.

Brette, J. 1995. Transparent Running and Contextual Help to Learn and to Teach an Imperative Language.

Association for Computing Machinery - SIGCSE Bulletin, Vol. 27, No. 4, pp. 7-12.

Brian, M. 1994. Programming Languages: Towards Greater Commonality. Association for Computing

Machinery - SIGPLAN, Vol. 29, No. 4, pp. 49-57.

Elmi, M., and Evens, M. 1993. An Efficient Natural Language Parsing Method, Proceedings of the Fifth

Midwest Artificial Intelligence and Cognitive Science Society Conference, Chesterton, IN, pp. 6-10.

Fischer C., and LeBlanc, R. 1988. Crafting a Compiler. The Benjamin/Cummings Publishing Company, Inc.,

Menlo Park, CA.

Getiz, R. 1994. Concepts in the Classroom, Programming in the Lab. Association for Computing Machinery-

SIGCSE Bulletin, Vol. 26, No. 1, pp. 164-168.

Guimaraes, J. 1994. Testing Student-Made Compilers. Association for Computing Machinery - SIGCSE

Bulletin, Vol. 26, No. 3, pp. 37-44.

Guzdial, M. 1995. Centralized Mindset: A Student Problem with Object-Oriented Programming. Proceedings

of the Twenty-Six the SIGCSE Technical Symposium on Computer Science, Education, Association

 for Computing Machinery - SIGPLAN Bulletin, Vol. 27, No. 1, pp. 182- 185.

Kolling, M., Koch, B., and Rosenberg, J. 1995. Requirement for a First Year Object-Oriented Teaching

Language. Proceedings of the Twenty-Six SIGCSE Technical Symposium on Computer Science

Education, Association for Computing Machinery - SIGPLAN Bulletin, Vol. 27, No. 1, pp. 173-177.

Kristensen, B., and Osterbye, K. 1994. Conceptual Modeling and Programming Languages. Association for

Computing Machinery - SIGPLAN Notices, Vol. 29, No. 9, pp. 81-90.

Lafore, R. 1991. Object-Oriented Programming in Turbo C++. Waite Group Press, Emeryville, CA.

Lidtke, D., and Moursund, D. 1993. Computers in Schools: Past, Present, and How We Can Change the Future.

Communications of the ACM, Vol. 36, No. 5, pp. 84-87.

Meyer, B. 1988. Object-Oriented Software Construction. Prentice Hall, Englewood Cliffs, NJ.

Rabung, J. 1994. Introducing Computer Concepts to Novices by "Practical" Immersion. Association for

Computing Machinery - SIGCSE Bulletin, Vol. 26, No. 1, pp. 88-91

PAGE
1

