

AN OBJECT-ORIENTED

ARABIC GRAPHICS SYSTEM

Waheed Abdulwahed Maqulah

Mohammed Ghazali Khayat

Department Of Electrical & Computer Engineering

King Abdul-Aziz University

P.O.Box: 1540

Jeddah, 21441, Saudi Arabia

E. Mail Address: MGKhayat@KAAU.edu.SA

�

AN OBJECT-ORIENTED

ARABIC GRAPHICS SYSTEM

Waheed Abdulwahed Maqulah

Mohammed Ghazali Khayat

Department Of Electrical & Computer Engineering

King Abdul-Aziz University

P.O.Box: 1540

Jeddah, 21441, Saudi Arabia

E. Mail Address: MGKhayat@KAAU.edu.SA

ABSTRACT. Computer graphics has become a popular and growing area of research in the computer science and engineering. It is aimed at the design and production of high quality graphics software to aid in many fields of computer applications such as: engineering drawings, education, presentation, modeling, prototyping, simulation, medicine, graphic arts, ...etc.

In this article, the analysis, design and implementation phases of the development of an object-oriented Arabic graphics system are described. The system allows for drawing shape, bilingual text (Arabic/English) and picture elements on drawing templates. Drawings can be edited, printed, and stored/retrieved into/from disk files of a special file format defined by the system. The user-system interaction can either be through the keyboard, the mouse or both.

The system is analyzed and designed using object-orientation concepts and notations. It is implemented using the C++ Object-Oriented Programming language (the Borland C++ V3.1 compiler for Windows) under the Windows 3.1 environment with the Arabic support on a personal computer.

The total number of lines of the program's source code is around 13,000 lines. The size of the executable file is around a half million byte.

INTRODUCTION

Computer graphics has evolved as one of the interesting topics and major fields of research in computer science and engineering. Graphics systems have many applications in the computer world, such as: engineering drawings, education, user interfaces for computer applications, presentations, computer aided design, modeling, prototyping, simulation, graphical arts, medicine, robotics, ...etc.

This article presents our work in developing a graphics system specifically designed to capitalize on state of the art development paradigm, namely, the object-oriented. First, we define the scope of the proposed Arabic Graphics System. Second, the problem is analyzed in object-oriented terms using the Coad & Yourdon object-oriented analysis methodology [1]. Third, using the Coad & Yourdon object-oriented design methodology [2], the system is designed in terms of four components: problem domain, human interface, task management and data management. Fourth, using the C++ language and its compiler-supplied and problem-specific classes, the system is implemented with a mathematical basis for graphics operations. Finally, we conclude by evaluating the performance of the system and further extensions.

RESEARCH OBJECTIVE

The objective of this research is to design and implement an object-oriented Arabic graphics system. In object-oriented terms, the system has to offer a higher level of abstraction, encapsulation of object data and interfaces, extension through inheritance (subclassing) and code reuse [3, 4, 5]. Also, the system has to provide an easy to use graphical user interface based on the Windows with Arabic Support environment. It has to allow the user to do the following:

�symbol 167 \f "Wingdings"�� Draw/edit shapes, text and pictures elements on drawing templates.

�symbol 167 \f "Wingdings"�� Save/retrieve drawings into/from disk files and print them.

�symbol 167 \f "Wingdings"�� Group one or more graphical elements forming named objects, which can then be

 used to draw other objects.

�symbol 167 \f "Wingdings"�� Perform geometrical operations on graphical elements and groups, like:

 transformation, rotation by any angle, horizontal and vertical reflections, and

 resizing.

�symbol 167 \f "Wingdings"�� Store/retrieve graphic elements into/from the Windows clipboard, and support the

 Windows text and bitmap clipboard formats and bitmap files.

�symbol 167 \f "Wingdings"�� Work with multiple drawing templates simultaneously.

�symbol 167 \f "Wingdings"�� Embed objects created by the system into other Windows applications.

Shape elements can be arcs, circles, ellipses, hexagons, lines, octagons, parallelograms, pentagons, points, polygons, rectangles, rhombics, round rectangles, squares, trapezoids and triangles. They have the following characteristics:

�symbol 129 \f "Wingdings"�� Shape interiors can be hollow, hatched or color-filled.

�symbol 130 \f "Wingdings"�� Shape interiors colors and styles are changeable.

�symbol 131 \f "Wingdings"�� Shape borders can be null or colored.

�symbol 132 \f "Wingdings"�� Shape borders colors, widths and styles are changeable.

�symbol 133 \f "Wingdings"�� Shape elements can be selected, erased, edited, duplicated, scaled, rearranged,

 rotated, reflected and moved on the drawing templates.

Text elements can be in Arabic or English (bilingual or bi-directional). They have the following characteristics:

�symbol 129 \f "Wingdings"�� Changeable bilingual fonts, point sizes, foreground colors, styles (Light, Regular,

 Bold), effects (Italic, Underline, Strike Out), alignments (Left, Center, Right), and

 background colors and modes (Opaque, Transparent).

�symbol 130 \f "Wingdings"�� Text elements can be selected, erased, edited, duplicated, rearranged, rotated and

 moved on the drawing template.

Picture elements can be in many formats including: bitmaps, tag-image format, paint-brush format, graphics interchange format, metafiles, ...etc. They have the following characteristics:

�symbol 129 \f "Wingdings"�� Composed of bits whose combinations represent either real color values or indexes

 into an array of colors defined for a picture. Both the picture's bits and color array

 can be changed.

�symbol 130 \f "Wingdings"�� Picture templates can be selected, erased, duplicated, rearranged, rotated and

 moved on the drawing template.

Compound (user-defined) shapes are composed of one or more graphic elements that are given specific names and added to the list of predefined elements known to the drawing template in which they are created. Each drawing template can have its own set of user-defined shapes that are stored into it.

ANALYSIS

The Coad and Yourdon (Object-Oriented Analysis) OOA methodology [1] is to be adopted in this phase of the development of the system. We have elected the Coad and Yourdon OOA methodology for the following reasons:

�symbol 240 \f "Wingdings"�� It provides explicit support for the principles and constructs of the object

 orientation,

�symbol 240 \f "Wingdings"�� It supports all the components of a complete OOA model,

�symbol 240 \f "Wingdings"�� It is most convenient for the nature and size of our system.

The Coad and Yourdon's OOA methodology builds upon concepts from information modeling, object-oriented programming languages, and knowledge-based systems. It results in a five-layer model of the problem domain, where each layer builds on the previous layers. The model is constructed using a five-step procedure:

1. Define objects and classes (real-world entities).

2. Define structures. Look for relationships between classes (general-to-specific and

 whole-to-part).

3. Define subject areas.

4. Define attributes (key characteristics of objects).

5. Define services.

We next apply the five layers of the Coad and Yourdon OOA model to our problem.

3.1 Layer I: Potential Class-&-Objects

Our system models (remembers) the problem domain entitithat can be part of a drawing such as: shapes, text and pictures. It does not model the user or the equipment on which the system is run. The entities (objects) existing in the problem domain are the different graphics elements which can be part of a drawing as depicted in Figure 1. Compound graphic elements are represented in our model by the "CompShape" class which is composed of one or more primitive graphic elements represented by the "Graph Element" class. Graphics elements can be classified into three categories: Shapes, Text and Pictures which are represented in our model by the "Shape", "Text" and "Picture" classes, respectively. Shapes can be arcs, circles, ellipses, hexagons, lines, octagons, parallelograms, points, pentagons, polygons, rectangles, rhombics, round rectangles, septagons, squares, trapezoids and triangles. Text is in the normal ASCII format.

Pictures can be in many formats: Bitmaps (BMP), Tag Image Format (TIF), Grphics Inter chage Format (GIF), Metafiles (MET) or any other customary image format.

The "Graph Element" and "Shape" classes are generalization (or abstract) classes meaning that their corresponding objects are portrayed by their Class-&-Objects specializations and no direct instantiation of objects is possible from these classes.

�embed Visio.Drawing.3 \s * mergeformat ���

Figure 1: Layer I & II - Class-&-Objects diagram.

A group is a collection of one or more primitive graphics elements which are treated as one complex element. A compound (user-defined) shape is a named group of primitive graphics elements which once created in a drawing, it can then be treated as one of its predefined elements.

3.2 Layer II: Gen-Spec Structure Strategy

This layer connects classes & objects with arcs to show generalization-specialization and whole-part inheritance relationships. According to the Coad and Yourdon OOA methodology, a structure is defined as a reflection of the problem domain and the system's responsibilities. A Generalization-Specialization (Gen-Spec) Structure, from the specialization perspective, can be thought of as an "Is A" or "Is A Kind Of" structure.

 Figure 1 also depicts all Gen-Spec structures existing among the problem domain entities. As can be seen in that figure, a compound shape (whole) has one or more graphics elements (parts). The generalization Class-&-Objects "Graph Element" is the parent for three specialization Class-&-Objects: "Shape", "Text" and "Picture".

3.3 Layer III: Subjects

According to the Coad and Yourdon OOA methodology, subjects are parts used to communicate the whole of an overall problem domain and the system's responsibilities. Subjects represent groupings of Class-&-Objects in the problem domain which lead to a top level context diagram for a high-level view of the problem domain.

Three initial subjects can be identified in our model as follows:

�symbol 164 \f "Wingdings"�� Promoting the uppermost Class-&-Objects ("Shape") in the

 "Shape"["Ellipse", "Polygon”, “Arc”, “Line"] structure to a subject.

�symbol 164 \f "Wingdings"�� Promoting the "Text" Class-&-Objects to a subject.

�symbol 164 \f "Wingdings"�� Promoting the "Picture" Class-&-Objects to a subject.

�

Figure 2: Layer III - Subjects.

Combining the above three subjects by problem subdomains, a single subject is obtained in the model, namely, "GraphElement". Figure 2 demonstrates this layer of the model.

Layer IV: Attributes

This layer adds a list of attributes inside the class & objects boxes and identifies associative relationships between objects. Table 1 shows the potential attributes of the “Shape” problem domain object inherted from the “GraphElement” object.

Table 1: Problem domain objects potential attributes.

Class�Attributes�Attributes Descriptions��Shape�xStart�The x-coordinate of the starting point of a graphics element ���yStart�The y-coordinate of the starting point of a graphics element ���lpen�A structure specifying the width, color and style of the border of a shape object���lbrush�A structure specifying the color and the style of the interior of a shape object���angle�The rotation angle of a shape object w.r.t the +ve x-axis���scaling�The scaling factor by which the x- any y- dimensions are multiplied��

3.5 Layer V: Services

This layer adds a list of services inside the class & objects boxes and provides arcs showing message connections between boxes. According to the Coad and Yourdon OOA methodology, a service is a specific behavior that an object is responsible for exhibiting.

 Services are placed in the bottom section of the Class-&-Object and Class symbols. A service chart depicts the detailed logic within an individual service, including object-state changes that trigger or result from the service. The detailed behavior is defined in the specification of the services of all classes. There are two types of services:

�symbol 45 \f "Symbol"�� Algorithmically-Simple Services: these are implicit services which apply to each

 Class-&-Object in the model. They are not explicitly shown on the OOA service

 layer.

�symbol 45 \f "Symbol"�� Algorithmically-Complex Services: these are services which involve some

 calculations using attribute values of an abject. They are explicitly shown on the

 OOA service layer.

 Table 2 depicts the algorithmically-simple services for the "CompShape" class, while Table 3 depicts its algorithmically-complex services. The detailed behavior of these and other services is not presented here due to space limitation.

Table 2: Algorithmically-simple services.

Class�Services�Services Descriptions��CompShape�CompShape()�Creates and initializes a compound shape object

Input value(s): x- and y- coordinates of starting point

Return value: void���GetItem()�Retrieves a pointer to a primitive at a specified index.

Input value(s): index of a graphics primitive

Return value: pointer to a graphics primitive���GetNumOfItems()�Retrieves the No. of primitives forming a compound shape.

Input value(s): void

Return value: number of graphics primitives���GetSName()

SetSName()�Retrieves (sets) the name of a comp. shape (to a new value).

Input value(s): void (new compound shape's name)

Return value: current compound shape's name (void)��

 System specifications are produced by stating the specifications of all Class-&-Objects in the model in the format shown below. A service chart is used to graphically portray each service's requirements. It is similar in structure to a flow chart which illustrates the logical flow of control for a particular service.

Specification "GraphElement"

	attribute Attribute1

	attribute AttributeN

	service Service1 (in: service input values; out: service output values)

		service chart

	service ServiceN (in: service input values; out: service output values)

		service chart

Table 3: Algorithmically-complex services.

Class�Services�Services Descriptions��CompShape�AddItem()

DelItem()�Adds (deletes) the specified primitive to (from) the compound shape's list of primitives.

Input value(s): a pointer to a new primitive

Return value: void���RotateByAngle()�Rotates a compound shape by a specified rotation angle

Input value(s): a rotation angle in degrees

Return value: void���Move()�Sets the x- and y- coordinates of the starting point of a compound shape object to the result of adding the x- and y- displacements to their current values

Input value(s): x- and y- axes displacements

Return value: void���BoundRect()�Finds out and returns the coordinates of the bounding rectangle of a compound shape

Input value(s): void

Return value: coordinates of the bounding rectangle���Resize()�Resizes the dimensions of a compound shape.

Input value(s): x- and y- axes resizing factors

Return value: void���Paint()�Paints the compound shape on an output device

Input value(s): device context for output-ing text/graphics

Return value: void���CopySel()

PasteSel()�Copies (pastes) a comp. shape into (from) the clipboard.

Input value(s): void

Return value: void���readf()

writef()�Reads (writes) a compound shape from (to) a disk file.

Input value(s): void (new compound shape's name)

Return value: void��

4. DESIGN

The Coad and Yourdon Object-Oriented Design (OOD) methodology [2] consists of four components: Problem Domain Component (PDC), Human Interaction Component (HIC), Task Management Component (TMC) and Data Management Component (DMC). According to the OOD methodology, the OOA results fit right into the Problem Domain Component of the OOD model. In other words, the OOA results form an integral part of the OOD model.

 The Human Interaction Component (HIC) adds to the results of the OOA human interaction design and the details of the interaction. The strategy to design the HIC component consists of the following:

- Design the command hierarchy,

- Design the detailed interaction,

- Design the HIC classes accounting for graphical user interfaces.

 The Task Management Component (TMC) adds to the system concurrent behavior in area where it is needed to simplify the design and code. The strategy to design the TMC component consists of the following:

- Identify event-driven tasks,

- Identify clock-driven tasks,

- Identify priority tasks and critical tasks,

- Identify a coordinator task.

 The Data Management Component (DMC) provides the infrastructure for the storage and retrieval of objects from a data management system. Designing the DMC includes both the design of the data layout and the design of corresponding services. Three data management approaches can be described:

- Flat file management,

- Relational database management system,

- Object-oriented database management system.

4.1 The Menu/Command Hierarchy

The command hierarchy depicted in Figure 3 captures the structure of all commands available on the system. It resembles a resource definition file which can generate the user interface for the application using the Windows Resource Compiler. Figure 4 shows the system's main window with the commands menu-bar.

4.2 Tasks/Scenarios

The task/scenarios specifies what a user can do with the system and how the user will command the system. Here only the steps required to complete a specific task are listed. The detailed breakdown of these steps is presented in the next section. We shall consider only one task and its scenario as an example.

�symbol 108 \f "Wingdings"�� Task: Drawing a shape object on the active drawing window.

 Scenario:

 �symbol 167 \f "Wingdings"�� Selects the shape type to be drawn.

 �symbol 167 \f "Wingdings"�� Selects the shape's border line style, width and color, and the shape's interior color

 and style.

 �symbol 167 \f "Wingdings"�� Draws the selected shape on the drawing sheet.

�

�

�

Figure 3: The system’s command hierarchy.

�

Figure 4: The system’s main window.

4.3 Detailed User-Application System Interaction - Procedures

The detailed human interaction describes in a detailed procedural form how the user can perform the subtasks of its interaction with the system. We shall continue with the same example given under "Tasks/Scenarios" presenting the subtask to draw a shape.

�symbol 108 \f "Wingdings"�� To draw a shape primitive on a drawing sheet:

 �symbol 167 \f "Wingdings"�� Using the mouse:

 �symbol 119 \f "Wingdings"�� Presses the left mouse button at the desired location in the sheet where the

 shape is to be drawn.

 �symbol 119 \f "Wingdings"�� Drags the mouse while the left mouse button is pressed to form the

 selected shape with the desired size.

 �symbol 119 \f "Wingdings"�� Releases the left mouse button.

 �symbol 167 \f "Wingdings"�� Using the keyboard:

 �symbol 119 \f "Wingdings"�� Presses the Enter key at the desired location in the sheet where the shape

 is to be drawn.

 �symbol 119 \f "Wingdings"�� Uses the arrow keys to form the selected shape with the desired size.

 �symbol 119 \f "Wingdings"�� Presses and the Enter key again.

4.4 Defining The Responses To Application System Messages

This section discusses in detail and in procedure form how the system responds to events and messages generated by the user and by the environment. As an example, we consider the message sent by the environment to the system when the user presses the mouse's left button and how the system responds to it.

message: Left mouse button is pressed.

 response:

 �symbol 108 \f "Wingdings"�� If the text editing window is currently shown, then:

 �symbol 110 \f "Wingdings"�� Retrieves the text in the editing window.

 �symbol 110 \f "Wingdings"�� Hides the text editing window.

 �symbol 110 \f "Wingdings"�� Displays the text on the drawing sheet at the current mouse pointer position.

 �symbol 108 \f "Wingdings"�� If a shape object is selected for drawing and the left mouse button was not

 pressed, then:

 �symbol 110 \f "Wingdings"�� Captures the mouse input.

 �symbol 110 \f "Wingdings"�� Selects a pen and a brush for drawing.

 �symbol 110 \f "Wingdings"�� Sets the start of the shape to the mouse current position.

 �symbol 108 \f "Wingdings"�� If a shape or a text object is not selected for drawing and the current mouse

 position is outside the bounding rectangles of all selected objects, then:

 �symbol 110 \f "Wingdings"�� If a selection phase is in progress, then

 �symbol 190 \f "Symbol"�� Clears the previous selection rectangle.

 �symbol 110 \f "Wingdings"�� Sets the current mouse position as the start of a new selection phase.

 �symbol 110 \f "Wingdings"�� Captures the mouse input.

4.5 Specification of User-Interface Classes

This section presents a detailed specification of the human interaction classes. These classes include a class for the application, the multiple-document interface frame window, the multiple-document interface client window, the child (drawing) window, the child window's scroller, the child window's scroll bar, the icon bar, the shape bar, the color, font, open, save, print, print setup and abort printing dialogs, and the file input/output streams.

 Table 4 shows the attributes of the "ShapeWin" human interaction class which represents a drawing window. Table 5 shows some of its methods.

Table 4: Potential attributes for a human interaction object.

Class�Attributes�Attributes Descriptions��ShapeWin�pCompShapeList

pUserShapeList�A pointer to the list of compound (user-defined) shapes contained (defined) in a drawing window.���filename�Holds the default file name for the current drawing���bFileSaved�A flag to indicate whether the current drawing is saved.���pHScroll�A pointer to the horizontal scroll bar window.���pVScroll�A pointer to the vertical scroll bar window.���pHRuler�A pointer to the horizontal ruler bar window.���pVRuler�A pointer to the vertical ruler bar window.���cxWindow�The width of a drawing window's client area.���cyWindow�The height of a drawing window's client area.���bRulerShow�Flag to indicate whether the ruler bars ar shown or not.���bGridShow�Flag to indicate whether a window's gridlines are shown.���bSnapToGrid�Flag to indicate whether the snap to grid is active or not.���nGridSpacing�Spacing between gridlines in pixels.���lbrush�Default brush color and style.���lpen�Default pen color, width and style.��

Table 5: Potential services for a human interaction object.

Class�Services�Services Descriptions��ShapeWin�ShapeWin()�Creates and initializes the application main window;

Displays the application's menu, icon and shape bars

Input value(s): window's title

Return value: void���Paint()�Repaints the contents of the main window

Input value(s): device context for painting,paint struct

Return value: void���DetachCompShape()

AddCompShape()

�Deletes (adds a new) compound shape from (to) the current drawing's compound shape list.

Input value(s): a pointer to a compound shape

Return value: void���GetNCompShapes()�Retrieves the number of compound shapes contained in the current drawing.

Input value(s): void

Return value: the number of compound shapes���FlushCompShapeList()�Clears all elements in the compound shape list.

Input value(s): void

Return value: void���WMCommand()�Reponds to Windows Create, Close, Move, Size, Scroll commands

Input value(s): Windows message structure

Return value: void���WMLButtonDown()

WMMouseMove()

WMLButtonUp()�Responds to a mouse left-button press, drag and release actions

Input value(s): coordinates of current mouse position

Return value: void���WMRButtonDown()

WMRButtonUp()�Responds to a mouse right-button press/release actions

Input value(s): coordinates of current mouse position

Return value: void��

5. IMPLEMENTATION

The results of the OOA and OOD phases form the basic building blocks for the next phase of development, implementation. In this phase, an Object-Oriented Programming Language (OOP) is used to implement the problem domain and human interaction classes and their relationships.

 The C++ language/classes, the Microsoft Software Development Kit (SDK), the Windows Application Programming Interface (API) [6, 7], and the Borland C++ V3.1 ObjectWindows class library [8, 9] are used to code the system. C++ supports the object-orientation constructs (Class, Object, Generalization-Specialization, Whole-Part, Attribute, Service), and significantly captures the problem domain semantics in its syntax [10].

 ObjectWindows is used to implement the human-interaction components, like windows and dialog boxes. The ObjectWindows library provides the most basic API functions within about twenty classes. However we still have to use functions from the Windows API which do not have counterparts in ObjectWindows. The use of ObjectWindows reduces the code size and removes much of the overhead incurred in traditional Windows programming. The library provides more classes and more abstractions than does the Windows API. With ObjectWindows, Windows messages are associated with function calls capable of handling them. To obtain the function-message connection, Borland chose to extend the language by providing the proper syntax for the representation of this connection.

Besides the implementation of the basic problem domain and human interaction objects, the following has also to be implemented in code (this is dicussed further in the next two sections):

�symbol 240 \f "Wingdings"�� Graphic operations such as movement, scaling, resizing, rotation, and reflection on

 graphic elements, as well as duplicating and arranging them on drawings,

�symbol 240 \f "Wingdings"�� Data structure objects for storing graphic elements and the means to add/delete

 elements into/from the data structures,

�symbol 240 \f "Wingdings"�� Input/output file stream objects and operations on them (e.g.: open, save,)

�symbol 240 \f "Wingdings"�� Printing drawings,

�symbol 240 \f "Wingdings"�� Support for Windows clipboard operations (Cut, Copy, Paste) on the Windows text and

 bitmap clipboard formats as well as the native format of the system's graphic elements,

�symbol 240 \f "Wingdings"�� Support for Arabic text editing and the adoption of the Arabic language in all user interface

 objects (e.g.: windows, menus, tool bars, dialogs, system messages.)

5.1 Mathematical Basis

This section highlights the mathematical background for implementing movement, scaling, resizing, rotation and reflection operations on polygon shapes. Following the same approach, similar reasoning can also be applied to other graphic elements considering their specific characteristics.

5.1.1 Movement (Translation): Assuming that movement is performed for an x-axis displacement of dx and y-axis displacement of dy, then:

�symbol 108 \f "Wingdings"�� Moving polygon elements is implemented by adding (dx, dy) to the x- and y-

 coordinates of their vertices as follows:

 	Assuming that the number of vertices of the polygon is (nvertices), then:

	for i=1 to nvertices do

		vertices_array[i].x = vertices_array[i].x + dx

		vertices_array[i].y = vertices_array[i].y + dy

5.1.2 Scaling: Assuming that scaling is performed for a scaling-factor of (sf) on both axes, then:

�symbol 108 \f "Wingdings"�� Scaling polygon elements is implemented by moving the polygons to the origin,

 multiplying the x- and y- coordinates of their vertices by (sf) and moving them

 back to their original positions as follows:

 	Assuming that the center of the polygon is (xCenter, yCenter) and the number of

 vertices of the polygon is (nvertices), then:

	move the polygon by (-xCenter, -yCenter)

	for i=1 to nvertices do

		vertices_array[i].x = vertices_array[i].x * sf

		vertices_array[i].y = vertices_array[i].y * sf

	move the polygon by (xCenter, yCenter)

5.1.3 Resizing: Assuming that resizing is performed for an x-axis resizing-factor of (sx) and y-axis resizing-factor of (sy), then:

�symbol 108 \f "Wingdings"�� Resizing polygon elements is implemented by moving the polygons to the origin,

 multiplying the x- and y- coordinates of their vertices by (sx) and (sy), respectively,

 and moving them back to their original locations as follows:

	Assuming that the center of the polygon is (xCenter, yCenter) and the number of

 vertices of the polygon is (nvertices), then:

	move the polygon by (-xCenter, -yCenter)

	for i=1 to nvertices do

		vertices_array[i].x = vertices_array[i].x * sx

		verti_array[i].y = vertices_array[i].y * sy

	move the polygon by (xCenter, yCenter)

5.1.4 Rotation: Assuming that rotation is performed for an angle of (ang) radian around the center of the shape, then:

�symbol 108 \f "Wingdings"�� Rotating polygon elements is implemented by moving the polygons to the origin,

 rotating their vertices by the rotation angle around the origin and moving them

 back to their original positions as follows:

	Assuming that:

	- the center of the polygon is (xCenter, yCenter),

	- the number of vertices of the polygon is (nvertices),

	- the array of polygon vertices is (aPoints), then:

	move the polygon by (-xCenter, -yCenter)

	for i=0 to nvertices do

		xtmp = aPoints[i].x

		aPoints[i].x = xtmp * cos(ang_rad) - aPoints[i].y * sin(ang_rad)

		aPoints[i].y = aPoints[].y * cos(ang_rad) + xtmp * sin(ang_rad)

	move the polygon by (xCenter, yCenter)

5.1.5 Reflection: Assuming that rotation is performed horizontally (vertically) around a vertical (horizontal) line passing through the centers of shapes, then:

�symbol 108 \f "Wingdings"�� Reflecting polygon elements horizontally (vertically) is implemented by moving

 the polygons to the origin, multiplying the x-coordinates (y-coordinates) of their

 vertices by -1 and moving them back to their original positions as follows:

	Assuming that the center of the polygon is (xCenter, yCenter) and the number of

 its vertices is (nvertices), then:

	move the polygon by (-xCenter, -yCenter)

	if reflecting horizontally, then execute the following:

	for i=0 to nvertices do

		vertices_array[i].x = vertices_array[i].x * -1

	otherwise, if reflecting vertically, then execute the following:

	for i=0 to nvertices do

		vertices_array[i].y = vertices_array[i].y * -1

	move the polygon by (xCenter, yCenter)

5.2 Implementation Issues

�symbol 108 \f "Wingdings"�� To implement the system's primary window, we have derived its class from the

 ObjectWindows TWindow class [9] as illustrated in Figure 5. TWindow specifies

 window creation and registration and provides behavior specific to a window. The

 figure also illustrates that we have implemented the system's Open, SaveAs, Print,

 Print Setup, Abort Print, Font, Color and Input dialog boxes by deriving them from 		

 the ObjectWindows TDialog class. TDialog provides behavior specific to both

 modal and modeless dialog box interface elements. A modal dialog box disables its

 parent window while it is open. Each of the system's dialog box interface elements is

 associated with a resource definition that describes the placement and appearance of

 its controls.

�symbol 108 \f "Wingdings"�� To implement the system's text editing window, we have derived its class from the

 ObjectWindows TEdit class [9]. TEdit represents an edit control interface element

 in a parent window. Figure 5 illustrate this derivation relationship.

�symbol 108 \f "Wingdings"�� To implement the input/output file streams for the interaction with disk files, we have

 defined their corresponding classes, namely, FileIn/FileOut using objects of the

 Borland C++ ifstream/ofstream classes in their definitions [9]. The ifstream/ofstream

 are part of the of the Borland C++ I/O stream class library. The overall structure of

 the graphics file is shown in the grid below:

Key = O@O#G%FF�8 bytes��# elements stored in the file�5 bytes��Definitions of all complex elements defined by the user in a drawing;

(each drawing has its own list of user-defined elements)�N

�symbol 83 \f "Symbol"�� RECLEN * nElements

i=1

where:

RECLEN= 64 bytes,

N: # user-defined shapes,

nElements: # elementary elements

 composing the user-defined element.��Records of all complex elements from which a drawing is composed are stored one element after the other. �N

�symbol 83 \f "Symbol"�� RECLEN * nElements

i=1

where:

RECLEN= 64 bytes,

N: # complex elements,

nElements: # elementary elements

 composing the complex element.��

 The following grid show the disk file record layout for an ellipse shape. Notice that the record is padded with null characters to the next 64-bytes boundary to facilitate random access to these records instead of the sequential access otherwise required if these records have not been padded with nulls.

Ellipse, Circle, Point record structure

Element attribute�2 bytes��X-coordinate of starting point�2 bytes��Y-coordinate of starting point�2 bytes��X-radius�2 bytes��Y-radius�2 bytes��

�

Figure 5: Windows, dialogs and edit controls implementation.

�

Figure 6: Shape and text storage data structure implementation.

Rotation angle�2 bytes��Scaling factor�4 bytes��Pen struct�8 bytes��Brush struct�8 bytes��Padding of Null characters�32 bytes��

�symbol 108 \f "Wingdings"�� To implement the variable-size data structure which will store the shape and text

 objects constituting a drawing, we have derived from the Array container of the

 Borland C++ Container Class Library (CCL) [9]. Because the elements of an Array

 container must be of Object type, we let the root class ("Graph Element") of the

 system's problem domain class-hierarchy inherit from the Object class. Object is an

 abstract class providing the hierarchical base for the whole container hierarchy.

 Figure 6 illustrates this derivation relationship.

�symbol 108 \f "Wingdings"�� The following functions from the Arabic Windows Software Development Kit are

 being utilized in this application:

Function�Purpose��Choose Dual Font�To display the Windows default font dialog box from which the user can choose Arabic and English fonts and their styles, point sizes, effects and colors.��Create Window�To create the application's controls and dialog boxes that have bi-directional styles.��Draw Text RtoL�To draw bi-directional text into a given rectangle on the screen.��Get Keyboard Language�To inquire about the current keyboard language (Arabic or English).��Get System Metrics�To check if Arabic Windows is installed when the system is first started.��Make Menu Rto L�To set the orientation of the application's menu bar to either right-to-left or left-to-right.��Message Box�To display Arabic message boxes to control the user-system interaction.��Set Keyboard Language�To set the keyboard language to either Arabic or English.��

5.3 Code Structure and Performance

The project file that is used to compile and link this application should include the following items:

�symbol 108 \f "Wingdings"�� Source file for the application's class.

�symbol 108 \f "Wingdings"�� Source files for the application's frame, client and child windows.

�symbol 108 \f "Wingdings"�� Source files for the application's tool bars, rulers, scroll bars and scrollers.

�symbol 108 \f "Wingdings"�� Source files for all elementary and compound elements predefined in this application.

�symbol 108 \f "Wingdings"�� Source files for the container classes used to store graphic elements at run-time.

�symbol 108 \f "Wingdings"�� Source files for the application's Color, file Open/Save As, Font and Print dialog boxes.

�symbol 108 \f "Wingdings"�� Compiled version of the application's resource definition file.

In addition to the above, the following files should also be included in the project file used to compile and link this application:

LIBWB.LIB�The import library for the Windows API and SDK. ��COMMDLG.LIB�The import library for the Windows Custom-Common-Dialogs Dynamic Link Library COMMDLG.DLL. ��BWCC.LIB�The import library for the Borland C++ 3.1 Windows custom-controls Dynamic Link Library BWCC.DLL. ��OWL.DEF�Definition file for this application which specifies the stub program and the stack and heap sizes.��

�symbol 183 \f "Symbol"�� To run satisfactorily, the Arabic Graphics System requires a personal computer with the

 following minimum hardware configuration: 386SX processor and 4MB RAM.

�symbol 183 \f "Symbol"�� The system requires approximately 1.5 MB of hard disk space for installation.

�symbol 183 \f "Symbol"�� The system can be run on the following environments: Windows 3.1 with Arabic support,

 Bilingual Windows 3.1 (Arabic Windows) and Arabic Windows for Work Groups 3.11.

Figure 4 above shows a sample of four drawing templates displayed side by side within the system’s main window. Each template contains one or more types of graphic elements. The first template contains bilingual text fragments. The second template contains a number of color-filled shapes with solid or hatched interiors and with different rotation angles. The third template contains a number of shapes with hollow interiors forming something like a flow chart. The fourth template contains a picture. Certainly, a single drawing template can contain any number and type of graphic elements each with a different set of attributes.

6. CONCLUSION

In this research, we have analyzed, designed and implemented an Arabic graphics application under the Arabic Windows environment. We have also adopted the object-oriented approach in the various phases of the development.

In the following, we present a summary of the system's development process:

�symbol 183 \f "Symbol"�� The first step was to define the problem in hand and state all the requirements that

 the system must handle,

�symbol 183 \f "Symbol"�� The next step was to adopt the Coad and Yourdon O.O. Analysis methodology,

�symbol 183 \f "Symbol"�� The next step was to design the human-interaction components of the system,

�symbol 183 \f "Symbol"�� The last step was to code the system using the Borland C++ V3.1 compiler for

 Windows, the Windows API, the Arabic SDK and the Object Windows class library.

The system can be used as an education tool for Arabic novice users to learn how to make simple colorful drawings that combine graphics, bi-directional text and pictures.

REFERENCES

[1] P. Coad and E. Yourdon, “Object-Oriented Analysis”, Yourdon press, 1990.

[2] P. Coad and E. Yourdon, “Object-Oriented Design”, Yourdon press, 1990.

[3] B. Meyer, “Object-Oriented Software Construction”, Prentice-Hall, 1988.

[4] T. Korson and J. McGregor, “Understanding Object-Oriented - A Unifying Paradigm,

				Communications of the ACM”, vol.33, no.9, page 40, September 1990.

[5] “The Object-Oriented Paradigm, IEEE Software”, January 1993.

[6] “Windows API Volume I, II and III, Borland International”, 1991

[7] “Guide To Programming for the Microsoft Windows Operating System”,

				Microsoft Corporation, 1991.

[8] Marco Cantu & Steve Tendon,” Borland C++ V3.1 Object-Oriented

				Programming”, Borland Bantam Computer Books, 1992.

[9] “Borland C++ 3.1 & Application Frameworks for DOS and Windows”,

 				Borland International, 1991

[10] D Jordan: “Implementation Benefits of C++ Language Mechanisms,

				Communications of the ACM” vol.33, no.9, page 61, September 1990.

�نظام رسم كينوني عربي

وحيد عبدالواحد أحمد ماقوله*، محمد غزالي خياط*

*جامعة الملك عبدالعزيز، جــدة، المملكة العربية السعودية

المسـتخـلـص: تعتبر الأبحاث المتعلقة بالرسم على الحاسب الآلي من أهم الأبحاث في مجالات علوم وهندسة الحاسبات. وتهدف هذه الأبحاث إلى تصميم وانتاج برمجيات رسم آلي ذات مستوى رفيع لتستخدم في العديد من حقول تطبيقات الحاسب الآلي، مثل: التعليم، أعمال المكاتب، النمذجة، تصميم قواعد البيانات، المحاكاة، الفنون التصويرية، ...الخ.

يتعلق هذا البحث بتصميم وتنفيذ نظام كينوني للرسم الآلي على الحاسب الشخصي ذي واجهة رسومية عربية لإتاحة الفرصة للمستخدم العربي للإستفادة من إمكانيات هذا النظام. ويسهل هذا النظام رسم أشكال ونصوص عربية/انجليزية على لوحة الرسم الخاصة به. ويتيح هذا النظام تخزين الرسومات في ملفات وإسترجاعها منها. وباستطاعة النظام طباعة الرسومات على طابعة نقطية أو ليزر مثبتة بالحاسب الشخصي. ومن الممكن التعامل مع النظام إما باستخدام الفأرة أو لوحة المفاتيح أو كلاهما. ويعمل هذا البرنامج تحت بيئة مايكروسوفت ويندوز الرسومية.

لقد تم تحليل وتصميم نظام الرسم هذا باستخدام مفاهيم وطرق ومصطلحات الكينونية وتم تنفيذه باستخدام لغة البرمجة الكينونية سي بلس بلس (بورلاند سي بلس بلس الاصدار 3.1 لنظام النوافذ) تحت نظام النوافذ العربية الاصدار 3.1 على حاسب اي.بي.ام. الشخصي. وقد بلغ عدد سطور البرنامج حوالي 13,000 سطر، و بلغ حجم الملف التشغيلي للبرنامج حوالي مليون حرف.

