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ABSTRACT: A semi-analytic technique is presented for optimizing the placement of macrocells on a continuous plane. It  combines the useful features of both analytic annealing and simulated annealing techniques.  Analytic annealing, which optimizes the placement of macrocells through controlled convergence without requiring any discretization, is a purely deterministic procedure based on mathematical programming. A substantial improvement of this procedure is presented in this paper by applying two major modifications. Firstly, the probabilistic hill-climbing feature of simulated annealing is incorporated in the analytic one-dimensional search to avoid premature convergence. Secondly,  the randomly generated initial placement used in analytic annealing has been subjected to simulated annealing to minimize the impact of initial solution on the optimized design. The presented test results demonstrate that the proposed semi-analytic technique significantly improves the quality of placement  as compared to that obtained by some other techniques based on simulated annealing, genetic algorithm and analytic annealing. 


Keywords:  Placement, simulated annealing, building-block layout, optimization, design automation.








1.  INTRODUCTION


In contrast to VLSI floorplan design, macrocell placement deals with blocks or modules whose shapes and dimensions are specified a priori and considered fixed. However, unlike standard-cell and gate-array layouts, the modules can have arbitrary dimensions and are not necessarily required to be placed on a grid structure. Many heuristic [1-4] as well as a few analytical techniques [5,6] have been developed for solving the macrocell placement problem. Many of the heuristics solve this problem in two distinct phases; a topological arrangement phase and a physical placement phase [7]. In the first phase, relative positions of modules are determined by either disregarding their actual dimensions or ignoring the overlapping of blocks. In the second phase, absolute positions of the modules are determined by positioning the modules at their relative positions and removing the resulting overlaps while maintaining the topological proximity obtained in the first step. In contrast, analytical techniques which incorporate the actual dimensions of modules in their mathematical formulation do not require any post-optimization processing to remove overlaps [8]. These techniques, however, have their own limitations, some of which  have been partially overcome by the application of analytic annealing [6]. But, since analytic annealing based on controlled convergence is a purely deterministic procedure,  it has a relatively high probability of getting stuck in a poor local minimum. Furthermore, the randomly generated initial placement used in analytic annealing  biases the optimization and the optimal solutions obtained are, to a certain extent, dependent upon the initial placement.





A substantial improvement of the analytic annealing technique is presented in this paper by applying two major modifications. Firstly, a simulated annealing type acceptance function has been introduced to determine the acceptance or rejection of a move to place a module at its new position determined by the one-dimensional search procedure, and secondly the randomly generated initial placement of modules has been subjected to simulated annealing considering their actual dimensions. The first modification provides the probabilistic hill climbing feature in an otherwise deterministic procedure to help find a better optimum design and the second modification partially offsets the initial solution bias. The technique is implemented in a computer program for personal computers and some test results are presented.





2.  FORMULATION


Let there be N macrocells or modules of arbitrary but fixed dimensions to be placed at their optimal positions in the Euclidean plane without any overlaps. The position of a module i is defined by the coordinates of  its centroid   (xi  , yi ) .  Let (Li  , Wi ) denote the length and width of module i along the X- and Y-axes, respectively. Let cij  represent the number of connections between modules i and j.  The objective function f to be minimized is based on total wirelength and is defined as follows:





f (x1 , y1 , x2 , y2 , ........, xN , yN )  =   �EMBED Equation.2 ���   	    						(1)





where, dij is the distance measured between the centroids of modules i and j and could be either Euclidean or squared Euclidean distance norm. The rectilinear or Manhattan distance cannot be directly specified in the definition of the objective function because, contrary to the requirement of the presented technique as explained in the following section,  it has discontinuous first partial derivatives with respect to the coordinates of the centroids of the blocks. In such a case, the values of the gradients of the objective function cannot be calculated for determining the direction of steepest descent. However, by utilizing the Euclidean distance norm for finding the direction of steepest descent, the placement can also be optimized with respect to  the rectilinear distance norm.





In order to avoid  overlapping of blocks at any stage of the optimization process, the overlap area Aij  between two modules i and j  is defined as follows:





		�EMBED Equation.2 ��� 														(2)


where,


		�EMBED Equation.2 ���													(3)





		�EMBED Equation.2 ���													(4)


		


		�EMBED Equation.2 ���=  -1             for �EMBED Equation.2 ����EMBED Equation.2 ���


		        = +1              otherwise													(5)


The overlap area �EMBED Equation.2 ��� will be positive only if there is an actual overlapping between modules i and j;  otherwise its value will be negative. The macrocell placement optimization problem can now be expressed as follows:





 		Minimize 	 f (x1 , y1 , x2 , y2 , ........, xN , yN )				     		     	      (6)


		subject to 	�EMBED Equation.2 ���  �EMBED Equation.2 ���  0       	i =1,2,..., N-1 ;  j = i+1 to N








3.  OPTIMIZATION  PROCEDURE


The analytic annealing procedure presented in [6] utilizes bivariate optimization with controlled convergence. The modules are enclosed in large-size envelop blocks whose dimensions are a multiple of the dimensions of the enclosed modules. These multiples, which are called magnification factors,  have a fixed value for a particular phase of optimization. Prior to starting the optimization process, the envelop  blocks are scattered randomly on a continuous 2-D plane such that they are far from each other and without any overlaps. The dimensions of these envelop blocks are reduced in steps from one phase of optimization to the next. In the final phase of optimization,  their dimensions are equal to those of the actual modules. This approach of using envelop blocks during optimization is in sharp contrast to the “balloon expansion” approach of reference [9] in which blocks are initially treated as points and are then gradually expanded to their actual sizes. 





The analytic annealing procedure has the capability to slow down the convergence process and thereby produce designs better than other analytical techniques. However,  it has two main limitations; firstly it starts the optimization process from a completely random initial placement of envelop blocks which does bias the final placement. Secondly, and more importantly, the optimization procedure is a purely deterministic procedure which can cause pre-mature convergence to a local minimum. The presented technique minimizes the impact of these two limitations of analytic annealing as described in the following.





3.1. Optimization of Initial Placement


In analytic annealing, the envelop blocks enclosing the modules are  initially scattered randomly on an extended plane such that there is no overlapping of blocks which are placed far from each other. This creates sufficiently large free space between the envelop blocks which may be utilized  to swap the unequal-area blocks  at their centroids without resulting in any overlaps. However, mere swapping of modules was found to be not very effective in minimizing the impact of random initial placement, and therefore it was decided to utilize simulated annealing (SA) to obtain an improved initial design for the subsequent optimization phase.  A brief description of the steps involved is as follows:





Two envelop blocks are selected  and a pair-wise swap is carried out  for the selected blocks. Let ( represent the difference between the post- and pre-swap values of the objective function.  If ( ( 0 , that is the post-swap value is less than the pre-swap value, the swap is accepted.  If ( > 0 , the swap is accepted for an uphill step provided  ( (  � EMBED Equation.2  ��� , otherwise,  the swap is rejected. Here T is a heuristic parameter called “Temperature” and ( is a uniformly generated pseudo random number in the range [0,1].  An iteration cycle is complete when all the blocks have been considered for pair-wise swap.  At  the  completion of  an iteration  cycle  j,  the  “temperature”  Tj   is  updated  as Tj+1 = ( Tj  , where ( is a constant, 0 < ( < 1. This process is continued until the specified termination criterion is satisfied. 


3.2.  Improved Search Strategy


Having obtained an optimized initial placement of envelop blocks on an extended plane,  the search for the optimal positions of blocks is carried out one at a time. This requires determining  the  order of modules (blocks) which was based on the descending order of the values of (i, defined as follows:





			(i  = � EMBED Equation.2  ���		i= 1,2,........, N 		 						          (7)       





The module i which has the highest value of (i  will be the first one to be placed at its optimal  position with respect to the current placement  of all other modules.  The module j which has the next largest value of (j will be the second in the order and so on. Once the order of modules (blocks) has been determined, the first phase of analytic optimization with probabilistic hill-climbing begins. Its main steps are summarized in the following. 





Step 1. For a given block bi to be placed at its optimal position, the gradients of the objective function with respect to the x and y coordinates of the centroid of the block are determined. For instance, for the objective function based on the Euclidean distance norm, the two gradients are given as,





		 


	 � EMBED Equation.2  ���  =  � EMBED Equation.2  ���   (xi  - xj ) [ (xi - xj )���2 + (yi  - yj )2 ] -1(2       					     (8)			     			  j ( i 


 


	� EMBED Equation.2  ��� =  � EMBED Equation.2  ���  (yi  - yj ) [ (xi - xj )���2 + (yi  - yj )2 ] -1(2  	    		    	  	   	     (9)
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Step 2. A one-dimensional search is performed in the direction of steepest descent to determine the new values of the coordinates of the centroid of block bi which are given as,





		xinew  =  xi  - (i  � EMBED Equation.2  ���					     									   (10)


		yinew  =  yi  - (i  � EMBED Equation.2  ���						  				     	                     (11)





where ( is a search parameter determined by the one-dimensional search procedure [10]. 





Step 3. The block bi is placed at the new position and its overlapping with other blocks is checked using Eqn. (2). If the new position of block bi  does not cause any overlaps, such as shown hatched in Figure 1(a), then it has attained its optimal position with respect to all other blocks for the current placement. If an overlap occurs, as shown in Figure 1(b), then block bi  is moved to the nearest non-overlapping position as shown in Figure 1(c). This non-overlapping position is determined from the values of � EMBED Equation.2  ���Xij   and  � EMBED Equation.2  ���Yij of Eqns. (3) and (4), respectively. The non-overlapping position of block bi is accepted if it results in a reduction of the value of the objective function. This  position may also be accepted as an uphill move depending upon the acceptance criterion of a simulation annealing procedure similar to that described in section 3.1 above. The probabilistic hill-climbing feature minimizes the chances of premature convergence in an otherwise deterministic procedure of analytic annealing. 





� EMBED Word.Picture.6  ���


			      Figure 1: Search for the non-overlapping optimal position of


 						   envelope block bi  along the line of steepest descent.





Step 4. By following the above steps, the optimal position of each  block is searched  one by one in the pre-determined order. An iteration cycle is completed when all the blocks have been placed at their optimal positions with respect to the current placement. The iteration cycles are repeated until the termination criterion for the current phase of optimization is satisfied. For this study, an optimization phase is terminated when percentage reduction in the value of the objective function for two successive iteration cycles is less than a specified value. 





Step 5.  The dimensions of envelop blocks are reduced keeping the coordinates of  their centroids unchanged as shown in Figure 2. This causes sufficient  free spaces around the reduced-sized envelop blocks as shown in Figure 2(b)  and serves as an “initial” placement for the next optimization phase. The number of optimization phases and the corresponding values of magnification factors for the envelop blocks are pre-specified. Since in the last phase, the magnification factor is set to unity, the optimal layout obtained at the convergence of the last phase  is that of actual modules.





�


Figure  2: Resizing of envelope blocks prior to starting a new phase


4. EXPERIMENTAL   RESULTS


The presented technique was implemented in a computer program named SAT (Semi-Analytic Technique) and a number of test problems were run to evaluate its performance. Results of three such problems are presented in the following. The first two test problems of 20 and 28 modules of arbitrary dimensions were taken from published literature [8,11]. To evaluate the performance of SAT for a relatively large-size problem in terms of both the optimized value of the objective function and the required computer time, a benchmark problems of 50 modules of arbitrary dimensions was selected from [12]. The results obtained are compared with the best results obtained by program LAYOPT [12], which carries out a pseudo-exhaustive search for obtaining the optimum solution. For all test problems, the results presented in the following were obtained by running the program on a PC with Pentium 120 MHz processor and by considering two-phase optimization. During the first phase, the modules were encapsulated in envelop blocks having a magnification factor of five. In the second phase, the magnification factor was set to unity. A discussion of the results is as follows:





Test Problem 1:


This problem of 20 modules of arbitrary but fixed dimensions was taken from [11] which also gives the results for this problem as obtained by two heuristic techniques, one based on simulated annealing (SA) and the other based on a genetic algorithm (GA). The results for this problem have also been presented in [6] using the analytic annealing (AA) technique.





The results given in [6] and [11] for this problem are based on ten runs starting with different initial designs and for the composite objective function f1 as defined below:





f1  =   �EMBED Equation.2 ���[ | xi - xj |��� + | yi  - yj | ]  +  LR  ( WR							      (12)


where, LR  and WR  are the length and width of the enclosing rectangle. For the purpose of comparison, the problem was also run ten times using different initial placements and results were obtained for the same composite function as given by Eqn. (12) above. These results are compared in Table 1. As in reference [11], the optimal values of  function f1  given in the table have been sorted in the ascending order. It is quite clear from the presented results that SAT not only produced the best design with minimum value of the composite objective function  but, more importantly, its average value is noticeably smaller than those of the other three programs. In fact, its average value is even smaller than the best design values obtained by GA and SA. The best layout design produced by SAT is shown in Figure 3.





Table 1: Optimal  values of  f1   for  test problem 1


Trial�
GAPE [11] [[11[11]�
SA [11 ]�
AA [6 ]�
SAT�
�
1�
166�
154�
149.2�
137.2�
�
2�
166�
164�
152.6�
142.7�
�
3�
167�
176�
159.9�
144.1�
�
4�
183�
178�
166.1�
147.8�
�
5�
184�
186�
167.7�
152.2�
�
6�
184�
190�
169.8�
154.1�
�
7�
187�
194�
173.2�
159.5�
�
8�
193�
196�
175.5�
161.4�
�
9�
199�
196�
177.9�
166.7�
�
10�
202�
198�
179.6�
168.5�
�
Avg.�
183.3�
183.5�
167.2�
153.4�
�



�


Figure 3: Optimum design for test problem 1


                 							  (Composite obj. f1 = 137.2)








Test Problem 2:


The data for this randomly generated problem of 28 blocks of unequal areas were taken from [8] which also gives the optimal value of the objective function as obtained by a general purpose layout optimization program BITOPT. Results for this problem are also given in [6] using the analytic annealing (AA) technique. In both cases the objective function was similar to ‘f’ defined by Eqn. (1) for the squared Euclidean distance norm and the results were given for ten trial runs. For  the purpose of comparison, this problem was also solved by SAT for ten random initial placements. The results are compared in Table 2 which clearly shows the improved performance of the presented technique. As compared to the minimum value of 8640 for the objective function obtained by program AA, which is a deterministic procedure with totally random initial placement, there is a reduction of  about 16% in the minimum value of objective function (7262) obtained by SAT. 


        Table 2: Comparison of results for test problem 2


Program�
   Optimal  Values of  Objective Function


 Min. value        Max. value       Average value�
�
BITOPT [8]�
9470�
10732�
9865�
�
AA  [6]�
8640�
9493�
8902�
�
SAT�
7262�
8254�
7739�
�
      











The above results were obtained with the objective of minimizing ‘f’ of Eqn. (1) so that a comparison can be made with the results given in [6] and [8]. However, it was observed that minimization of ‘f’ is similar to minimization of only the wirelength and as a result there were noticeable dead spaces within the boundary of the enclosing rectangle. If the area of the enclosing rectangle is also to be reduced, which is often desired in macrocell placement, then a composite objective function can be defined by adding a weighted-area term in Eqn. (1). The optimum design obtained with such a composite function is shown in Figure 4. This design has an area of 337 as compared to 428 for the best design reported in Table 2. However, the wirelength increased from 7262 to 8477. In other words, there was more than 21%  reduction in the area of the enclosing rectangle at the expense of 16.73% increase in the value of wirelength. It is interesting to note, however, that even this wirelength is smaller than the wirelengths of the best designs obtained by BITOPT and AA with the sole objective of minimizing the total wirelength.








�


Figure 4: Optimum design for test problem 2 with weight on


           					     the area of enclosed rectangle  ( f = 8477.14 ).











Test Problem 3:


This randomly generated benchmark problem of 50 unequal-area modules was taken from [12], where the objective function has been defined considering the Euclidean distance norm. For comparing the computer time, both programs were run on a 120 MHz Pentium PC. The results are given in Table 3.  It is observed that the optimal value of the objective function obtained by SAT  is slightly better than that of LAYOPT, although its run time is comparatively much higher. The optimum design produced  by SAT is shown in Figure 5(a).





   Table 3: Results for benchmark problem Layopt50


Program


�
Optimal Value of Objective Function�
Run Time (Minutes)


 





(minutes)�
�
LAYOPT [12]


�
80049.75�
2�
�
SAT�
79037.68


�
15�
�






As with test problem 2, this problem was also rerun to minimize the composite objective function comprising of the wirelength and the area of the enclosing rectangle. The optimum design thus obtained, as shown in Figure 5(b), has 14.5%  smaller area as compared to the minimum wirelength design shown in Figure 5(a). The corresponding increase in the total wirelength is only 4.44%.





�


Figure 5: Optimum designs obtained by SAT for test problem 3


						 (a) Wirelength minimization with no weight on area


						 (b) Wirelength minimization with weight on area








5. CONCLUSIONS


A semi-analytic technique has been presented for optimizing the placement of macrocells on a continuous plane. The technique comprises of two distinct optimization phases. In the first phase, simulated annealing is used to optimize a randomly generated initial placement of envelop blocks enclosing the macrocells. In the second phase, which by itself comprises of a number of optimization cycles, the optimal positions of envelop blocks are searched analytically, one at a time. However, in contrast to the deterministic procedures used by analytical techniques, simulated annealing has been utilized for  accepting an uphill move to place a block at the new position determined by one-dimensional search. The technique has been implemented in a computer program and its performance is compared with some previously published techniques. For the placement problems considered in this study, the presented results demonstrate that the optimal values of the objective function obtained are better than those obtained by some other published techniques  based on simulated annealing, genetic algorithm, and analytic annealing. The technique was also successful in producing a slightly better layout design for a 50-block benchmark problem as compared to that obtained by a pseudo-exhaustive search based layout optimization program, although the latter is computationally  more efficient.
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