

SEQUENTIAL AND CONCURRENT OBJECT-ORIENTED PROGRAMMING USING ADA 95

H. Loeper, P. Neubert, A. Khattab, and M. El-Gabali

Kuwait University, Department of Mathematics and Computer Science, Kuwait

ABSTRACT. In this paper, implementation issues of disciplined object-oriented programming using Ada 95 are addressed. Disciplined object-oriented programming style means that sequential and concurrent object classes are defined in a general uniform, well-structured manner. In particular, objects are considered as concurrent actors that communicate asynchronously, i.e., in terms of Ada, to each object a task is attached implementing its dynamic behavior. The paper investigates mainly the implementation of concurrent object classes in Ada 95 and offers a uniform template of the structure of concurrent object classes. Object classes tailored with regard to the template given allow the derivation of new concurrent object subclasses with polymorphic methods from concurrent object classes. Furthermore, generic concurrent object classes are considered to be
 an
 important feature
 of this paradigm.

1.	INTRODUCTION - OBJECT-ORIENTED PROGRAMMING

Demands of large software systems design resulted in object-oriented paradigm. Object-oriented design methodology and object-oriented programming are important concepts in software engineering. The notion object-oriented includes mainly three basic concepts: objects, classes and class inheritance ([1]).

Objects are the basic entities in object-oriented programming paradigm ([2], [3], [4]), i.e., the components of object-oriented software are objects. A formal and abstract view of objects is that an object consists of a set of properties (data, data structures) and a set of methods (actions, functions, operations). Object design treats functions and data as two indivisible aspects of objects.

Objects of the same structure and dynamic behavior are grouped into classes, that means an object class is a kind of template from which as many objects as necessary may be derived. Therefore, classes may be considered as conceptual modeling tools of the object-oriented paradigm. In object-oriented software design, inheritance is a powerful mechanism of abstraction. It is a relationship between object classes. The definition of an object class may be based on a more general object class by sharing similarities (structure and behavior). One may say, the new object class, which is more specialized, inherits features of the other object class.

Since objects are the basic run-time entities of the object-oriented modeling domain, usually each object is represented by encapsulated unit (module). Consequently, modularity is one of the main characteristics of an object-oriented paradigm. Moreover, this enables to consider objects as concurrent actors that communicate asynchronously ([2], [5]). That means, each object is a process, and finally, an object-oriented system can be considered as a collection of autonomous, concurrently interacting objects.

Modern programming languages like C++ and Ada 95 offer language constructs for supporting object-oriented programming. For example, Ada 95 offers all tools for defining classes, inheritance and dynamic polymorphism. Using these tools for designing software does not automatically result in well-structured object-oriented programs. It is necessary that the programmer complies with certain rules to maintain well-structured object classes in object-oriented software design. Therefore, this paper introduces a disciplined object-oriented programming style, in which one can define object classes in a general well-structured manner. Moreover, the programmer will stick to this uniform template throughout the object-oriented software design process.

Most papers are dealing with general aspects of the object-oriented approach in software engineering and are not concerned with concurrency, although advocates of object-oriented programming often emphasize that object-oriented programming is well-suited for expressing concurrency by message passing (for example, [5], [6], [7], [8], [9]). Implicitly co-ordinated parallel processing is one of the most important advantages of object-oriented programming.

This paper will investigate problems of disciplined sequential object-oriented programming but the main emphasis is on concurrent object-oriented programming using Ada. Ada 83 ([10]) can be considered as an abstraction-oriented language, the new standard Ada 95 ([11]) supports full object-oriented programming ([12], [13]). VADSself Ada 83 compiler ([14) and the GNAT Ada 95 compiler ([15]) running on PCs with Windows NT are used for program coding and computer experiments.

2.	STRUCTURE OF OBJECTS IN OBJECT-ORIENTED PROGRAMMING

An object has a state that encompasses all its static properties and its current dynamic properties. Moreover, an object is associated with subprograms (functions or procedures) called in terms of object-oriented programming methods that define meaningful operations on them. In this way, objects may be considered as capsules of state and behavior. The object's subprograms describe how an object acts and reacts in terms of state transition and message passing. Generally, message passing is simply a call of a client object (sender) for an operation performed by a server object (receiver), i.e., a message is a request to an object to invoke an operation. The set of messages that an object may recognize and is capable to respond forms the object’s protocol.

The structure of an object is represented in Fig. 1 where:

Memory space is associated with each object for its local variables. These variables determine the state (properties, attributes) of the object at any moment. An object is an autonomous entity with regard to the access to the object’s state and/or its components.

A set of global procedures and functions (noted as public methods of the object) define authorized operations on that object. In this paper they are called methods. Access to the object’s state and/or its components is only possible through the methods of the object. The methods of an object constitute the interface for communication between objects by message passing for conveying data between objects.

Each object is able to receive messages to its public methods. The messages are queued in the order they arrive to the object, i.e. consequently, the order in which an object responds on the received messages is uniquely determined by this order and the order in which the receiving object accepts messages.. On the other hand, an object can send a message to any other object. A request for service (i.e., a message) identifies the object that performs the service, as well as the method itself. Furthermore, it is assumed that the order in which an object sends messages to a receiver object is the same as to which the messages arrive at it.

Objects may be considered as sequential or concurrent entities. In case of concurrent objects, they must be implemented as autonomous processes, which means that their methods are executed on the object’s own (logical) processor.

Local operations over local and auxiliary variables are not visible outside of the object and are kinds of auxiliary internal subprograms for implementing global operations.

� EMBED Word.Picture.6 ���

Figure 1: Structure of a concurrent object

An object-oriented program may be considered as a collection of interacting objects. Regarding the design and implementation of concurrent object-oriented systems, the underlying operating system must ensure

- distribution and allocation of logical processes to physical processors;�- transfer of messages along an underlying information transport system.

3.	SEQUENTIAL AND CONCURRENT OBJECT CLASSES

A class is a set of all objects having the same structure and defining the same behavior, i.e., an object class is an abstract data type and a single object is simply an instance of a class. An object class is a template from which objects may be created (instantiated) ([16]).

Ada packages are the proper means for abstractions and are used to implement object-oriented software models. For sake of a well-structured object-oriented problem decomposition, it is recommended to have one package for each object. However, more than one object must be covered by the same package, if objects declarations depend recursively on each other. Ada packages are divided into two parts, specification part and implementation part called package body. The specification part keeps only the external view at the objects, but the implementation of the objects, i.e., their internal structure, is hidden for other objects within the private part and the package body. The package body may contain additional local declarations for auxiliary types, constants, variables and subprograms supporting the object implementation. This approach enables that object classes described by packages to be treated as library units. Other packages may use these object classes by specifying the corresponding package name in the with-clause.

The object class (T_O_CLASS) is a type, i.e., it is a set of all objects belonging to the class together with its set of methods defined over these objects. Therefore, a package consists of one or more object classes implemented as abstract data types (private types) along with corresponding operations for creating, updating, and querying instances of these types. Private type is used to enforce encapsulation and hiding the internal details of the class implementation. In object-oriented programming, it is important to use limited types for object classes such that no copy can be made of any object of the class. For any method, one parameter must be an object or a pointer to an object that identifies the object to be called to use its method. The main purpose of this object parameter is to provide internal access to the components of the object state. The (public) methods are specified as subprograms in the visible part of the package specification, whereas the package body encloses their implementation.

As it will be shown in section 4, the components of the state of the objects must be concentrated in a record placed in the private part of the package specification and not in the package body to allow inheritance and extension using the capabilities of Ada 95’s derived type.

Sequential objects do not provide concurrency. Therefore, their methods are implemented directly by subprograms, whereby the implementation of the subprograms is hidden in the package body. These considerations lead to a template for designing sequential object classes as shown in Fig. 2. The purpose of the create method is to instantiate the object and to put the object in an initial state. Therefore, the create method has the object as an out-parameter. Methods which are changing the object’s state must have the object as an in-out-parameter, whereas the other methods have the object as an in parameter.

with ...;

use ...;

package O_CLASS_PACKAGE is

 type T_O_CLASS is limited private;

 procedure create(o:out T_O_CLASS;...);

 procedure method(o:in T_O_CLASS;...);

 procedure method(o:in out T_O_CLASS;...);

 ...;

 private

 type T_O_CLASS is record

 state_component:T_ATYPE;

 ...;

 end record;

end O_CLASS_PACKAGE;

package body O_CLASS_PACKAGE is

 procedure create(o:out T_O_CLASS;...) is

 begin

 o.state_component:=...;

 ...;

 end create;

 procedure method(o:in T_O_CLASS;...) is

 begin

 ...:=...o.state_component...;

 ...;

 end method;

...;

 procedure method(o:in out T_O_CLASS;...) is

 begin

 o.state_component:=...;

 ...;

 end method;

end O_CLASS_PACKAGE;

Figure 2: Template for sequential object classes

As it was pointed out earlier, objects may be considered as concurrent entities possessing their own logical processor (Fig. 3). Therefore, a task is attached to each concurrent object as a record component, implementing the object’s concurrent dynamic behavior. Then, any request for performing a method of an object will be transfered to a corresponding entry call of the task. Overwriting a method or adding a new method to an object class to derive a new object class can be done by adding a new task component to the record using the inheritance mechanism of Ada 95 as it will be shown later. Furthermore, a pointer type to the task type (P_TASK_O_CLASS) is used, because task types are limited and limited types cannot be used as components in non-limited record types as in tagged type.

with ...;

use ...;

package O_CLASS_PACKAGE is

 type T_O_CLASS is limited private;

 procedure create(o:out T_O_CLASS);

 procedure method(o:in T_O_CLASS;...);

 procedure method(o:in out T_O_CLASS;...);

 ...;

 private

 task type T_TASK_O_CLASS is

 entry method(o:in T_O_CLASS;...);

 entry method(o:in out T_O_CLASS;...);

 ...;

 end T_TASK_O_CLASS;

 type P_TASK_O_CLASS is access T_TASK_O_CLASS;

 type T_O_CLASS is record

 state_component:T_ATYPE;

 ...;

 o_class_task :P_TASK_O_CLASS;

 end record;

end O_CLASS_PACKAGE;

package body O_CLASS_PACKAGE is

 procedure create(o:out T_O_CLASS;...) is

 begin

 o.state_component:=...;

 ...;

 o.o_class_task:=new T_TASK_O_CLASS;

 end create;

 procedure method(o:in T_O_CLASS;...) is

 begin

 o.o_class_task.method(o,...);

 end method;

 procedure method(o:in out T_O_CLASS;...) is

 begin

 o.o_class_task.method(o,...);

 end method;

 ...;

 task body T_TASK_O_CLASS is

 <local_declarations>;

 oo:T_O_CLASS;

 begin

 ...;

 accept method(o:in T_O_CLASS;...) do

 oo:=o;

end method;� <statements implementing method by access to oo.state_component >

 ...;

 accept method(o:in out T_O_CLASS;...) do

 ...;

 o.state_component:=...;

 ...;

 end method;

 ...;

 end T_TASK_O_CLASS;

end O_CLASS_PACKAGE;

Figure 3: Template for concurrent object classes

Implementation of methods by task entries is hidden in the package body. As one can see in Fig. 3, a request to an object to perform one of its methods is transferred to the corresponding entry call. The message transfer between the sender and the receiver object implemented as concurrent tasks is done by asymmetric, and synchronous rendezvous ([17]). Asymmetric means that the sender names the destination of the message, i.e., the receiver object, whereas the receiver object is only ready for a rendezvous. This principle supports the object-oriented software design. Information can be transmitted from the calling object to the called object using in-parameters as well as from the called object to the calling object using out-parameters. Of course, a combination of both directions is also possible by using in-out-parameters.

In interest of a high degree of concurrency of a program designed as a collection of interacting concurrent objects, the sequence of statements within the accept statement should serve only for passing information to the called object or for returning information from the object to the calling object. That means, in case that a method does not change the object’s state, the real actions of the object in response to a request for performing a method should be implemented by a sequence of statements following the corresponding accept statement (Fig. 3).

A simple example of using this template is the design of a sequential and a concurrent object class T_PRINTER that has the four methods:

- create:	to instantiate printer objects. After creating a printer object the state of the printer object is the empty string.

- print:	to print an integer or a real number together with a string, i.e., the method print is overloaded with two meanings. The string which is printed depends on the state of the printer object.

- update:	to change the object’s current state by conveying a string as parameter.

Fig. 4 below shows the package specifications of the sequential and concurrent printer object classes and the main program that applies one of these packages. The package bodies are given in the appendix. As one can see, the main program does not make any difference bet-ween the sequential and concurrent printer objects.

with TEXT_IO,INTEGER_IO,FLOAT_IO;

use TEXT_IO,INTEGER_IO,FLOAT_IO;

package PRINTER_PACKAGE is

-- specification of sequential printer object class

 type T_PRINTER is limited private;

 procedure create(printer:out T_PRINTER);

 procedure update(printer:in out T_PRINTER;text:in STRING);

 procedure print(printer:in T_PRINTER;i:in INTEGER);

 procedure print(printer:in T_PRINTER;r:in FLOAT);

 private

 type T_PRINTER is record

 text_length :NATURAL;

 text :STRING(1..20);

 end record;

end PRINTER_PACKAGE;

with TEXT_IO,INTEGER_IO,FLOAT_IO;

use TEXT_IO,INTEGER_IO,FLOAT_IO;

package PRINTER_PACKAGE is

-- specification of concurrent printer object class

 type T_PRINTER is limited private;

 procedure create (printer:out T_PRINTER);

 procedure update(printer:in out T_PRINTER;text:in STRING);

 procedure print(printer:in T_PRINTER;i:in INTEGER);

 procedure print(printer:in T_PRINTER;r:in FLOAT);

 private

 task type T_TASK_PRINTER is

 entry update(printer:in out T_PRINTER;text:in STRING);

 entry print(printer:in T_PRINTER;i:in INTEGER);

 entry print(printer:in T_PRINTER;r:in FLOAT);

 end T_TASK_PRINTER;

 type P_TASK_PRINTER is access T_TASK_PRINTER;

 type T_PRINTER is record

 text_length :NATURAL;

 text :STRING(1..20);

 printer_task:P_TASK_PRINTER;

 end record;

end PRINTER_PACKAGE;

with TEXT_IO,PRINTER_PACKAGE;

use TEXT_IO,PRINTER_PACKAGE;

procedure printing is

-- main program using printer package

 printer:T_PRINTER;

 begin

 create(printer);

 put("Printing");new_line(2);

 print(printer,10);

 update(printer,"INTEGER:");

 print(printer,1);

 update(printer,"REAL:");

 print(printer,2.0);

 end printing;

Figure 4: Specifications of sequential and concurrent printer object classes

Concurrent object-oriented programming is understood as a concept for designing programs as a collection of objects. The objects are widely independent concurrent program units which may be statically or dynamically created in the course of a program run. The objects of a program communicate by applying methods, i.e., they co-ordinate their activities and co-operate by passing data. This means, each program implements a special communication structure between the objects according to the problem and its solution.

4.	CONCURRENT OBJECT CLASSES AND INHERITANCE, POLYMORPHISM AND DYNAMIC BINDING

Inheritance, polymorphism and dynamic binding are considered as important features of object-oriented programming paradigm. Inheritance is a powerful mechanism of abstractions for sharing similarities among classes while preserving their differences. Each refined version of an original class (called superclass) is called a subclass. Attributes and methods common to a group of subclasses are attached to the superclass and shared by each subclass. Each subclass is said to inherit features of the superclass ([18]).

Inheritance allows building new classes on top of less specialized classes instead of being re-written from scratch. New classes are created by inheriting all the components of the state and the methods by some more general class and adding specialized components to the state and methods. In Fig. 5, class Y inherits from class X; while class Y is derived from class X.

� EMBED Word.Picture.6 ���

Figure 5: Class inheritance

Thus, class X is called the base class (superclass), and Y as the derived class (subclass). In such case, class Y has two parts, a derived part and an incremental part. The derived part is the part inherited from X, whereas the incremental part is a new code, written specifically for Y. This is managed using a class hierarchy.

Ada 95 enhances the existing record type, private type and the derived type capabilities of Ada 83 such that a derived type can also be extended by adding new components. Fig. 5 can be represented in Ada 95 as follows:

type T_X is tagged record� <record_part>;� end record;

type T_Y is new T_X with record� <incremental_part>;� end record;

In Ada 95, record types and private types implemented as record types may be extended provided that they are marked as tagged. As the name implies, a tagged type has an associated tag. Here, the type T_X is a tagged type. The type T_Y, derived from it inherits copies of its components (record_part) and declares a record extension part (incremental_part). The notion tag is known from Pascal where it is used to denote what is called discriminant of variant records in Ada. That means, record or private types marked as tagged allow derivation of a new type not only by extending and overriding (primitive) operations, but also by extending the new type with additional data components. On the other hand, Ada 95 does not allow deleting neither a property nor an operation in the derived new type. The derived type is an extension of the base type. The necessary run-time type information that identify the object’s implementation is called a tag of the object. Actually, an object of a tagged type has an associated (run-time) tag that identifies the specific tagged type used to create the object originally. In addition, Ada 95 has introduced the so-called abstract tagged type which is intended for use as a parent type for type extensions, but which cannot have objects of its own. The purpose of an abstract type is to provide a common parent type upon which useful types can be built by derivation. Furthermore, abstract subprograms which have no body may be associated with abstract types acting as place holders for an operation to be provided later.

Ada 83 offers only static, a kind of compile-time concepts for binding and polymorphism, i.e., it is a strongly typed programming language allowing overloaded operations, generic units and variant records. For instance, the PRINTER_PACKAGE discussed before, makes use of compile-time polymorphism defining different, overloaded methods named print. Object-oriented programming goes beyond that. The concept of inheritance leads to run-time polymorphism and dynamic binding. Polymorphism is the ability of a variable (polymorphic variable) to hold values of different types. Dynamic binding is the ability of an operation to perform differently depending on the actual type of the value of a polymorphic variable involved in this operation ([19]).

Based on the idea of inheritance, Ada 95 has a special attribute called CLASS applied to a tagged type T. T’CLASS is the discriminated union of the sets of values of type T and all types derived directly and indirectly from T. T’CLASS can be used as a class-wide type such that classes of related abstractions may be handled in a unified manner. Discrimination between the different specific types of the class is done with a tag. This tag, associated with each value of a class-wide type, is the basis for run-time polymorphism in Ada 95. The values of the class-wide type can be thought of as pairs consisting of

- a tag, that is a type descriptor ranging over types that are members of the class; and�- a value that is taken from the specific type with the given tag.

As an example of inheritance, a type T_FIGURE can be declared as an abstract tagged record with two components area and perimeter together with the methods display_area and display_perimeter. From this class T_FIGURE, subclasses with their specific methods may be derived as shown in the following program fragment (Fig. 6).

...;

type T_FIGURE is abstract tagged record

 area :FLOAT;

 perimeter:FLOAT;

 end record;

procedure display_area(f:in T_FIGURE'CLASS) is

 begin

 put("area = ");

 put(f.area);

 new_line;

 end display_area;

procedure display_perimeter(f:in T_FIGURE'CLASS) is

 begin

 put("perimeter = ");

 put(f.perimeter);

 new_line;

end display_perimeter;

type T_POLYGON is abstract new T_FIGURE with record

 number_edges:NATURAL;

 end record;

procedure set_number_edges(f:in out T_POLYGON’CLASS;n:in NATURAL) is

 begin

 f.number_edges:=n;

 end set_number_edges;

procedure display_number_edges(f:in T_POLYGON’CLASS) is

 begin

 put("number of edges = ");

 put(f.number_edges);

 new_line;

 end display_number_edges;

type T_SQUARE is new T_POLYGON with record

 edge:FLOAT;

 end record;

procedure calculate_area (f:in out T_SQUARE) is

 begin

 f.area:=f.edge*f.edge;

 end calculate_area;

procedure calculate_perimeter (f:in out T_SQUARE) is

 begin

 f.perimeter:=4*f.edge;

 end calculate_perimeter;

type T_RECTANGLE is new T_POLYGON with record

 length:FLOAT;

 width :FLOAT;

 end record;

procedure calculate_area(f:in out T_RECTANGLE) is

 begin

 f.area:=f.hight*f.width;

 end calculate_area;

procedure calculate_perimeter (f:in out T_RECTANGLE) is

 begin

 f.perimeter:=2.0*(f.length+f.width);

end calculate_perimeter;

...;

f1:T_SQUARE;

f2:T_RECTANGLE;

begin

...;

 set_number_edges(f1,4);

 display_number_edges(f1);

 put("Enter the length of edge of a square:");

 get(f1.edge);

 new_line;

 calculate_area(f1);

 display_area(f1);

 calculate_perimeter(f1);

 display_perimeter(f1);

...;

end;

...;

Figure 6: Inheritance and class hierarchy

In the presented approach of concurrent object-oriented programming, object classes are defined as private types within packages to enforce encapsulation. To provide concurrency, tasks are bound to the concurrent objects implementing the methods of the object classes. As already mentioned, the pointer to the task is embedded in a record within the object.

It will be shown now how one can derive new concurrent object classes with new (polymorphic) methods from an existing object class. In order to add new methods to a subclass, the private type of the existing object class must be tagged (Fig. 7). Furthermore, the record containing the access to the task may also be extended if the record is tagged. This approach of implementing concurrent object classes allows us to define a subclass by extending the parent tagged record with another pointer to a new task implementing the methods of the derived class.

package <name>_PACKAGE is

 type T_<name> is private tagged;

 <methods_definition>

private

 task type T_TASK_<name> is

 ...;

 end T_TASK_<name>;

 type P_TASK_<name> is access T_TASK_<name>;

 type T_<name> is tagged record

 ...;

 <name>_task:P_TASK_<name>;� end record;�

end <name>_PACKAGE;

Figure 7: Concurrent object class T_<name>

An example of a class of instruments will explain this idea in more details defining a class T_INSTRUMENT and its subclasses T_SPEEDOMETER, T_GAUGE, and T_CLOCK ([15]) (Fig. 8). Each instrument has a name and a value. The method set_name is to determine the name of a specific instrument. The method display_value shows the current value of the state of the instrument.

� EMBED Word.Picture.6 ���

Figure 8: Hierarchy of the object class T_INSTRUMENT

For the sake of concurrency, one can think that they are instruments of a car and each one has its own value which changes during the time. The set_name method is the same for all derived classes of instruments, but each one has its own value. Therefore, it is necessary to redefine the method display_value for each subclass because each one has its own implementation which displays its value. The package INSTRUMENT_PACKAGE
 implement
s the base object class T_INSTRUMENT, which is a private tagged record type containing two components, the state (name) and the pointer to the task (instrument_task) (Fig. 9).

package INSTRUMENT_PACKAGE is

 type T_INSTRUMENT is tagged private;

 procedure create (i:out T_INSTRUMENT);

 procedure set_name (i:in out T_INSTRUMENT;s:in STRING);

 procedure display_value (i:in T_INSTRUMENT);

 private

 task type T_TASK_INSTRUMENT is

 entry set_name (i:in out T_INSTRUMENT;s:in STRING);

 entry display_value(i:in T_INSTRUMENT);

 end T_TASK_INSTRUMENT;

 type P_TASK_INSTRUMENT is access T_TASK_INSTRUMENT;

 type T_INSTRUMENT is tagged record

 name :STRING(1..14);

 instrument_task:P_TASK_INSTRUMENT;

 end record;

end INSTRUMENT_PACKAGE;

package INSTRUMENT_PACKAGE.SPEEDOMETER_PACKAGE is

 type T_SPEEDOMETER is new T_INSTRUMENT with private;

 procedure create(i:out T_SPEEDOMETER);

 procedure set_value(i:in out T_SPEEDOMETER;v:in FLOAT);

 procedure display_value(i:in T_SPEEDOMETER);

 private

 task type T_TASK_SPEEDOMETER is

 entry set_value(i:in out T_SPEEDOMETER;v:in FLOAT);

 entry display_value(i:in T_SPEEDOMETER);

 end T_TASK_SPEEDOMETER;

 type P_TASK_SPEEDOMETER is access T_TASK_SPEEDOMETER;

 type T_SPEEDOMETER is new T_INSTRUMENT with � record

 speed :FLOAT;

 speedometer_task:P_TASK_SPEEDOMETER;

 end record;

end INSTRUMENT_PACKAGE.SPEEDOMETER_PACKAGE;

Figure 9: Object class T_INSTRUMENT and T_SPEEDOMETER.

The subclass T_SPEEDOMETER inherits the method set_name to set the name of the instrument and the name attribute from T_INSTRUMENT. Furthermore, the speed attribute and the method set_value are added to set the value of the speedometer. Next, method display_value is overridden to adopt features of the class T_SPEEDOMETER. To implement the method set_value and the overridden method display_value, a new task called speedometer_task is added. This is supported by the object-oriented paradigm. With concurrency, this re-defined method and the new method can be internally implemented as entries of a new task to be added to the tagged record as an extended component (Fig. 9).

Notice that a child library INSTRUMENT_PACKAGE.SPEEDOMETER_PACKAGE is used. This is introduced in Ada 95 to enable the child package SPEEDOMETER_PACKAGE to access the private part of the parent library package INSTRUMENT_PACKAGE. Moreover, the line

type T_SPEEDOMETER is new T_INSTRUMENT with private;

makes the inherited operations (methods) visible in other packages.

5.	GENERIC OBJECT CLASSES VS. INHERITANCE, POLYMORPHISM AND DYNAMIC BINDING

Ada’s generic packages and subprograms are well-proved and powerful concepts of software engineering. Generics are pre-manufactured, parameterized program units, i.e., they can be considered as abstract program units, where their program texts are generalized to templates. Substituting the so-called generic formal parameters of these text templates by generic actual parameters, distinct particular program units can be instantiated for applications ([20]). The design of generic object classes using generic packages follows the same pattern as explained before for the design of non-generic object classes. The nature of generics is static because the generic instantiation takes place during compile-time such that all type checks are done prior to run-time. A comparison of the generic approach with a solution using Ada 95’s object-oriented features of inheritance, polymorphism and dynamic binding follows.

To decide whether to use generic object classes or the mechanism of inheritance, polymorphism and dynamic binding is not an easy task, however, one can conclude the following:

If methods of object classes differ only in the type of their parameters, i.e., if these methods are coded by the same text; then generic is the best choice. The bounded buffer problem is a good example, where create, deposit and withdraw have exactly the same text independent of the type of the items to be handled. When polymorphism is used, a new class has to be defined for each buffer type, although these methods use the same algorithm. In addition, another example is a generic object that determines the definite double integral in a rectangular area of a function f which is a generic parameter. A solution with inheritance and extension to add directly the function to the integrator object seems also not to be so straightforward.

If algorithms are identical, sometimes the algorithm implementing the method needs to access some attributes of the type used. In this case, using polymorphism will be suitable. Since generic types do not represent physical objects (they must be instantiated first), one cannot access attributes of the object’s formal generic parameter type.

In any case, if object classes differ only slightly in some components of their state and/or in some methods depending on their type, then the polymorphism approach seems to be more suitable, because of the re-use of some code inherited from the superclass. For example, if the type is an integer, then initialize it to zero, but in case of a character type initialize it with a space.

It should be assumed, for example, that an algorithm implementing a method of an object has to handle a list of elements of different types. Discriminant and variant record types could solve this problem. Alternatively, tagged types offer clean and dynamic solutions for heterogeneous list of element types. For instance, for a buffer it may be allowed to keep in its slots either an integer or a character element. Those elements may be defined as tagged typed elements. In this way, the elements of the buffer can take types of one of the subclasses (i.e. of different types).

6.	FINAL REMARKS

This paper is concerned with the design of a disciplined sequential and concurrent object-oriented programming paradigm based on Ada 95. The programming language Ada 95 offers all means of implementing sequential as well as concurrent object-oriented programs. Rules and schematic ways have been provided and explained to transform an object-oriented software design into an Ada 95 program. The resulting Ada 95 programs follow the same pattern. On one hand, the advantages of object-oriented software design are obvious and enormous. The advantages lie in the problem decomposition and the methodology of software design. On the other hand, the enlargement of the Ada source code compared with the code that does not follow the template of concurrent object program design cannot be neglected. However, measurements do not show any significant difference between the run-time efficiency of them.

Centralized multiprocessor computers can make direct use of the implicit parallelism of concurrent object-oriented programs. In such computers with more than one processor, it is sufficient to assume that ready objects (i.e., their tasks) are automatically assigned to a physical processor by the underlying operating system such that the programmer will not have influence on the object placement.

In a distributed system, the object-oriented program must be partitioned and the partitions must be mapped to computer nodes (this step is usually called configuration). The object-oriented approach supports partitioning and configuration, because objects form a natural model for distributed systems. The distributed components can communicate with each other using messages only addressed to well-defined interfaces ([21]). According to the abstract conception of objects, it is assumed that each object possesses its logical processor. The objects must be allocated (placed) to a restricted number of physical processors of the underlying computer system. Using the implementation methodology described above, it is obvious that the objects are implemented by concurrent, autonomous processes. By exclusive handling of the object’s states as local data, the implementation model mirrors the philosophy of multicomputer systems with distributed memory connected by a communication network.

Investigations were made by the authors to form a networked multicomputer system for this purpose. This networked multicomputer system used for performance tests is based on a local area network (Ethernet LAN) and PCs running Windows NT. The concept of remote procedure calls (RPC) was used for communication between objects.

Concerning distributed parallel processing, it is necessary to consider both communication costs and topology of the communication structure of objects in their mutual relation. It is recommended to allocate objects on the same processor that communicate often with each other.

Results of measurements on the test multicomputer system mentioned above, show that the ratio of the remote to the local inter-object communication costs is

(0.90(105	for the first remote inter-object communication (the absolute time for the first remote inter object communication is 0.38 s)

0.42(102	for the next remote inter-object communications (the absolute time for the next �		remote inter-object communications is 0.0176 s).

It should be noted that the time measurements reported here are based on communications via a standard local area network (LAN). Much more powerful LANs are available to form more efficient and better dedicated networked multicomputer systems. On the other hand, special multicomputer systems designed for parallel computation have faster communication channels. Different strategies of dynamic object placement may influence the load balance among computer nodes.

Finally, it should be mentioned, that in many cases extensive use of dynamic object creation is not advisable because the time required to create objects can be much higher (in the cases considered in this paper about 5 times higher) than the time of local inter-object communication.

ACKNOWLEDGMENTS

This work was supported by grant SM 086 of Kuwait University.

REFERENCES

[1]	Wegner, P., “Dimensions of Object-Based Language Design”, Proceedings OOPSLA’ 87, ACM SIGPLAN Notices, 22, 168-181, 1987.

[2]	Cox, B., “Message/Object Programming: An Evolutionary Change in Programming Technology”, IEEE Software, 1(1), 50-61, 1984.

[3]	Korson, T., McGregor, J., “Understanding Object-Oriented: A Unifying Paradigm”, Communication of the ACM, 3(9), 40-60, 1990.

[4]	Booch, G., “Object-oriented Design with Applications”, Benjamin/Cummings Publishing Company, 1991.

[4]	Yonezawa, A., Tokoro, M., “Object-Oriented Concurrent Programming”, MIT Press, Cambridge, 1987.

[5]	Touati, H., “Is Ada an Object-Oriented Programming Language?”, Proceedings OOPSLA’87, ACM SIGPLAN Notices, 22(5), 23-26, 1987.

[6]	Knaack, V., Jäkel, H.-J., Loeper, H., “Objektorientierte Programmierung und Mitteilungsaustausch für parallele Rechnersysteme”, Wiss. Beiträge zur Informatik, TU Dresden, Informatik-Zentrum, 2(4), 1988.

[7]	Collard, P., “Object-Oriented Programming Techniques with Ada: An Example”, ACM Ada Letters, 9(6), 119-126, 1989.

[8]	Agha, G., “Concurrent Object-Oriented Programming”, Communications of the ACM, 33(9), 125-141, 1990.

[9]	ANSI, “The Programming Language Ada - Reference Manual”, Lecture Notes in Computer Science, Vol. 155, Springer-Verlag, 1983.

[10]	ISO, “Information Technology - Programming Languages - Ada”, International Standard ISO/IEC 8652, 1995.

[11]	Taft, S., “Ada9X: A Technical Summary”, Communications of the ACM, 35(11), 77-82, 1992.

[12]	Taft, S., “Ada 9x: From Abstraction-Oriented to Object-Oriented”, Proceedings OOPSLA’93, ACM SIGPLAN Notices, 28(3), 127-136, 1993.

[13]	Rational Software Corporation, “VADSself Windows NT/386/486”, Santa Clara, 1994.

[14]	GNU New York University, “GNAT Ada Translator”, Core Technologies Inc., http://www.gnat.com, 1996.

[15]	Blair, G., “Object-oriented Languages, Systems, and Applications”, Halsted Press, New York, 1991.

[16]	Yonezawa, A., Loeper, H., Jäkel, H.-J., “The Rendezvous Concept - a Programming Tool for Parallel Processing”, EIK - Journal of Information Processing, 21(9), 429-440, 1985.

[17]	Rumbaugh, J., “An object or not an object?”, Journal of Object-Oriented Programming, 5(6), 20-25, 1992.

[18]	Rosen, J., “What Orientation Should Ada Objects Take?”, Communications of the ACM, 35(11), 71-76, 1992.

[19]	Barnes, J., “Programming in Ada 95”, Addison-Wesley, 1995.

[20]	Nicol, J., Wilkes, C., F. Manola, F., “Object Orientation in Heterogeneous Distributed Computing Systems”, IEEE Computer, 26(6): 57-67, 1993.

APPENDIX

package body PRINTER_PACKAGE is

-- sequential printer object class

 procedure create(printer:out T_PRINTER) is

 begin

 printer.text_length:=0;

 printer.text:=” “;

 end create;

 procedure update(printer:in out T_PRINTER;text:in STRING) is

 begin

 if text'LAST<printer.text'LAST

 then printer.text_length:=text'LAST;

 else printer.text_length:=printer.text'LAST;

 end if;

 for i in 1..printer.text_length loop

 printer.text(i):=text(i);

 end loop;

 end update;

 procedure print(printer:in T_PRINTER;i:in INTEGER) is

 begin

 for i in 1..printer.text_length loop

 put(printer.text(i));

 end loop;

 put(i,5);new_line;

 end print;

 procedure print(printer:in T_PRINTER;r:in FLOAT) is

 begin

 for i in 1..printer.text_length loop

 put(printer.text(i));

 end loop;

 put(r,5,3,0);new_line;

 end print;

end PRINTER_PACKAGE;

package body PRINTER_PACKAGE is

-- concurrent printer object class

 procedure create(printer:out T_PRINTER) is

 begin

 printer.text_length:=0;

 printer.text:=” “;

 printer.printer_task:=new T_TASK_PRINTER;

 end create;

 procedure update(printer:in out T_PRINTER;text:in STRING) is

 begin

 printer.printer_task.update(printer,text);

 end update;

 procedure print(printer:in T_PRINTER;i:in INTEGER) is

 begin

 printer.printer_task.print(printer,i);

 end print;

 procedure print(printer:in T_PRINTER;r:in FLOAT) is

 begin

 printer.printer_task.print(printer,r);

 end print;

 task body T_TASK_PRINTER is

 ii:INTEGER;

 rr:FLOAT;

 pprinter:T_PRINTER;

 begin

 loop

 select

 accept update(printer:in out T_PRINTER;text:in STRING) do

 if text'LAST<pprinter.text'LAST;

 then printer.text_length:=text'last;

 else printer.text_length:=printer.text'LAST;

 end if;

 for i in 1..printer.text_length loop

 printer.text(i):=text(i);

 end loop;

 end update;

 or

 accept print(printer:in T_PRINTER;i:in INTEGER) do

 pprinter:=printer;

 ii:=i;

 end print;

 for i in 1..pprinter.text_length loop

 put(pprinter.text(i));

 end loop;

 put(ii,5);new_line;

 or

 accept print(printer:in T_PRINTER;r:in FLOAT) do

 rr:=r;

 end print;

 for i in 1..pprinter.text_length loop

 put(pprinter.text(i));

 end loop;

 put(rr,5,3,0);new_line;

 or

 terminate;

 end select;

 end loop;

 end T_TASK_PRINTER;

end PRINTER_PACKAGE;

�PAGE �

