نموذج التحليل الصرفي باستخدام

البرمجة بالذوات

مصطفى محمود عارف

قسم علوم الحاسب الآلي والمعلومات

 جامعة الملك فهد للبترول والمعادن، الظهران، المملكة العربية السعودية

المستخلص: يعتبر التحليل النحوي هو المرحلة الأولى لمعالجة اللغات الطبيعية باستخدام الحاسوب حيث يستخدم قاموس للتعرف على كلمات النص. وللحصول على حجم مناسب للقاموس يتم حفظ جذور الكلمات فقط. ولابد من استخدام التحليل الصرفي لتحويل كلمات النص إلى اصلها الجذري. ومن هنا تأتي أهمية دراسة طرق التحليل الصرفي. يناقش هذا البحث الشروط الواجب توافرها في المحلل الصرفي. ثم يتناول مدى صعوبة تنفيذ تلك الشروط. كما يعرض البحث تمثيل كلمات القاموس باستخدام "البرمجة بالذوات". ثم يعرض نموذجا للتحليل الصرفي باستخدام البرمجة بالذوات.

�

OBJECT-ORIENTED APPROACH FOR

MORPHOLOGICAL ANALYSIS

Mostafa M. Aref

 Information and Computer Science Department

King Fahd University of Petroleum and Minerals

PO Box 1658, Dhahran 31261

Saudi Arabia

e-mail: aref@dpc.kfupm.edu.sa

ABSTRACT. The first stage of a Natural Language Process (NLP) is a parser or syntactic analyzer. In this stage a dictionary or lexicon is used directly to identify words in the input text. To minimize the size of the dictionary, word stems are only stored and morphological analyzer is used to covert the input tokens into dictionary words. Therefore, morphological analysis gains its important. This paper discusses the requirements of morphological analysis. Then, difficulties of implementing these requirements are discussed. The paper introduces an object-oriented representation of lexicon and presents an object-oriented approach of a morphological analyzer.

INTRODUCTION

One of the natural language process (NLP) applications is designing natural language computer interfaces. These interfaces allow the user to interact with systems such as databases or information systems in natural languages (e.g., Arabic) instead of stylized formal languages [1]. Then, they have to figure the proper action that should be taken to the input text. This leads to the problem of getting the computer to "understand" the input text. Understanding can be defined as transformation from one representation to another. The target representation is chosen to correspond to a set of available actions that could be performed. The mapping is designed so that for each event an appropriate action will be performed [2]. Many factors contribute to the complexity of the understanding problem. The type of mapping is one major factor. Moreover, the complexity of the target representation into which the matching is being done, adds another obstacle.

The first stage of NLP is a parser (or syntactic analyzer) where a sequence of words are transformed into a structure that show how these words are related to each other. A dictionary or lexicon is used directly to identify words in the input text. To minimize the size of the dictionary, word stems are only stored and morphological analyzer is used to covert the input text words into dictionary words. Therefore, morphological analysis gains its importance by reducing the size of the dictionary. Section 2 discusses the requirements of morphological analysis. Difficulties of implementing these requirements are discussed in section 3. Section 4 introduces an object-oriented representation of lexicon and presents an object-oriented algorithm for the implementation of morphological analyzer.

MORPHOLOGICAL ANALYSIS

Morphological analysis is concerning at the word level where individual words are analyzed into their components, and non word tokens, such as punctuation, are separated from the words. The first step is to break a sentence into tokens. Then, these tokens are analyzed into their components: prefix, infix, suffix and word stem. The word stems are the basic form of word that been stored in the lexicon. Non-word tokens are separated from the words. The lexicon entry, called a lexeme, consists of the a word stem and its linguistic information (grammatical and semantic properties). Word stems are checked for existence in the lexicon and their linguistic information is determined. The affixes (prefix, infix, and suffix) are used to change this linguistic information to determine the linguistic information of sentence's tokens. Figure 1 shows examples of tokens and some of their grammatical information change by the affixes.

�re (prefix)

initial (stem, noun)			 reinitialize (verb)

			 initialize (verb)

ize (suffix)							 Reinitialization (noun)

tion (suffix)

�ف

س

ي

	 يكفي 		 سيكفيك 		 فسيكفيكهم

كفى 	 يكفيك		 سيكفيكهم

ك

هم

Figure 1: Lexeme linguistic information change by the affixes

The morphology analysis is needed for several reasons [3]. It reduces the size of dictionaries where word stems are only stored. It eases of entering data to the lexicon hence not all forms of word are needed. New words (neologisms) may be generated and checked following the morphology rules. To achieve these advantages several requirements of morphological analysis may be expressed as follow:

Recognize the normal words such as: "read", "write", "Ayman" or "Amer." The linguistic information of these words may be determined whenever needed from the lexicon.

Pull apart the regular words such as: "reading" into the proper verb "read" with suffix “ing” or "disadvantage" into the proper adjective "advantage" with prefix “dis." Determine the effect of the affixes on the word linguistic information.

Pull apart the semi-regular word such as: "writing" into the proper verb "write" with suffix “ing” or "irregular" into the proper adjective "regular" with prefix “in." Also, determine the effect of the affixes on the word linguistic information.

Consider the possibility of more than one affix at the same time such as: “reinitialization”, where the stem is “initial” with one prefix “re” and two suffixes “ize” and “tion." Also, determine the effect of the affixes on the word linguistic information.

Recognize the irregular words such as: "went" and find its stem “go” or “mice” and its stem “mouse."

Avoid the segmentation of stems that have some affixes such as: “thing” has “ing” as a suffix, “read” has “re” as prefix or “assassination” has “as”, “ass”, “nation” and “sin."

DIFFICULTIES OF MORPHOLOGICAL ANALYSIS

There are two kinds of morphology: inflection morphology where affixes are added to a stem; and derivational morphology where a formation of new words from existing stems is done. The inflectional morphology has the following characteristics [3]:

Systematic: Adding an affix to a stem has the same grammatical or semantic effect on other stems (e.g. making a noun plural by adding “s” at the end).

Productive: The new words flow the language rules.

Preservation of category: The broad grammatical category of the word is not altered by inflection process (i.e. verbs remain verbs and nouns remain nouns).

Inflection morphology may be subdivided further into [4]: verbal grammatical function change (active, passive), verbal tense (present, past), verbal agreement (verb, subject & object), and nominal and adjectival (number, case, gender).

The derivational morphology does not have the above characteristics. Therefore, it is unsystematic, partly productive, and category alternation. Derivational morphology may be subdivided further into: deverbal nominal (verbs to nouns by adding “er” or “tion”), deverbal adjectival (verbs to adjectives by adding “able”), deadjectival (adjectives to nouns by adding “ity” or “ness”), denominal (nouns to adjectives by adding “less”) and prefixal derivational (adding prefix such as “”semi” or “un”).

It is often difficult to draw an exact borderline between inflection and derivational morphology [5]. Natural languages may be classified into inflection languages and derivational languages depending whether they have more inflection or derivational morphology. Arabic is considered as a derivational language. Derivational languages are more difficult in morphological analysis than the inflection languages.

THE OBJECT-ORIENTED APPROACH

Morphology analysis, as well as Natural Language Processing, raises the problem of ambiguities and therefore multiple solutions resulting from them. Approaches based on sequential phases have shown their limitations [6]. This is due to the leak of a real exchange of linguistic information between different phases that needed to reduce ambiguities. In this section, an object-oriented algorithm for morphological analysis is presented. This algorithm accesses a lexicon to check the existence of word stems and to get their linguistic information. This lexicon is build as a hierarchy of the classes. This lexicon is presented first followed by the algorithm.

Object-Oriented Lexicon

Lexicon is a dictionary where the linguistic information is associated with each word. Many words are ambiguous, in the sense that they have more than one meaning or more than one set of grammatical properties. In addition, words may be related semantically to each other. These are three basic semantic relations [7]:

Synonym of a lexeme is a similar one; where strong synonyms are equivalent lexemes and weak synonyms are similar to some changes in the meaning.

Hypernym of a lexeme is a more general meaning.

Hyponym of a lexeme is a more specific meaning (opposite to hypernym).

An object-oriented representation is used to accommodate the grammatical properties and these semantic relations. In this representation, a lexeme is represented as an object (class). The hyponyms of a lexeme are represented as subclasses. The hypernym of several lexemes is represented as a superclass of their classes. Within each lexeme class, grammatical properties and synonym lexemes are presented as attributes. The linguistic information is inherited to the subclasses and may be overridden by specific information for that lexeme. Figure 2 shows part of the hierarchy of the object-oriented lexicon that includes the affixes.

Affixes are divided into three subclasses: prefix, infix and suffix. Each class of these subclasses is subdivided into subclasses based on the size of the affix (number of letters). Instances of these affixes are represented by two levels. The first level contains the regular forms these affixes. The second level contains their irregular forms. Examples of the former one of a 3-letters suffix are “ing”, “ful” and “est”. Examples of the irregular forms of the prefix “in” are “ir”, “il” and “im”. This representation provides the following advantages:

The classification of stems, in general, and affixes specifically semantically [8].

The distribution of the linguistic information over several levels. Subclasses inherit the common attributes and override specific ones.

The distribution of the morphological analysis routines over these levels in the form of methods (or message-handlers).

The Object-Oriented Algorithm

One of the approaches to morphological processing is known as the “two-level model” [9]. In this approach, two levels of representation are needed to describe the morphological of a language. These two levels are called the “lexical level” and the “surface level”. When an affix is added to a stem, the result is not always just a concatenation of the two. Often additional processes such as reduplication, insertion, deletion or umlauting of a character may occur. In the model of two-level morphology, these processes are referred to as two-level morphology rules.

In the object-oriented algorithm, the input is the surface level of the word. This is taken by tokenizing the input statement. The output is the lexical level of the word. This consists of the lexeme (the word stem with its linguistic information) and all affixes added to the stem. The algorithm itself consists of methods (message-handler) as a part of the affixes classes. In every class in the affix class hierarchy, there is a message-handler dealing with a particular part of the morphological analysis. There are five levels in the affix class hierarchy (i.e. (affix), (prefix, infix or suffix), (number of letters), (specific affix (e.g. “in” or “ful”)), and (irregular affix)). Therefore, there are five different types of message-handlers. Within these message-handlers, there are two functions: the “f1: affix effect function” and the “f2: irregular effect function”.

� EMBED Visio.Drawing.4 ���

Figure 2: Hierarchy of the object-oriented lexicon with affixes

The “f1: affix effect function” describes the effect of adding certain affix to a stem. This effect might change the grammatical category from a noun to a verb or from singular to plural, etc. The “f2: irregular effect function” describe the effect of adding an irregular affix to a stem as reduplication, insertion, deletion or umlauting of a character. This is described by the two-level rules. The “f1: affix effect function” is part of the affix classes (e.g. “un”, “pre”, or “ing”). The “f2: irregular effect function” is part of the irregular affix classes (e.g. “ir”, “il” or “es”).

The description of the object-oriented algorithm is as follows.

Level 1: (affix) Check the token exists as a stem or as an irregular form stem. This is done through sending a message to the “word” subclasses. Then:

If a class exists (whether for a stem or irregular stem), return the linguistic information of the stem.

Otherwise, send the token with a message for the “affix” subclasses to check the existence of an affix. Return with the response of this message.

Level 2: (prefix, infix or suffix) Check the existence of a particular affix by pass a message to its class. If it does exist do:

Send a message to “affix” class (Level 1) with the remainder of the token.

If it is not fail, apply the current “f1: affix effect function” on the linguistic information obtained from the “affix” class and return with the updated information.

Otherwise return fail.

Level 3: (number of letters) Pull apart a specific affix length (number of letter) from the token. Send a message to the subclasses to determine the “f1: affix effect function”. Then:

If it does exist, return with the affix, the affix effect function and the remainder of the token.

Otherwise return fail.

Level 4: (specific affix (e.g. “in” or “ful”))

If the affix matches then return with the current “effect function”.

else send to the irregular subclasses. If not fail return with the updated remained and current “effect function”.

Otherwise return fail.

Level 5: (irregular affix) Check the matching with the current irregular affix. If there is a match, apply the “f2: irregular effect function” on the remainder of the token and return the updated remainder. Otherwise return fail.

CONCLUSION

A language dictionary or lexicon is needed to identify words in the input text in the natural language processing applications. To minimize the size of this lexicon, word stems are only stored and morphological analyzer is used to covert the input text words into dictionary words. Therefore, morphological analysis gains its importance by reducing the size of the dictionary. In this paper, the requirements of morphological analysis are discussed with the difficulties of implementing them. An object-oriented representation of lexicon is presented. This lexicon consists of a class hierarchy of the stems including the affixes class hierarchy. This representation uses the object oriented inheritance to reduce the redundant linguistic information between word stems. An object-oriented morphological analyzer algorithm is presented. This algorithm utilizes message-handlers to distribute the two-level morphological rules among different affixes.

ACKNOWLEDGMENT

The Author wishes to acknowledge King Fahd University of Petroleum and Minerals (KFUPM) for utilizing the various facilities in preparation of this paper.

REFERENCES

Lehman, J., Adaptive Parsing: Self-Extending Natural Language Interfaces, Kluwer Academic Publishers, Boston, 1992.

Rich, E. and Kevin K., Artificial Intelligence, McGraw-Hill Inc., New York, 1991.

Ritchie, G., Russell, G., Black A. and Pullman S., Computational Morphology: Practical Mechanisms for the English Lexicon, MIT Press, Cambridge, Massachusetts, 1992.

Hacken, P., “On the Definition of Inflection,” in From Data to Knowledge, W. Gaul & D. Pfeirer (Editors), Springer-Verlag, Berlin - Heidelberg, 1996, pp. 337-344.

Bright, M., Hurson, A. & Pakzad, S., “Automated Resolution of Semantic Hetrogeneity in Mutidatabases,” ACM Transaction on Database Systems, Vol. 19, 2, June 1991, pp. 306-253.

Stefanina, M & Demazeau, Y. “TALISMAN: A Multi-Agent System for Natural Language Processing,” in Advances in Artificial Intelligence: 12th Brazilian Symposium on Artificial Intelligence, J. Wainer & A. Carvalho Pfeirer (Editors), Springer-Verlag, Berlin - Heidelberg, 1995, pp. 312-322.

Sproat, R., Morphology and Computation, MIT Press, Cambridge, Massachusetts, 1992.

Gust, H., “Representing Word Meanings,” in Text Understanding in LILOG, O. Herzog & C. Rollinger (Editors), Springer-Verlag, New York, 1991, pp. 127-142.

Schiller, S. & Steffens, P. “Morphological Processing in the two-Level Paradigm,” in Text Understanding in LILOG, O. Herzog & C. Rollinger (Editors), Springer-Verlag, New York, 1991, pp. 112-126.

�PAGE �

