

EMPIRICAL ANALYSIS OF HASHING TECHNIQUES FOR MULTILINGUAL COMPARISONS

Ahmed Mashour	Abid Al-Ajeeli

Computer Science Department

Qatar University

P.O. Box 2713

Doha - State of Qatar

Fax: 00974 835061

ABSTRACT

The paper introduces a number of hashing techniques. It demonstrates the viability of those techniques using English and Arabic languages. This study shows that Arabic language is superior to its counterpart. The experiment is conducted using different number of data items and different text length from both languages.

For the study to be unbiased, uniformly generated texts with different number of items and length were also conducted.

1. INTRODUCTION

Hashing methods were used in many different applications of computer science discipline. These applications spread from spell checker, database management applications, symbol tables generated by loaders, assembler, and compilers throughout to thesaurus. A hash function takes a key and maps it to some index in the data structure as shown in figure 1[1].

� EMBED PBrush ���

Fig 1: Key mapping

A hash (Symbol) table is generally used to refer to abstract data types. It is defined as a set of name-attribute pairs. The characteristics of the name and attribute vary according to underlying applications. For example, in thesaurus, the name is a word, and the attribute is a list of synonyms of the word; in symbol table for a compiler, the name is an identifier, and the attribute is a list of values that uses the identifier. Generally the basic operations in a symbol table are: searching, inserting and deletion. The hash technique is used in these operations because of its good performance.

Let U ={0, 1,2, . . . , u-1) is a universe, and let S be a subset of such a universe with number of keys equal to n. The keys belong to the alphabet set S . English language alphabet is the set {A. . Z, a . . z} e S. Arabic language alphabet set { Ã ... í }is also e S . The largest set of S is the ASCII set which may reach up to 256 symbols.

When S is a subset of n integer keys, then a hash function h may be defined to a mapping from the universe U to M, say [0, m-1], m > 0. This hash function computes an address that is an integer from M and it belongs to closed interval [0, m-1] for the storage or retrieval of that item [2].

A hashing method, as indicated above, is a scheme that computes an address directly from a key. Ideally, this avoids any searching. In practice, a limited amount of searching is still required. The hashing schemes perform an identifier transformation through the use of a hash function h(x) which is used to perform an identifier transformation on x; it maps the set of possible identifiers onto the range [0 , m-1] locations. It is desirable to choose a hash function h that is easy to compute and results in very few collisions. A mechanism to handle overflow is needed, since it is also impossible to avoid collision altogether

Complexity of searching an unordered list or ordered linked list can be on average O(n/2) and in worst case may reach up to O(n) which is time consuming and impractical for critical application with n ((. In addition, the constraint n (m (k must be satisfied where n is number of items we wish to store, m is memory location available, and k is number of possible keys.

Other best known search method is the binary search which has complexity of O(Ln n) + extra cost . Extra cost may be attributed to sorting mechanisms which for the best case has complexity of order (nln n). For these reasons hash functions are promising mechanisms for storing and retrieving items of information.

There are several interesting and enlightening research on hash functions available. These functions include storage techniques [3,4], performance[5], clustering [6], Hash table techniques [7], quadratic searching [8], reducing the retrieval time [8], and dynamic hashing [9,10,11].

2. HASHING MECHANISM

The general scheme of a hashing procedure is to generate an address, or index from the key. If there is nothing stored at that address, then the key and the associated items of information are stored there. If there is a collision; that is, some other key is already at that address, then an additional address or sequence of addresses are generated until a place is found for that item.

Practically, most items are stored at their initial or hash address. A few items may need to be stored at the second address, a fewer at a third, and so forth. Items are retrieved in the same process, looking first at the hash address ; if it does not match, then looking at the second address in the sequence, and so on until it is found.

 3. ANALYSIS OF HASHING METHODS

Collision may occur either linearly or incrementally; incremental collision may be quadratic or random. Let n = the number of entries in the table, t = the number of positions in the array which equals approximately the hash table size. The load function of a hash table is l = n/t . When table is empty l =0; When hash table is half full l = 0.5, and when hash table is full l =1. Thus, the constraint 0 (l (1 must be satisfied.

The average number of probes for successful search is very nearly can be computed to : ½(1 + l +1) = 1 + ½ l; and equal to l probes in the unsuccessful search cases. In the case of random probes, the expected number ((l) of probes in unsuccessful search is therefore:

		((l) = (k l k-1(1- l) (1/(1- l) ; k =1 ... (

For successful search

	f(y) = 1/ l (((() d(= 1/ l ln(1/(1- l)) ; where integral from 0 to l.

Interested readers may consult [12].

4. EXPERIMENTS

To measure the performance data structures and/or algorithms one needs to carry out a series of experiments. Various distributions of data items were provided and performance such hashing algorithms were recorded.

In this experiment, we investigated four different algorithms using two different data items of alphabet sets. The experiment is conducted on hashing alphabet keys of length n, where n = 1, 2, ..., 255 with different hash table sizes ranging from 30 entries up to 2000 entries.

Data items keyed into the underlying algorithms:

manually designed by users,

automatically generated using a structure of the form

 Character(Integer[Uniform Distribution Character Set(Seed) * Language CharacterSize] + 						Initial Character Code).

Hashing keys are generated using a mapping function of the form:

	h(k) = (Code(Ei)*2B*i ,

where (is computed over i from 0 to m. B is the computer word length i.e. 8,16, 32, ... and Ei is a character from a given language(In our case, either Arabic or English), and m is an integer as large as the data item length. We process h(k) in four different ways.

Open addressing hashing technique using division process as follows:

	f(k) = h(k) mod hash TableSize

2. Open addressing hashing technique using Multiplicative process as follows:

	f(k) = Integer[GoldenRatio * h(k) - Integer[GoldenRatio * h(k))] * hashTableSize

	 where GoldenRatio (0.618034 [13]

3. Chaining technique using f(k) in 1.

4. Chaining technique using f(k) in 2.

When number of collisions is observed on different data items and hash table size the following cases are analyzed.

Case 1. This case investigates the four methods above with different length of data items. The number of collisions is recorded. English language is used. A summary of number of collisions is plotted in figure 2.

� EMBED MSGraph ���

Fig 2: Comparisons of four different hashing techniques

A several conclusions can be drawn from this graph. First, it is clear that chaining consistently generates fewer number of collisions than does open addressing. Second, it is clear that multiplicative method of chaining generates less number of collisions compared with its counterpart division process of chaining technique itself. The same argument is experienced with Arabic language.

Case 2. We observed from case 1 that chaining technique is superior to open addressing technique. But how do the performance of chaining technique behaves when data item from different languages is generated. Figure 3 shows the performance of chaining technique for Arabic and English text. It is clear that Arabic text consistently generates fewer number of collisions than does English text. This is applicable for all investigated techniques.

� EMBED MSGraph ���

Fig 3: English/Arabic texts comparisons

Case 3. We experienced that text from Arabic language shows better performance than text from English language. To conclude investigations and to confirm unbiasedness a uniformly generated texts from both languages with different number of items are graphed in figure 4 and figure 5.

� EMBED MSGraph ���

		Fig 4: Uniformly generated text with 1000 data items

� EMBED MSGraph ���

		Fig 5: Uniformly generated text with 1500 data items

A several conclusions can be drawn from above figures. First, it is clear that text generated manually or uniformly for Arabic language shows fewer number of collisions than text from English language. Second, the uniformly generated text from Arabic language shows high performance when multiplicative process of chaining and when division process of open addressing than do the other two methods.

	

5. CONCLUSIONS

Hashing techniques are essential for many application and for different types of operations. For example, efficient searching to determine whether a vocabulary is the dictionary, retrieve attributes associated with that vocabulary, modify attributes, insert new vocabulary and its attributes, and/or delete specific attributes. The experimental evaluation of hash techniques shows a high performance over conventional techniques such as balanced trees

Empirical study has been conducted using four hashing techniques with different length of data items and different text length. A real data was chosen from both languages: Arabic and English. Data also has been generated from ASCII codes of the underlying languages. Experiment shows that the performance of hashing techniques is more efficient with text from Arabic language rather than text from English language. In addition, multiplicative process of chaining and division process of open addressing show better performance than do the other two methods (multiplicative of open addressing and division of chaining) when text is uniformly generated from Arabic language.

REFERENCES

M. B. Feldman, “Software Construction and Data Structures with Ada 95”, Addison-Wesley, 1997.

B. S Majewski, N. C. Wormald, G. Havas and Z. J. Czech, “ A Family of Perfect Hashing Methods”, The Computer Journal, Vol. 39, No. 6, 1996, pp547-554.

R. Morris, Scatter Storage Technique, CACM, 11:1, 1968, PP. 38-44.

R. Brent, Reducing the retrieval time of Scatter Storage techniques, CACM, 16:2, 1973, pp. 105-109.

V. Lum, P. Yuen, and M. Dodd, Key to Address transform techniques: A performance Study on the Large existing format files. CACM, 14:4, 1971, pp. 228-239.

J. Bell, The Quadratic quotient method: A Hash Code Eliminating Secondary Clustering, CACM, 13:2, 1970, PP. 107-109.

W. Mauer and T. Lewis, Hash Table Method, ACM Computing Survey, 7:1, 1975, pp. 5-20.

A. Day, Full table quadratic searching for scatter storage, CACM, 13:8,1970, pp. 4810482.

P. Larson, Dynamic Hashing, BIT, 18, 1978, pp. 184-201.

R. Enbody and H. Du, Dynamic Hashing Schemesm ACM Computing Survey, 20:2, 1988, pp. 85-113.

H. Mendelson, Analysis of Extendible hashing, IEEE, Trans. On Software Engineering, se-8, 6, 1982, pp. 611-619.

E. Horowitz and S. Sahni, Fundamentals of Data Structures in C++, Computer Science Press, New York, 1995.

 R. Cruse, “Data Structures and Program Design”, Prentice-Hall, Third Edition, 1994, p590.

�

� EMBED MSGraph ���

�PAGE �

�PAGE �7�

