HARDWARE FAULT-TOLERANT SCHEDULING ALGORITHMS

O. A. Abulnaja*, S. H. Hosseini**, K. Vairavan**

* King Abdulaziz University, Jeddah, Saudi Arabia, e-mail: abulnaja@kaau.edu.sa

** University of Wisconsin-Milwaukee, Milwaukee, Wisconsin,
U
.
S
.
A
.
,

 e-mail: {hosseini, kv}@cs.uwm.edu

�

ABSTRACT. In earlier work we have proposed the concept of the dynamic group maximum matching for grouping the system graph into groups of different sizes according to the tasks arriving at the system. Also, we have developed a more efficient hardware fault-tolerant technique called the Hardware Fault-Tolerant (HFT) technique, where processors and communication channels are subject to failures. Also, we have studied the effect of the HFT technique on the reliability of a task.

In this work, we propose three hardware fault-tolerant scheduling algorithms called the Hardware Fault-Tolerant (FCFS + Smallest Fits First) (FCFSSFF) scheduling algorithm, Hardware Fault-Tolerant (FCFS + Largest Fits First) (FCFSLFF) scheduling algorithm, and Hardware Fault-Tolerant (FCFS + First Fits First) (FCFSFFF) scheduling algorithm. These algorithms are based on the dynamic group maximum matching concept and the HFT technique.

�
1. �INTRODUCTION��
Hardware fault-tolerance has been studied in [1] - [3]. Examples of commercially available fault-tolerant systems are Tandem, Stratus, and Sequoia computers [4]-[6].

In an earlier work [
7] we have introduced a more efficient new hardware fault-tolerant technique called the Hardware Fault-Tolerant (HFT) technique, where processors and communication channels are subject to failures.
 Also, we have evaluated a lower bound for the reliability of a task under the HFT technique.
In the following subsections we discuss the work.

�
���
1.1 �Dynamic Group Maximum Matching Concept��
The maximum number of hardware faults that a system can tolerate with respect to a task Ti is defined as the task hardware reliability degree ti. As a task hardware reliability degree increases, more redundancy is used. In [8, 9], the researchers assumed that all the tasks running in the system have equal hardware reliability degree t, and they partitioned the system into groups of size (t + 1).

The concept of group maximum matching has been introduced by Hosseini in [8], which is a generalization of the classical maximum matching concept. The concept of the classical matching problem is used to group nodes of a graph into 2-node disjoint groups. A generalization to the classical matching is to group the nodes into (t + 1)-node disjoint groups. In classical maximum matching problem, 2-node nodes are grouped such that the number of groups is maximum. Similarly, the generalization maximum matching problem, nodes are grouped (each group is of size (t + 1)) such that the number of groups is maximum. Also, the researcher has proposed the Group Maximum Matching (GMM) algorithm for finding the group maximum matching. In [9], the researchers have shown that the GMM algorithm most of the time generates a maximum number of groups and rarely generates one group less than the maximum number. One drawback of the group maximum matching concept relates to the system performance where the system resources may not be utilized efficiently because less critical tasks (tasks with hardware reliability degree ti < t) will use more resources than what they need to maintain their reliability requirements. A second drawback of the concept relates to the system reliability. If a small t is used, then tasks with higher reliability requirements will run with lower hardware reliability degree.

In [7], we have introduced the dynamic group maximum matching concept, which is introduced to overcome the above shortcoming and is a generalization of the group maximum matching concept. In this generalization, the system is partitioned into disjoint groups with different sizes dynamically. When a task Ti with the hardware reliability degree ti is scheduled by the scheduler for execution, a group of processors of size gi = ti + 1 is assigned to the task. We also have proposed the Dynamic Group Maximum Matching (DGMM) algorithm for finding the dynamic group maximum matching. The proposed algorithm is a greedy heuristic algorithm and attempts to avoid the isolation of the system processors and attempts to include them in groups. This is achieved by including the processors with lower degrees in groups first and then the processors with higher degrees. At the same time the DGMM algorithm attempts to minimize the time needed to release the correct outputs and maximize the on-line faults diagnoses capabilities. This is achieved by trying to increase the group connectivity. For example, consider a task Ti with the hardware reliability degree ti = 2. If we can allocate the task Ti to a fully connected group of 5 processors with 2 faulty processors, we will get the correct output and at the same time we can diagnose the faulty processors in the group upon the execution of the task by the processors. However, if we allocate the task Ti to a linear array group of 5 processors, that may not be possible.
T
he formal algorithm and an example are given in
Appendix A.

1.2�Hardware Fault-Tolerant (HFT) Technique��
In [7], we have developed the Hardware Fault-Tolerant (HFT) technique. The technique is devised for the reliable execution of tasks and concurrent on-line fault diagnosis, where processors and communication channels are subject to failures. For reliable execution of tasks each task is assigned to a group of processors. Processors are grouped using the concept of dynamic group maximum matching. A task output is released if at least ((ti + 1) - number of diagnosed faults) processors agree with each other on the output for the task Ti, where ti is an upper bound on the number of faulty processors and communication channels the system can tolerate with respect to the task Ti (i.e., task Ti hardware reliability degree).

The HFT technique, in contrast to the most existing works that have focused mainly on improving the system reliability without any attempt to improve the system performance, attempts to maximize the system performance concurrently. Some of our concerns are listed below:

Since every system is fault-free most of the time, allocating each task to (2ti + 1) processors to tolerate ti hardware faults, as is done in most of the existing works, is a waste of the system resources. Instead, we will allocate each task to (ti + 1) processors and in case of failures, more processors will be added as needed. It is important to realize that a system is fault-free most of the time and fails infrequently.

In the previous subsection we discuss the Dynamic Group Maximum Matching (DGMM) algorithm for grouping the system graph into groups of different sizes according to the tasks arriving at the system. The DGMM algorithm always attempts to maximize the system performance by increasing the number of concurrent tasks running in the system.

In our work on-line fault diagnosis detects hardware faults by running only users (application) programs, in contrast to some of the existing works that require running diagnostic programs. By implementing an on-line fault diagnosis, the system will continuously executing useful programs (user tasks) instead of executing diagnostic programs for failures detection which is an extra overhead and may not have 100% fault coverage.

1.2.1�Comparison Model of Computation��
When two neighboring processors Pi and Pj which are assigned to execute a task Tk finish executing the assigned task, first they exchange and compare their outputs and then each processor Pi (Pj) obtains its test outcome aij (aji) for the assigned task as follows:

If the processor Pi (Pj) agrees with the processor Pj (Pi) then

 (a) aij = 0 (aji = 0)

Else

 (b) aij = 1 (aji = 1)

Remarks:

aij and aji may not be the same.

A faulty processor, a faulty channel or both could be the source of the disagreement between the two processors.

Processors Pi and Pj may produce the same output and agree with each other on the output, even if one (or both) of them are faulty which depends on whether faults in the processors and/or communication channel between them affected their outputs or not.

1.2.2�Disagreement Graph��
A disagreement graph DGi (Ni, Ei), where Ni is the set of nodes of the DGi and Ei is the set of edges of the DGi, with respect to a task Ti is obtained as follows. Every node X (Ni contains some processors of the group Gi that agree with each other on the output for the task Ti. An edge exists between two nodes X (Ni and Y (Ni if there exists a disagreement between a processor in node X and a processor in node Y over the output of the task Ti, provided that those processors are neighbors in the system graph. Agreement operation has a transitivity property. That is if Pi and Pj agree with each other on the output for the task Ti and in turn Pj and Pk agree with each other on the output for the task Ti, then Pi and Pk agree with each other on the output for the task Ti.

An illustrating example
of the HFT technique
is given in Appendix B.

2.�HARDWARE FAULT-TOLERANT SCHEDULING ALGORITHMS��
In [7], we have introduced several hardware fault-tolerant scheduling algorithms. These scheduling algorithms are based on the Hardware Fault-Tolerant (HFT) technique and the Dynamic Group Maximum Matching (DGMM) algorithm.

In this paper, due to the space limitations, we will limit our study only to three scheduling algorithms and we will consider the rest of these scheduling algorithms in a follow up paper.

2.1�Hardware Fault-Tolerant (FCFS + Smallest Fits First) Scheduling Algorithm��
The Hardware Fault-Tolerant (FCFS + Smallest Fits First) (FCFSSFF) scheduling algorithm works as follows. As tasks arrive at the system, they are queued up along with their group sizes (i.e., gi = task hardware reliability degree ti + 1) in a single task queue Q. When a task Ti is scheduled for execution, the DGMM algorithm is called to find the required group size for the task. If the returned group size by the DGMM algorithm is smaller than the required group size, then the returned group is allocated to the task Tj which has the smallest group size among the tasks in the task queue provided that the group size of the task Tj is not larger than the size of the returned group. Next, the DGMM algorithm is called to find another subgraph of size gi in a different part of the system graph to allocate the task Ti. This process is repeated until either a group of size gi is obtained or the entire system graph is searched without success. In the latter case, the task Ti is added to the aborted task queue Qa for later execution. In the former case, the task is assigned to the returned group for execution. When a task Ti completes its execution by all the processors of its group Gi, neighboring processors exchange and compare their outputs. Then the disagreement graph for the task is obtained. A task Ti is released if at least ((ti + 1) - number of diagnosed faults) processors in the group Gi agree with each other on the output for the task; otherwise, the task group size is incremented by one (gi = gi + 1), and the DGMM algorithm is called to add one more neighboring processor to the group Gi. Calling the DGMM algorithm is repeated until either a group of the required size is obtained or the entire graph is searched without success. In the latter case, the task Ti is aborted and added to the aborted task queue Qa for later execution. In the former case, the task is assigned to the returned group for execution. The above process is repeated until either an output for the task is obtained or the task is aborted and added to the a aborted task queue Qa for later execution. The formal algorithm is given next.

FCFSSFF Algorithm

1.�When a task Ti arrives at the system, insert it along with its group size parameter gi at the tail of the task queue Q.��2.�While (system graph G is non-empty) and (task queue Q is non-empty) do���(a)�Schedule the task Ti at the top of the task queue Q for execution.���(b)�Initialize Gi = (.���(c)�Initialize Gtemp = (. /* temporary graph to save the processors that did not lead to a group of the required size */���(d)�ti = gi - 1. /* the task Ti hardware reliability degree */ ���(e)�tempi = ti. /* variable to save the task Ti hardware readability degree */ ���(f)�While ((Gi ((gi) and (system graph G is non-empty) do ����i.�Call the DGMM algorithm.����ii.�If the returned group size (Gi ((gi then /* the DGMM algorithm cannot find the required group size in this part of the system graph */ ���A.�Find the task Tj with the smallest group size gj among the tasks in the task Q such that gj is not larger than the returned group size.���B.�If there exists such a task Tj then����Set the group Gj of the task Tj to the first gj processors of the returned group.����Gi = Gi - Gj.����Assign the task Tj to the group Gj for execution.����Delete the task Tj and its group size gi from the task queue Q. ���C.�Gtemp = Gtemp + Gi. ���D.�Gi = (.���(g)�If the returned group size (Gi (= gi then /* the DGMM algorithm returned the required group size */ ����i.�Assign the task Ti to the group Gi for execution.���(h)�Else /* the DGMM algorithm cannot find the required size in the current system graph */ ����i.�Insert the task Ti along with its group size at the tail of the aborted task queue Qa.���(i)�G = G + Gtemp. /* return the subgraph Gtemp to the system graph */��3.�When a task Ti completes its execution by all processors in the group Gi do���(a)�Ask the processors in the group Gi to exchange and compare their outputs if they are neighbors.���(b)�Obtain the disagreement graph DGi for the task Ti.���(c)�For every node X (Ni with (((X ((ti do���i.�For every processor Pj(X do��A.�If processor Pj disagrees with more than ti neighboring processors then���Consider the processor Pj faulty.���Delete the processor Pj with all edges incident to it from the group Gi.���ti = ti - 1. /* decrement the task hardware reliability degree by 1 */

���(d)�If there is a node (X (((ti + 1) then��i.�Release the output generated by one of the processors in the node X.��ii.�For every such node do��A.�If two neighboring processors Pj and Pl in the node disagree with each other on the output for the task Ti then���Consider the link PjPl between the two processors faulty.���Delete the link Pj Pl from Gi.��iii.�G = G + Gi. /* return the assigned processors and links to the system graph */ ��iv.�Add the aborted task queue Qa to the head of the task queue Q.���(e)�Else /* there is no agreement between (ti + 1) processors */ ��i.�ti = tempi. /* initialize ti to the task Ti hardware reliability degree */ ��ii.�gi = gi + 1. /* increment the task Ti group size by 1 */ ��iii.�While ((Gi ((gi) and (G is non-empty) do��A.�Call the DGMM algorithm.��B.�If the returned group size (Gi ((gi then /* the DGMM algorithm cannot find the required group size */ ���Gtemp = Gtemp + Gi. ���Gi = (.���gi = ti + 1.��iv.�If the returned group size (Gi (= gi then /* the DGMM algorithm returned the required group size */ ��A.�Assign the task Ti to the group Gi for execution.��v.�Else /* the DGMM algorithm cannot find the required group size */ ��A.�Abort the task Ti and insert it along with its group size at the tail of the aborted task queue Qa.��vi.�G = G + Gtemp. /* return the subgraph Gtemp to the system graph */ ��

2.2�Hardware Fault-Tolerant (FCFS + Largest Fits First) Scheduling Algorithm��
The Hardware Fault-Tolerant (FCFS + Largest Fits First) (FCFSLFF) scheduling algorithm works as follows. As tasks arrive at the system, they are queued up along with their group sizes (i.e., gi = task hardware reliability degree ti + 1) in a single task queue Q. When a task Ti is scheduled for execution, the DGMM algorithm is called to find the required group size for the task. If the returned group size by the DGMM algorithm is smaller than the required group size, then the returned group is allocated to the task Tj which has the largest group size among the tasks in the task queue provided that the group size of the task Tj is not larger than the size of the returned group. Next, the DGMM algorithm is called to find another subgraph of size gi in a different part of the system graph to allocate the task Ti. This process is repeated until either a group of size gi is obtained or the entire system graph is searched without success. In the latter case, the task Ti is added to the aborted task queue Qa for later execution. In the former case, the task is assigned to the returned group for execution. When a task Ti completes its execution by all the processors of its group Gi, neighboring processors exchange and compare their outputs. Then the disagreement graph for the task is obtained. A task Ti is released if at least ((ti + 1) - number of diagnosed faults) processors in the group Gi agree with each other on the output for the task; otherwise, the task group size is incremented by one (gi = gi + 1), and the DGMM algorithm is called to add one more neighboring processor to the group Gi. Calling the DGMM algorithm is repeated until either a group of the required size is obtained or the entire graph is searched without success. In the latter case, the task Ti is aborted and added to the aborted task queue Qa for later execution. In the former case, the task is assigned to the returned group for execution. The above process is repeated until either an output for the task is obtained or the task is aborted and added to the a aborted task queue Qa for later execution. The formal algorithm is given next.

FCFSLFF Algorithm

1.�When a task Ti arrives at the system, insert it along with its group size parameter gi at the tail of the task queue Q.��2.�While (system graph G is non-empty) and (task queue Q is non-empty) do���(a)�Schedule the task Ti at the top of the task queue Q for execution. ���(b)�Initialize Gi = (.���(c)�Initialize Gtemp = (. /* temporary graph to save the processors that did not lead to a group of the required size */ ���(d)�ti = gi - 1. /* the task Ti hardware reliability degree */ ���(e)�tempi = ti. /* variable to save the task Ti hardware readability degree */ ���(f)�While ((Gi ((gi) and (system graph G is non-empty) do ����i.�Call the DGMM algorithm.����ii.�If the returned group size (Gi ((gi then /* the DGMM algorithm cannot find the required group size in this part of the system graph */ ���A.�Find the task Tj with the largest group size gj among the tasks in the task Q such that gj is not larger than the returned group size.���B.�If there exists such a task Tj then����Set the group Gj of the task Tj to the first gj processors of the returned group.����Gi = Gi - Gj.����Assign the task Tj to the group Gj for execution.����Delete the task Tj and its group size gi from the task queue Q. ���C.�Gtemp = Gtemp + Gi. ���D.�Gi = (.���(g)�If the returned group size (Gi (= gi then /* the DGMM algorithm returned the required group size */ ����i.�Assign the task Ti to the group Gi for execution.���(h)�Else /* the DGMM algorithm cannot find the required size in the current system graph */ ����i.�Insert the task Ti along with its group size at the tail of the aborted task queue Qa.���(i)�G = G + Gtemp.��3.�When a task Ti completes its execution by all processors in the group Gi do���(a)�Ask the processors in the group Gi to exchange and compare their outputs if they are neighbors.���(b)�Obtain the disagreement graph DGi for the task Ti.���(c)�For every node X (Ni with (((X ((ti do���i.�For every processor Pj(X do��A.�If processor Pj disagrees with more than ti neighboring processors then���Consider the processor Pj faulty.���Delete the processor Pj with all edges incident to it from the group Gi.���ti = ti - 1. /* decrement the task hardware reliability degree by 1 */ ���(d)�If there is a node (X (((ti + 1) then��i.�Release the output generated by one of the processors in the node X.��ii.�For every such node do��A.�If two neighboring processors Pj and Pl in the node disagree with each other on the output for the task Ti then���Consider the link PjPl between the two processors faulty.���Delete the link Pj Pl from Gi.��iii.�G = G + Gi. /* return the assigned processors and links to the system graph */ ��iv.�Add the aborted task queue Qa to the head of the task queue Q.���(e)�Else /* there is no agreement between (ti + 1) processors */ ��i.�ti = tempi. /* initialize ti to the task Ti hardware reliability degree */ ��ii.�gi = gi + 1. /* increment the task Ti group size by 1 */ ��iii.�While ((Gi ((gi) and (G is non-empty) do��A.�Call the DGMM algorithm.��B.�If the returned group size (Gi ((gi then /* the DGMM algorithm cannot find the required group size */
���Gtemp = Gtemp + Gi. ���Gi = (.���gi = ti + 1.��iv.�If the returned group size (Gi (= gi then /* the DGMM algorithm returned the required group size */ ��A.�Assign the task Ti to the group Gi for execution.��v.�Else /* the DGMM algorithm cannot find the required group size */ ��A.�Abort the task Ti and insert it along with its group size at the tail of the aborted task queue Qa.��vi.�G = G + Gtemp. /* return the subgraph Gtemp to the system graph */ ��

2.3�Hardware Fault-Tolerant (FCFS + First Fits First) Scheduling Algorithm��
The Hardware Fault-Tolerant (FCFS + First Fits First) (FCFSFFF) scheduling algorithm works as follows. As tasks arrive at the system, they are queued up along with their group sizes (i.e., gi = task hardware reliability degree ti + 1) in a single task queue Q. When a task Ti is scheduled for execution, the DGMM algorithm is called to find the required group size for the task. If the returned group size by the DGMM algorithm is smaller than the required group size, then the returned group is allocated to the first task Tj in the task queue Q that fits the returned group. Next, the DGMM algorithm is called to find another subgraph of size gi in a different part of the system graph to allocate the task Ti. This process is repeated until either a group of size gi is obtained or the entire system graph is searched without success. In the latter case, the task Ti is added to the aborted task queue Qa for later execution. In the former case, the task is assigned to the returned group for execution. When a task Ti completes its execution by all the processors of its group Gi, neighboring processors exchange and compare their outputs. Then the disagreement graph for the task is obtained. A task Ti is released if at least ((ti + 1) - number of diagnosed faults) processors in the group Gi agree with each other on the output for the task; otherwise, the task group size is incremented by one (gi = gi + 1), and the DGMM algorithm is called to add one more neighboring processor to the group Gi. Calling the DGMM algorithm is repeated until either a group of the required size is obtained or the entire graph is searched without success. In the latter case, the task Ti is aborted and added to the aborted task queue Qa for later execution. In the former case, the task is assigned to the returned group for execution. The above process is repeated until either an output for the task is obtained or the task is aborted and added to the a aborted task queue Qa for later execution. The formal algorithm is given next.

FCFSFFF Algorithm

1.�When a task Ti arrives at the system, insert it along with its group size parameter gi at the tail of the task queue Q.

��2.�While (system graph G is non-empty) and (task queue Q is non-empty) do
���(a)�Schedule the task Ti at the top of the task queue Q for execution. ���(b)�Initialize Gi = (.���(c)�Initialize Gtemp = (. /* temporary graph to save the processors that did not lead to a group of the required size */ ���(d)�ti = gi - 1. /* the task Ti hardware reliability degree */ ���(e)�tempi = ti. /* variable to save the task Ti hardware readability degree */ ���(f)�While ((Gi ((gi) and (system graph G is non-empty) do ����i.�Call the DGMM algorithm.��

��ii.�If the returned group size (Gi ((gi then /* the DGMM algorithm cannot find the required group size in this part of the system graph */ ���A.�Find the first task Tj with a group size gj in the task Q such that gj is not larger than the returned group size.���B.�If there exists such a task Tj then����Set the group Gj of the task Tj to the first gj processors of the returned group.����Gi = Gi - Gj.����Assign the task Tj to the group Gj for execution.����Delete the task Tj and its group size gi from the task queue Q. ���C.�Gtemp = Gtemp + Gi. ���D.�Gi = (.���(g)�If the returned group size (Gi (= gi then /* the DGMM algorithm returned the required group size */ ����i.�Assign the task Ti to the group Gi for execution.���(h)�Else /* the DGMM algorithm cannot find the required size in the current system graph */ ����i.�Insert the task Ti along with its group size at the tail of the aborted task queue Qa.���(i)�G = G + Gtemp.��3.�When a task Ti completes its execution by all processors in the group Gi do���(a)�Ask the processors in the group Gi to exchange and compare their outputs if they are neighbors.���(b)�Obtain the disagreement graph DGi for the task Ti.���(c)�For every node X (Ni with (((X ((ti do���i.�For every processor Pj(X do��A.�If processor Pj disagrees with more than ti neighboring processors then���Consider the processor Pj faulty.���Delete the processor Pj with all edges incident to it from the group Gi.���ti = ti - 1. /* decrement the task hardware reliability degree by 1 */ ���(d)�If there is a node (X (((ti + 1) then��i.�Release the output generated by one of the processors in the node X.��ii.�For every such node do��A.�If two neighboring processors Pj and Pl in the node disagree with each other on the output for the task Ti then���Consider the link PjPl between the two processors faulty.���Delete the link Pj Pl from Gi.��iii.�G = G + Gi. /* return the assigned processors and links to the system graph */ ��iv.�Add the aborted task queue Qa to the head of the task queue Q.���(e)�Else /* there is no agreement between (ti + 1) processors */ ��i.�ti = tempi. /* initialize ti to the task Ti hardware reliability degree */ ��ii.�gi = gi + 1. /* increment the task Ti group size by 1 */ ��iii.�While ((Gi ((gi) and (G is non-empty) do��A.�Call the DGMM algorithm.��B.�If the returned group size (Gi ((gi then /* the DGMM algorithm cannot find the required group size */ ���Gtemp = Gtemp + Gi. ���Gi = (.���gi = ti + 1.��iv.�If the returned group size (Gi (= gi then /* the DGMM algorithm returned the required group size */ ��A.�Assign the task Ti to the group Gi for execution.��v.�Else /* the DGMM algorithm cannot find the required group size */ ��A.�Abort the task Ti and insert it along with its group size at the tail of the aborted task queue Qa.��vi.�G = G + Gtemp. /* return the subgraph Gtemp to the system graph */ ��

3.�CONCLUSION��
In this work, we propose various hardware fault-tolerant scheduling algorithms based on the Hardware Fault-Tolerant (HFT) technique and the Dynamic Group Maximum Matching (DGMM) algorithm. The proposed scheduling algorithms ensure the error-free execution of tasks and system performance improvement. Furthermore, the developed algorithms have the capability for on-line fault-diagnosis of the faulty processors and interprocessor communication channels.

REFERENCES

[1]�Serlin, O., “Fault-Tolerant System in Commercial Applications,” IEEE Computer, vol. 17, no. 8, August 1984, pp. 19-30.��
[2]�Rennels, D. A., “Fault-Tolerant Computing-Concepts and Examples,” IEEE Transactions on Computers, vol. C-33, no. 12, December 1984, pp. 1116-1129.��
[3]�Siewiorek, D. P., “Architecture of Fault-Tolerant Computers,” IEEE Computer, vol. 17, no. 8, August 1984, pp. 9-18.��
[4]�Siewiorek, D., “Fault-Tolerance in commercial Computers,” IEEE Computer, vol. 23, no. 7, July 1990, pp. 26-37.��
[5]�Cristian, F., “Understanding Fault-Tolerant Distributed Systems,” Communication of the ACM, vol. 34, no. 2, February 1991, pp. 56-78.��
[6]�Johnson, B. W., Design and Analysis of Fault-Tolerant Digital Systems, Addison-Wesley Publishing Company, 1989.��
[7]�Abulnaja, O. A., High Performance Techniques for Reliable Execution of Tasks Under Hardware and Software Faults, Ph.D. Dissertation, University of Wisconsin-Milwaukee, May 1996.��
[8]�Hosseini, S. H., “Fault-Tolerant Scheduling of Independent Tasks and Concurrent Fault-Diagnosis in Multiple Processor Systems,” Proc. IEEE Int’l Conf. Parallel Processing, vol. I, Illinois, August 1988, pp. 343-350. ��
[9]�Hosseini, S. H
.
, and Patel, T. P., “An Efficient and Simple Algorithm for Group Maximum Matching,” Proc. 4th ISMM/IASTED Int’l Conf. on Parallel and Distributed Computing Systems, 1991, pp. 250-254.��

APPENDIX A

Dynamic Group Maximum Matching (DGMM) Algorithm

When a task Ti with a group size gi is scheduled for execution, the Dynamic Group Maximum Matching (DGMM) algorithm is called to find a connected subgraph Gi of size gi in the system graph. The DGMM algorithm starts grouping processors by finding a free processor with the lowest degree in the system graph, adding it to the group Gi, and then finding a free neighboring processor of the group Gi with the lowest degree and adding it to the group Gi and so on. The DGMM algorithm returns either a group Gi with size equal to gi, if possible, or a group Gi with a size smaller than gi. The formal algorithm is given next.

A. 1

DGMM Algorithm

1.�If (Gi (= 0 then�����(a)�Find a free processor Pj with the lowest degree in the system graph G. In case of a tie, choose a processor randomly. ����(b)�If such a processor Pj exists then�����i.�Gi = Pj. /* add the processor Pj to the group Gi of the task Ti */����ii.�Delete the processor Pj with all edges incident to it from the system graph G.��2.�While (system graph G is non-empty) and ((Gi ((gi) and (Gi has free neighboring processors) do �����(a)�Find a neighboring processor Pj with the lowest degree among the neighbors of the group Gi of the task Ti. In case of a tie, choose a neighboring processor with the highest number of links connected to the processors already in the group Gi of the task Ti. In case of a tie, choose a processor randomly. ����(b)�Gi = Gi + Pj. /* add the processor Pj to the group Gi of the task Ti */����(c)�Delete the processor Pj with all edges incident to it from the system graph G.���

A.2

 Example

Consider a 3 (3 mesh system shown in Figure 1.a. Assume that a task T1 with a group size of g1 = 3 is scheduled for execution. The DGMM algorithm is called by the scheduler. Since processors P1, P3, P7 and P9 with the lowest degree, one of them is selected at random, say a processor P1, and is added to the group G1. The processor P1 and all edges incident to it are deleted from the system graph, Figure 1.b. The neighbors of the group G1 are P2 and P4 with equal degrees of 2. Suppose that the processor P2 is selected randomly and is added to the group G1. Similarly, the processor P2 and all edges incident to it are deleted from the system graph, Figure 1.c. Since the processor P3 has the lowest degree among the neighbors of the group G1, P3 is added to the group G1. Similarly, the processor P3 and all edges incident to it are deleted from the system graph, Figure 1.d. Now assume that a task T2 with a group size of g2 = 2 is scheduled for execution. The DGMM algorithm is called again. Since the remaining system has processors P4, P6, P7 and P9 with the lowest degree, one of them is selected at random, say a processor P4, and is added to the group G2. The processor P4 and all edges incident to it are deleted from the system graph, Figure 1.e. Since the processor P7 has the lowest degree among the neighbors of the group G2, P7 is added to the group G2. Similarly, the processor P7 and all edges incident to it are deleted from the system graph, Figure 1.f. Next assume that a task T3 with a group size of g3 = 5 is scheduled for execution. The DGMM algorithm is called again. Since all the remaining processors in the system have the same degree, one of them is selected randomly, say processor P5, and is added to the group G3. The processor P5 and all edges incident to it are deleted from the system graph, Figure 1.g. The neighbors of the group G3 are processors P6 and P8 with same degree of 1. Suppose that processor P6 is selected randomly and added to the group G3. The processor P6 and all edges incident to it are deleted from the system graph, Figure 1.h. The neighbors of the group G3 are processors P8 and P9 with same degree of 1. Suppose that processor P8 is selected randomly and added to the group G3. The processor P8 and all edges incident to it are deleted from the system graph, Figure 1.i. The only neighboring processor of the group G3 is processor P9 which is added to the group G3. The processor P9 and all edges incident to it are deleted from the system graph, Figure 1.j. Since the DGMM algorithm cannot add more processors to the group G3, it will return the group G3 with a size of 4 which is smaller than the required size 5.

APPENDIX B

Hardware Fault-Tolerant
(HFT)
Technique

To explain how the Hardware Fault-Tolerant (HFT) technique works we discuss the following example.

B.1

 Example

Consider a 3 (3 mesh system shown in Figure 2.a. Here, the link between processors P4 and P5 (P4P5), the link between processors P8 and P9 (P8P9), and processor P4 are faulty. Assume that a task T1 with a group size of g1 = 3 (
t
1 = 2) is scheduled for execution by the scheduler. Call the DGMM algorithm to find the group G1 for the task T1 of the size 3. Assume that the DGMM algorithm returned the group G1 = { P1, P2, P3}. Allocate the task T1 to the group G1 for execution, Figure 1.b. Next, assume that a task T2 with a group size of g2 = 2 (
t
2 = 1) is scheduled for execution by the scheduler. Call the DGMM algorithm to find the group G2 for the task T2 of the size 2. Assume that the DGMM algorithm returned the group G2 = { P4, P7}. Allocate the task T2 to the group G2 for execution, Figure 1.c. Next, assume that a task T3 with a group size of g3 = 4 (
t
3 = 3) is scheduled for execution by the scheduler. Call the DGMM algorithm to find the group G3 for the task T3 of the size 4. Since the only free processors in the system graph G are P5, P6, P8, P9, then the DGMM algorithm will return the group G3 = { P5, P6, P8, P9}. Allocate the task T3 to the group G3 for execution, Figure 1.d. Suppose that the task T1 finishes first. Obtain the disagreement graph (DG1) for the task T1, Figure 1.e. Since DG1 has a node with 3 processors (>
t
1), then the output of one of the processors in the node is released. Return the group G1 to the system graph, Figure 1.f. Suppose that the task T3 finishes next. Obtain the disagreement graph (DG3) for the task T3, Figure 1.g. Since DG3 has a node with 4 processors (>
t
3), then the output of one of the processors in the node is released. Also, since
the processors P8 and P9
belong to the same node
 and their outputs disagree with each other, the link between the processors P8 and P9 (P8P9) is concluded to be faulty. Return the group G3 to the system graph, Figure 1.h. Suppose that the task T2 finishes next. Obtain the disagreement graph (DG2) for the task T2, Figure 1.i. Since there is no node in DG2 with more one processor (
t
2 = 1) in it, call the DGMM algorithm to add one more processor to the group G2; thus, the group size g2 = g2 + 1 = 3. Assume that the DGMM algorithm returned the group G2 = { P1, P4, P7}. Allocate the task T2 to the group G2 for execution, Figure 1.j. Suppose that the task T2 finishes next. Obtain the disagreement graph (DG2) for the task T2, Figure 1.k. Since the processor P4 disagrees with more than
t
2 (
t
2 = 1) neighboring processors, P4 is concluded to be faulty, and t2 = t2 - 1 = 0. Since (X (> 0 and (Y (> 0
 (i.e., >
t
2
)
, release the output of the task T2 using the output generated by one of the two nodes. Return processors P1 and P7 to the system graph G, Figure 1.l.

