AN INTELLIGENT AGENT-BASED TOUR PLANNER

Mohamed Y. El-Refai, Mehmed M. Kantardzic, and Adel S. Elmaghraby

Multimedia Research Laboratory

Speed Scientific School

University of Louisville

Louisville, KY 40292 USA

ABSTRACT: An architecture for the design of a an intelligent agent-based tour planner using the world wide web (WWW) is presented. The architecture proposed in this paper is a general approach for distributed agent-based system design and utilizes client server, WWW and database. An application for museum tour planning is used as a prototype to demonstrate agent functionality. The sample implementations for the case of museum tour design has been implemented using a prolog and Java implementation and is discussed in this paper.

1. INTRODUCTION

Network services are growing rapidly on the Internet. The availability of the World Wide Web, allowed users can now access massive amount of information. Web-available information sources provide heterogeneous databases that can require expertise to use. In addition, the quantity of information sources has been growing exponentially, so that it is no longer feasible to be completely aware of all the universe of information sources [Thomas 95].

Many potential users, however, have not kept pace with this explosion of passive on-line information resources. Users are only slowly becoming aware of these databases - indeed, many are barely aware of the very existence of data on the WWW. Then, once they do become aware of these resources, most users need time, training, and upgraded equipment before they can take full advantage of them [McCandless 95, Petrie 96].

In a situation of massive amounts of information selective search becomes critical. Many users don’t know if potentially information exists, where the information is located, how to retrieve the information source when it is located, or how to use information when it is retrieved [Adler 95].

Also, most of the data sources provide information in various data types (text, audio and visual), requiring flexible multi-platform support capable of handling all these different media. A major problem introduced by using the Internet as the communication media between different machines, is the congestion rates, error rates and the quality of the information transmitted, all these problems improvise the importance of rationality in the device that will be built to handle information on this type of media.

�
New strategies are needed to deal with global information spaces. Users working with the WWW build a personal view onto that information space by [Keyes 93]:

	- their personal assumption about the structure and content of the space,

	- their experience when searching and browsing, and

	- the kind of information they seek.

As a result, the need for intelligent software that can guide and help humans to locate, retrieve, filter and interact with information sources is crucial. Agent technology can help us get back on the track and remove information gathering and other related problems from our do list. Essentially, an agent can be delegated to do any of the following:

act as a personal assistant sharing the same workspace as the user,

execute tasks that can be done in the background while the user is doing something else, and

perform tasks that require considerable strategy and expertise.

A museum tour planner is needed as a remote pre-visit tool or as on-site support tool to assist a visitor in making efficient use of the time on hand. A personalized service for a tour plan can only be provided by experienced personnel and this is a luxury many travelers cannot afford. An intelligent software agent can assist the visitor in identifying their preferences and using routing agents can produce a personalized visitor guide. Agent technology has been selected because of its flexibility in implementation within the distributed environment of the world wide web which can extend the accessibility beyond the physical location of a museum.

2. AGENT TECHNOLOGIES

Several definitions have been improvised to characterize agent-based software, most of these definitions may look different at the beginning, but they are actually emerging to the conceptual meaning of an agent, the only difference between them is the degree of generalization introduced. Some are very specific to a certain type of agents others are a lot more general and may cover a variety of software. Intelligent agents are software processes (or interfaces) that are executed autonomously or semi-autonomously, carrying out a mission delegated by the user. By assigning task to these software entities , user are free from routine activities and can concentrate on the creative aspects of their work. Synonyms, such as softbots, taskbots, userbots, robots, personal agents, autonomous agents and personal assistants have become very popular between agent researchers, thus expanding the diversity of the software that falls under the agent’s umbrella [Nwana 96].

Accordingly, agent-based system , employing intelligent and autonomous problem-solving agents, can greatly facilitate user access to WWW databases on Internet. These agents are computational processes that offer methods for achieving specific goals. Most current discussion of agent-based systems on WWW, however, revolves around their role in satisfying user demands for information. In such information-gathering problems, an agent takes on the task of gathering information in a distributed database environment to meet a variety of user needs. Usually this type of agents are called information agents and they are only one of the different types of agents used in distributed environments [Kantardzic 95]. More comprehensive framework would include three types of agents [Norman 94, Brown 95, Lejter 96]:

- Information agents

They provide information from database(s) to end user but also to 			other types of agents. They are also called demand agents, and its 				primary activity is the effective formulation of strategies for retrieval.

Typical example are softbots to access Internet resources.

- Task agents	

They effectively configure information for consumers (users or other agents) performing autonomously specified task that require considerable strategy and expertise. They are also called supply agents, and typical example are Telescript agents [Thomas 96].

- Interface agents

They acts as a user personal assistant sharing the same workspace and mediating between the user and other components of the system.

Agents need to communicate to accomplish tasks, this is due to the structure in which agent colonies are built. Every agent should be specialized in a specific task, and capable of handling other agents requests to help them with this task. Thus, communication between agents is one of the major factors in the accomplishment of any task. Agent communication languages, are very important for agents to exchange data and logical information, individual commands and scripts [Ginsberg 91, Genesereth 92, Nahrstedt 95]. The portability of agent software relies heavily on the communication language used by that software. Having a standard communication language, that all agents can adopt, would make this job a lot easier.

A lot of researchers have been trying to approach and suggest new standards, some of these suggestions are listed in the following. KQML or the Knowledge Query and Manipulation Language is a language and protocol for exchanging information and knowledge. KQML is both a message format and a message-handling protocol to support run-time knowledge sharing among agents[Winton 95, Finin 94].

AOP is a specialization of Object Oriented Programming (OOP), in this new specialization agents are objects that have mental states, such as beliefs, desires and intentions, also agents have a notion of time [Shoham 90].

AgenTalk is a coordination protocol description language for multiagent systems. AgenTalk allows coordination protocols to be defined incrementally and to be easily customized to suit application domains by incorporating an inheritance mechanism [Winton 96].

3. APPLICATIONS DEVELOPED USING AGENTS

	Sycara’s visitor system at Carnegie Mellon University, is a perfect example for a smart multiagent-based system. In this system, “task-specific” and “information-specific” agents cooperate together in order to create and manage a visitor’s schedule to CMU [Sycara 96]. Also, W. Davies, and P. Edwards, have successfully integrated the AOP (Agent-0) and the KQML languages, to develop agents that can communicate using a mixture of both languages [Winton 96].

First Genie Internet Bank is a remarkable agent-based application. The demo intends to show how the agent can be used in a commercial application. In this application an agent (The Genie) assists an imaginary user in managing her/his bank accounts online. Although the demonstration is not tied to a database server, it simulates financial transactions of various kinds, as if it was done in a real environment. Using the demonstration one can order checks, transfer funds, receive financial notices, review account balance, increase credit limits, and more. In all these operations, the agent assists the user in cases such as: input verification, automatic transactions, financial information, instructions, and help information [First Genie Internet Bank, http://www.argolink.com/genie/genie.html].

4. AGENT-BASED ARCHITECTURE FOR A MUSEUM TOUR PLANER

Agent-based approach allows specialized knowledge about generation of information. However, in spite of the need for and use of this specialized knowledge, the group of agents can combine to solve the overall problem. The two issues in designing an agent-based system are [Petrie 96]:

	- how to implement an agent (micro-level), and

	- how to coordinate multiple agents (macro-level).

	The architecture of multiagent systems is very critical, since it will impose the way in which these agents will interact together. Genesereth (92, 94) has proposed two approaches to organize multiagents so as to enhance collaboration: direct communication (in which agents handle their own coordination) and assisted coordination (in which agents rely on special system programs to achieve coordination). For direct communication two architectures exist, the contract-net approach and federated system. In the contract-net approach, agents in need of a service distribute requests to other agents. The recipients of these request evaluate them and submit bids to the originating agents. The requesting agents evaluate the received bids to decide which agents to award the contracts. This type of architecture has the disadvantage of a high communication overhead to communicate the contract request and the proposed bids between agents. A system that eliminate this disadvantage and is commonly used is the federated system approach. In this approach agents do not communicate directly, instead they do communicate to programs called facilitators and facilitators communicate with each other. Agents communicate to the facilitators using a restricted subset of an agent communication language, and they surrender their autonomy to their facilitators that are responsible to fulfill their needs. We have adopted the federated system approach for the tour planner. Figure 1 illustrates the system architecture with the basic components.

� EMBED Visio.Drawing.4 ���

Figure � SEQ Figure * ARABIC �1� - Tour Planer System Architecture

The system consists of five different agents (InterfaceAgent, TourDesignAgent, RoutingAgent, InformationAgent, and DatabaseGatewayAgent) and two facilitators (ServerFacilitator, and ClientFacilitator).

The InterfaceAgent is responsible of interacting with the user and displaying planning results as soon as it has access to them. All requests to and from the InterfaceAgent are routed through the ClientFacilitator excepet for direct user interaction.

The TourDesignAgent is responsible of controlling the tour design process, it handles delivery of the locations to cited to the RoutingAgent so that a feasible route can be found. The TourDesignAgent is also responsible of developing the user guide by some help from the InformationAgent. The TourDesignAgent finally delivers most of the results to the InterfaceAgent through the ClientFacilitator.

The RoutingAgent is responsible of routing the tour based on the museum plan, it does that by activating the routing engine on different points to be cited in the museum. All data is passed to this agent directly from the TourDesignAgent without any need of interaction from the ClientFacilitator.

The InfromationAgent is responsible to retrieve (from the museum database) information about specific points to be cited during this tour, this information is then passed to the TourDesignAgent that will generate the user guide for this tour.

The DatabaseGatewayAgent is responsible of developing query statements to the museum database to retrieve requested data. This agent receives all requests through the ServerFacilitator. The DatabaseGatewayAgent is the only entity that has any knowledge of the museum database, and is responsible of handling any access to the data in the database.

A semi- federated structure was selected to design such a system were some of the agents are totally unrelated (e.g. InterfaceAgent, TourDesignAgent) and the need for a higher layer to control communication among them. Other agents are closely related (e.g. TourDesignAgent, RoutingAgent) and need to communicate directly. All agents and facilitators have a port through which they receive requests and communicate with the outer world, this was done by providing each of them with a method called “tell (String …)” parameters passed to this procedure are ASCII message with specific headers that can be decoded by the receiver to specify its type. Each agent acts differently due to each of these messages. Facilitator are responsible to carry communication and coordination between agents, and to carry communication between the Server and the Client [details of the communication scheme between the Server and the Client are available in Appendix A].

The Java implementation of the server is concurrent and multithreaded. The server is capable of handling simultaneous connections to a client [details of the system’s OOP structure is available in Appendix B]. The ServerFacillitator communicates to a DatabaseGatewayAgent through which all database access is performed. On the other side the ClientFacilitator communicates with the client side agents. The InterfaceAgent carries the user requests and display the output of the system. The TourDesignAgent handles the requests from the ClientFacilitator to plan the tour, doing so it communicates with the RoutingAgent to create a feasible route through the museum plan. In the current implementation, the RoutingAgent uses Prolog engines� “Route” to perform the routing path. These Prolog engines can be initiated and used in parallel between each two nodes in the “MainTourNodes” discussed in the following section.

5. CASE STUDY

	To simplify the discussion of the Tour planner, we have used a museum as the theme for our prototype implementation. As shown in � REF _Ref384193468 * MERGEFORMAT �Figure 2� only two rooms from the museum will be considered with a 2-dimeensional space definition. Locations where objects of art are displayed will be designated as a1, … an for room A and b1, …bn for room B. To be able to route a path through the museum some intermediate nodes had to be added such as “a0” entrance point and “ab” transition from “Room A” to “Room B”. For sure the user has to pass through the entrance of the museum so the “a0” node has to added as a source (or initial) node.

� EMBED Visio.Drawing.4 ���

Figure � SEQ Figure * ARABIC �2� - Sample for museum rooms plan

The prospective visitor of the museum will access the system through the world wide web and go through the following steps:

Initialization of WWW communication

The user access the Tour Planer Web page through a Java enabled browser.

The HTTP server on the server side will download the HTML page and the necessary Java classes.

Initialization of Agent Architecture

The ClientFacilitator will be initialized to handle communication between agents on the client side. The InterfaceAgent will be initialized as well.

The InterfaceAgent will retrieve from the museum database the interface parameters and will dynamically build the interface consisting of the attributes from which the user has to specify his/her preferences.

User request

The user will enter his/her preferences and request a tour to be designed for him/her according to these preferences.

These preferences will be communicated to the ClientFacilitator which by its turn will communicate it to the ServerFacilitator that will deliver it to the DatabaseGatewayAgent.

The DatabaseGatewayAgent will query the database and retrieve information about related citations (ex: selected citations are “a5” and “b6”). This information will be routed back to the ClientFacilitator which will hand it over to the TourDesignAgent.

Tour design

The TourDesignAgent will request from the RoutingAgent to find a route through the selected locations in the plan (ex: route has to be found for nodes “a0”, “a5” and “b6”, these are called the MainTourNodes). It will also request from the InformationAgent to retrieve from the museum database the required information to develop a user guide including information about each location to be cited.

Tour presentation

After the development of the route (ex: the route developed is “a0”, “a6”, “a5”, “a4”, “ab” and “b6”) and the user guide this data will be passed to the InterfaceAgent to be displayed to the user as shown in � REF _Ref384194184 * MERGEFORMAT �Figure 3�.

�

Figure � SEQ Figure * ARABIC �3� - Tour selected on museum plan

6. CONCLUSIONS

In this paper a generalized agent-based architecture for an intelligent tour planer was proposed. A case study based on museum tour planning has been demonstrated. A functional prototype was implemented using Java on the world wide web with access to heterogeneous database sources. The architecture is general and can be applied to several applications in the domain of tour planning such as country and city tours, museum and facility tours. Future plans include introduction of features such as extraction of data from physical layout in standard CAD formats and improved agent intelligence for evaluation of user preferences and priorities are certainly natural extensions to this work.

REFERENCES

Adler, R. M., Distributed Coordination Models for Client/Server Computing, IEEE Computer, April 1995, pp. 14-22.

Agre, P. E., Computational Research on Interaction and Agency, Artificial Intelligence, Vol. 72, No. 1-2, January 1995, pp. 1-52.

Brown, C., at al., AI on WWW: Supply and Demand Agents, IEEE Expert, August 1995, pp. 50-55.

Finin, T., McKay D., Fritzson R., and McEntire R., KQML: an information and knowledge exchange protocol, In Kazuhiro Fuchi and Toshio Yokoi “ Knowledge Building and Knowledge Sharing”, Ohmsha and IOS Press, 1994.

Genesereth, M. R. , and Ketchpel, P. S., Software Agents, Communication of the ACM, Vol. 37, No. 7, July 1994, pp. 48-54.

Genesereth, M. R., Fikes, R. E., Knowledge Interchange Format: Version 3.0, Reference Manual. Report Logic-92-1, Computer Science Department, Stanford University, June 1992.

Ginsberg, M. L., Knowledge Interchange Format: The KIF Death, AI Magazine, Fall 1991, pp. 57-63.

Hayes-Roth, F., Jacobstein, N., The State of Knowledge-Based Systems, Communication of the ACM, Vol. 37, No. 3, March 1994, pp. 27-39.

Iwata, A., Mori, N., Ikeda, C., Suzuki, H., Ott, M., ATM Connection and Traffic Management Schemes for Multimedia Internetworking, Communication of the ACM, Vol. 38, No. 2, February 1995, pp. 72-89.

Kantardzic , M. M., Kamel, K. A., Elmaghraby, A. S., "Video-On-Demand Architecture: An Agent-Based Approach", Proceedings of GWIC IV, San Francisco, June 12-14, 1995, pp. 269-273.

Keyes, J., Making the Move to Distributed Multimedia Computing, IBM Multimedia Solutions, Vol. 3, No. 4, July/August 1993, pp. 20-28.

Lejter, M., and Dean, T., A Framework for the Development of Multiagent Architectures, IEEE Expert Intelligent Agents, December 1996, vol. 11, no. 6, pp. 47-59.

Maes, P., Agents that Reduce Work and Information Overload, Communication of the ACM, Vol. 37, No. 7, July 1994, pp. 31-40.

McCandless, G., Information on Demand: The Campus Kiosk, Syllabus, Vol. 9, No. 1, February 1995, pp. 52-53.

Moris, T., Yost, S., Multimedia Standards for Unix, Unix Review, April 1995, pp. 55-61.

Nahrstedt, K., Steinmetz, R., Resource Management in Networked Multimedia Systems, IEEE Computer, May 1995, pp. 52-63.

Norman, D. A., How Might People Interact with Agents, Communication of the ACM, Vol. 37, No. 7, July 1994, pp. 68-71.

Nwana, H., Software Agents: An Overview, Knowledge Engineering Review, October/November 1996, vol. 11, no. 3, pp. 205-244.

Petrie, C., Agent-Based Engineering, the Web, and Intelligence, IEEE Expert Intelligent Agents, December 1996, vol. 11, no. 6, pp. 24-29.

Shoham, Y., Agent-Oriented Programming, Technical Report No. STAN-CS-90-1335, Computer Science Department, Stanford University, 1990.

Sycara, K.,Pannu A.,Williamson M. and Zeng D., Distributed Intelligent Agents, IEEE Expert Intelligent Agents, December 1996, vol. 11, no. 6, pp. 36-45.

Thomas, C. G., BASAR: A Framework for Integrating Agents in the WWW, Computer, May 1995, pp. 84-86.

Winton, D., and Edwards, P., Agent-K: An Integration of AOP and KQML, CIKM'94 Workshop on Intelligent Information Agents on-line proceedings, http://www.cs.umbc.edu/~cikm/1994/iia/papers/.

�
APPENDIX A

Communication Scheme Between The Server And The Client

� EMBED Visio.Drawing.4 ����
APPENDIX B

The System’s OOP Structure

Server class hierarchy

� EMBED Visio.Drawing.4 ���

Client class hierarchy

� EMBED Visio.Drawing.4 ���

� Prolog engine in Java, http://www.cs.kuleuven.ac.be/~bmd/PrologInJava/.

