

A PARALLEL IMPLEMENTATION FOR COLLECTING THE INTERNET INFORMATION

AbdulMalik S. Al-Salman

Computer Science Department, King Saud University, Riyadh, Saudi Arabia

f60c070@ksu.edu.sa

ABSTRACT. The accelerated growth in size and importance of the Internet increases the necessity of studying and controlling the dynamic changes of it. One major aspect of studying and controlling the Internet is to have a centralized database concerning the Internet itself. This database can be utilized by numerous Internet resource discovery services. This paper presents an efficient, parallel approach for collecting various information about the Internet or a subset of it. Initial performance figures demonstrate more than 18 times speedup relative to a sequential approach. The sequential approach sends a request to only one name server at a time and waits for its response before sending another request, while in our approach multiple requests are transmitted at the same time to multiple name servers. Each request is processed by a dedicated process.

1. INTRODUCTION

	The Internet can be viewed as a collection of thousands of networks connecting millions of end-users at academic, commercial, and government institutions worldwide. It provides an ideal medium for collaboration and resources’ share. Connection to the Internet can be accomplished through universities, government agencies, businesses, as well as through many on-line service providers. Recognizing the great usefulness of the Internet makes its growth almost exponentially [1]. In 1980, there were approximately 100 computers connected to the Internet, while in 1996, there are over 50 million sites distributed in more than 150 countries [2, 3, 4]. In the near future, it may become as important as telephone and TV.

	Until 1987, the Internet hosts used to be registered at the Network Information Center (NIC) [3]. In NIC, hosts’ identifications were kept in a central database that can be accessed by other hosts through FTP. As the size of the Internet grew very fast, it became so difficult to maintain and access all the Internet centralized information. In 1987, Mockapetris proposed a better approach to deal with large amounts of Internet sites, named as Domain Name System (DNS) [5, 6]. DNS divides the network into a hierarchy of groups called domains and provides a hierarchy of name-servers to manage these domains [7. At least one name-server is dedicated for a specific domain. However, a name-server may appoint some or all of its responsibility to another name-server.

	DNS can be defined as a distributed database that is used by TCP/IP applications to map between host names and IP addresses and to help in routing information [8]. The DNS name space is a tree structure, similar to the UNIX file-system. The domain name of any node in the tree consists of a list of labels, starting with that node and ending by the root, using a dot (.) to separate the node names. The root of the tree is called the absolute domain name and contains only a dot. An example for a domain name is okstate.edu., which means that okstate is a child of edu node and edu is a child of the root.

	All domains that are directly under the root are usually called the top-level domains. Conceptually, the top-level names permit two completely different naming hierarchies: geographic and organizational* [9]. The geographic scheme divides the universe of machines by location. For example, the machines in Saudi Arabia should fall under the top-level domain SA. The organizational scheme divides the machines depending on the organizational bases such as COM and EDU. Domain and host changes are only recorded locally, and any information needed from a particular domain can be obtained from a local host in that domain.

	A name server is a program (a daemon) running on a machine that holds information about domain's structure. Its main responsibility is answering queries about its domain. Replicated name servers are sometimes used for increasing the fault tolerance, since it is important to provide name-to-address mapping for Internet services. Internet name servers use name caching to optimize search cost. Each server maintains a cache of recently used names [9. The information that each name server holds is stored in a resource record (RR) [8]. The RR holds not only name-to-address mapping but also some other information such as authoritative server for its domain, start of zone authority, mail exchanger, and common aliases for hosts [10].

	The client and the name server communicate via a resolver. The resolver takes the client's query, then contacts the name server to provide the needed information, finally it sends that information back to the client. If the name server could not answer it, the resolver sends the query to the name server in upper level.

	Unfortunately, the biggest advantage of the DNS is one of its disadvantage - a lack of centralized database about the Internet. The centralized database can be beneficial in many aspects [11]. First, it can be used to study the dynamics of the Internet growth. Second, it is needed for studies pertaining to the characteristics and topography of the Internet. Third, Internet resource discovery services (e.g., Archie, WAIS, Gopher, etc.) can benefit from the centralized database to update their lists of hosts with publicly accessible information. Finally, it simplifies any statistical studies about the Internet such as what domain services are available at a given time and what types of computers are being used for accessing the Internet.

2. RELATED WORK

	If we consider the work that utilizes the DNS to perform information retrieval from the Internet (not about the Internet), we may find several studies. Among these works are Archie, Prospero, Gopher, X.500, Indie, Resource discovery at the University of Colorado, and World-Wide Web [12, 13]. The most closely work to ours is Census [11]. Census collects host names, addresses, and other information of total or portion of the Internet and then stores them in one central database. By following the DNS protocol, all or portion of the Internet domains can be traversed using the top-level domain names. From these domains a list of all hosts and addresses can be composed.

	The main data structure in Census is a queue of domains upon which data collection is to be performed. Domains are taken from the queue to be queried for host information and any sub-domains. All sub-domains are tested for uniqueness.

	In Census, failed domain queries may occur for a number of reasons, among them improper implementation of the DNS query, network or gateway failure, or name server crashes. For this reason, domain queries must be retried until no new information is received. Census collects hosts and domains in a breadth-first traverse. To avoid re-executing Census from the beginning in case of crash, Census saves all found domains and hosts in a file and keeps track for the last domain acquired. By keeping this information in files, it is protected from system failure. Census took about four days to collect approximately 940,000 hosts.

3. PARALLEL IMPLEMENTATION

	There are two major problems in Census program. First is its time consumption (days) which may expose it to system or network crashes. As the author of Census stated by his own words [11] “Census was designed to run for a period of several days. This makes the possibility of a reboot or operating system failure far greater than in a program that runs for few minutes.” Census takes a very long time (four days) to acquire only less than a million addresses from the Internet. Census is very slow because it uses a sequential approach in collecting its information. Second is the possibility of redundant hosts in the collected data. These redundant hosts sometimes reach up to 10% of the total collected hosts. The Parallel Implementation for Collecting the Internet Information (PICII) is aimed to overcomes the above mentioned problems.

	The bottle neck in Census program is the waiting time (response time) between sending a query to a name server and receiving the requested information. The local processor and the local network remain idle waiting for a response from the remote name server. This waiting time reaches its maximum when the remote name server does not respond due to failure in that name server or in the network. Since we cannot reduce the response time from local system, our parallel system sends multiple queries to multiple name servers simultaneously and dedicate a process to take care of each query.

	The main infrastructure of PICII is based on the same idea as Census program; it uses DNS protocol to collect the Internet Information. However, PICII has been restructured to accommodate the parallelism and the target machine.

	The pieces of information that can be obtained about each host include:

Host name

Host address

Host CPU type

Host operating system

	The process of acquiring hosts’ information starts with an input of a specific top-level domain or sub-domain (for example, uk, okstate.edu, or even the root). Using this domain, PICII tries to import all direct lower-level sub-domains. After this step, the parallelism process starts to import the next lower-level sub-domains simultaneously. This process continues until reaching the actual hosts that belong to the given domain.

	PICII has been implemented on a Sequent 81. The Sequent 81 has 24 identical processors. It uses Ethernet 10MB for LAN and Internet for WAN. A user is allowed to have up to 100 different processes running simultaneously (including the system processes).

	The main idea behind the parallelization process is using the fork() system call. The parent process reads a domain from a domains’ file (shared file) and creates a new child to take care of the read domain. Each child process works for importing all the sub-domains or hosts then stores them in a temporary file. If the imported information contains lower-level sub-domains, they are appended to the domains’ file after deleting redundant domains. On the other hand, if the imported information contains hosts (final step in the traversing process), they are appended to hosts’ file (also a shared file) after deleting redundant hosts. Unlike Census which removes only redundant domains in a sequential comparison, PICII removes redundant domains and hosts using a binary search tree. By this enhancement, we were able to reduce the time of searching for replicated domains and hosts from O(n) to O(log n) besides the ability to sort host names alphabetically. After completing this process, the child exits. Because of the limitation in the number of processes for a user, the parent can fork to a maximum of 80 children. If 80 children are active at a time, the parent waits until a process exits. Each process is assigned by a unique id via the parent.

	The mutual exclusion is needed for writing in the shared files. This mutual exclusion can be accomplished automatically by a shared memory. An array called turn[i] is used as a shared memory to enforce the mutual exclusion. It is controlled by a dedicated process that gives a chance for accessing the shared files for all active processes in a Round Robin fashion.

	From the above explanation, two points concerning the Internet traversal can be concluded. First, the Internet traversal is, in general, controlled by the information received from the name servers. If the information received from the name server is about another name server(s) (lower-level sub-domains), the traversal continues, otherwise it stops. Second, to reach the minimum time for traversing the entire Internet, there should be a full time overlapping between the time spent in processing the incoming data and the time of waiting for a response from the remote name server. This full overlapping is hard to achieve because of variation in response time from one name server to another (due to its location, local network topology and technology, etc.) and because of the change in load from time to another in local and global network. However, in order to calculate the number of processes needed to reach the full overlapping, we need to know the average response time (the time from sending the query until its result is queued in the local network) and the average processing time (the time from notifying the process (processor) that the result of the query is queued until finishing the process)

		number of processes = average response time / average process time

Based in our configuration system, we found that we need around 300 processes to reach the full time overlapping (the minimum time to traverse the entire Internet). Unfortunately, our system allows only a maximum of 100 processes per user.

4. PICII PERFORMANCE

	Due to the explosion of the Internet size, a massive parallelism technique is needed to collect the pieces of information about the Internet itself. The following table (Table 1) gives a snapshot of some arbitrary domains in the Internet with a comparison between Census and PICII. It compares the time taken by the two programs to acquire a specific domain.

Table 1. A comparison between Census and PICII

�PRIVATE ��Domain�
 Domain Name [13]�
Census

hr:min:sec�
PICII

hr:min:sec�
 Speedup�
�
 UK�
 United Kingdom�
 06:42:40�
 00:24:51�
 16.2�
�
 JP�
 Japan�
 07:58:57�
 00:16:18�
 29.4�
�
 NO �
 Norway�
 04:17:57�
 00:05:51�
 44.0�
�
 TW�
 Taiwan�
 04:26:49�
 00:07:35�
 35.2�
�
 NET�
 Network Admin., USA�
 03:23:01�
 00:09:37�
 21.1�
�
 AT�
 Austria�
 01:29:37�
 00:06:06�
 14.7�
�
 IT�
 Italy�
 04:55:24�
 00:24:11�
 12.2�
�
 ES�
 Spain�
 02:08:27�
 00:13:03�
 9.8�
�
 IL�
 Israel�
 00:31:20�
 00:03:20�
 10.3�
�
 DK�
 Denmark�
 01:19:55�
 00:12:20�
 6.5�
�
 KR�
 Korea�
 01:34:29�
 00:12:07�
 7.8�
�
 NZ�
 New Zealand�
 00:42:14�
 00:04:13�
 10.0�
�
�
 The Average ===================> �
�
�
 18.1�
�

	From Table 1, we may state the following notes and observations on the results:

The failure in a name server increases the time by a considerable amount, since the system waits for its response for 1.5 minutes. So, the time required for receiving information about a domain does not reflect the number of hosts (or sub-domains) in that domain. Moreover, the number of hosts collected by Census contains some redundant hosts, while PICII does not. For these reasons the number of hosts collected is not included in the table.

The wider (larger) domains usually give more speedup. This is because larger domains allow more parallelism. The wider domain has many name servers that can be contacted at the same time and each sub-domain may have many sub-sub-domains and so on.

Even though the number of hosts in UK and the number of hosts in JP, as an example, are comparable, the speed up is considerably different. A possible explanation for that is the distribution nature of domains and sub-domains. These domains and sub-domains in JP are evenly distributed compared with those in UK. Therefore, there are two factors effecting the speedup. First is the size of the searched domain; the larger domain, the higher speed up. Second is the distribution nature of the sub-domains. This effects the number of processes that can contribute in importing the required sub-domains. If the domain is small (narrow) or not evenly distributed (similar to unbalanced tree), then the number of active processes at a given time is small.

To be more accurate, the same domain for both programs has been executed in two consecutive runs for each domain to have same network loads and to collect almost the same number of hosts within a given domain.

Due to the limitation in Census and its slow execution speed, the entire Internet hosts or even large top-level domains (for example, edu and com) were not shown in the above table. Table 2 shows the time taken by PICII to collect information about some large domains.

Table 2. Time taken by PICII for large domains

Domain�
Domain Name�
hr:min:sec�
hosts collected�
�
.�
Entire Internet�
07:21:34�
17,427,933�
�
edu�
US educational�
01:43:09�
3,173,761�
�
com�
US commercial�
00:56:45�
1,692,043�
�
ca�
Canada�
00:54:13�
979,385�
�

	The number of hosts in Table 2 does not necessary reflect the actual number of hosts because of two reasons. First, there is a chance for redundant hosts. These redundant hosts may appear when having a very large number of hosts that cannot fit in one file. Second, there were some name-servers that were not responding during that snapshot.

Finally, it should be pointed out that the results of this study were performed in United States (at Oklahoma State University) in the period from August 1994 to January 1995.

5. CONCLUSION AND FUTURE WORK

	It is important to have, in periodical basis, a centralized database about the Internet itself. This database is essential in studying and controlling the dynamic growth of the Internet. Moreover, this database can be utilized by numerous Internet resource discovery services. PICII was implemented to provide such a database in a reasonable period of time. It overcomes the sequential Internet traversal by employing multiple processes to work in parallel.

	There are several avenues for the future work in this field. Among these avenues are implementing PICII using the PVM communications harness (or any other parallelism environment), and restructuring the PICII to be able to collect a specific site name regardless of its upper domains (such as www.anything). The author is going to provide some statistical figures about the Internet whenever the Internet becomes available in Saudi Arabia.

	

REFERENCES

[1]	Paxson, V., “Growth Trends in Wide-Area TCP Connections,” IEEE Network Magazine, Vol. 8, pp. 8-17, July/Aug. 1994.

[2]	Coulouris, G., Dollimore, J., and Kindberg, T., Distributed Systems Concepts and Design, Second Edition, Addison-Wesley, 1994.

[3]	Chon, K., “Internet Inroards,” Communications of the ACM, Vol. 39, No. 6, June 1996, pp. 59-60.

[4]	Stern, N. and Stern, R., Computing in the Information Age, 2nd Edition, John Wiley, 1996.

[5]	Mockapetris, P., “Domain Names - Concepts and Facilities,” RFC1034, November, 1987.

[6]	Mockapetris, P., “Domain Names - Implementation and Specification,” RFC1035, November, 1987.

[7]	Ganis, M., “Configuring DNS,” Sys Amin, Vol. 3, No. 1, 1994, pp. 61-70.

[8]	Stevens, W. R., TCP/IP Illustrated, V.1, Addison-Wesley, 1994.	

[9] 	Comer, Douglas E., Internetworking with TCP/IP, V.1, 3rd Edition, Prentice Hall, 1995.

[10]	Kochan, S. G. and Wood, P. H. (Consulting Editors), UNIX Networking, Chapter 3, Hayden Books, 1989.

[11] 	Ganatra, Nitin K. "Census: Collecting Host Information on a Wide Area Network", B.A. Thesis, Computer and Information Science, University of California at Santa Cruz, June 1992.

[12]	Obraczka, K., Danzig, P., and Li, S., “Internet Resource Discovery Services,” Computer, September, 1993.

[13]	Schwartz, M. F., "Internet Resource Discovery at the University of Colorado", Computer, Sept. 1993.

* In practice, the organizational domains are for USA alone. In all other countries, the top-level domain depends on the geographical domain.

�PAGE �7�

