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ABSTRACT. Several synthesis methods have been proposed for the design of computer communication protocols. Some of them  have extended Saleh's synthesis [4,6] method to handle controlled concurrency in the service specification and its corresponding protocol design [5,7]. However, none of them have solved the true concurrency behavior that can be manifested at the communications service level. In this paper, we extend the communicating finite state machine (CFSM) model and Saleh's synthesis method to allow the handling of uncontrolled concurrent service behaviors at the service specification level. The resulting synthesized protocol is guaranteed to be free from logical design errors and to conform to its concurrent service specification.





1. INTRODUCTION


A protocol can be defined as an agreement on the exchange of information between communicating entities. A full protocol definition, in fact, defines a precise format for valid messages (a syntax), procedure rules for the data exchange (a grammar), and a vocabulary of valid messages that can be exchanged, with the meaning (semantics). The protocol, then, can contain agreement on the methods used for initiation and termination of data exchanges, synchronization of senders and receivers, detection and correction of transmission errors, and formatting and encoding of data [2].





While designing a communication protocol, semantic and syntactic errors may exist. Semantic design errors cause the provision of incorrect services to the distributed protocol users. On the other hand, syntactic design errors cause the protocol to deadlock [8]. There are three common types of syntactic design errors: i) unspecified reception error when the protocol is at a state where it is not able to handle the message that may arrive, ii) deadlock error when the protocol is at a non-final state, all channels are empty and no transmission transition is specified, and iii) livelock error which occurs if the protocol entities are exchanging messages that are meaningless for the provision of the desired service.





Unlike most programming languages, however, the protocol language should be able to specify the behavior of concurrently executing processes. This concurrency creates a new class of subtle problems. We have to deal with, for example, timing, race conditions, and possible deadlocks and unspecified receptions. Since the precise sequence of events cannot always be predicted, the number of possible orderings of events can be overwhelming that it defeats any attempt to analyze the protocol by simple manual case analysis [2].





Protocol software is most conveniently structured in layers. The Service Access Point (SAP) is the only place where a layer can communicate with its surrounding layers or service users. A Service Primitive (SP), which identifies the type of event and the SAP at which it may occur, is considered as an abstract elementary interaction between a service user and the service provider during which certain values for the various parameters of the primitive are established to which both the user and the provider refer to.





The information used to describe an object is refered as a specification. The specification should describe concisely and unambiguously those requirements that the object must satisfy. With respect to the protocol architecture, there are two kinds of specifications of each layer of the protocol hierarchy, which describe the behavior of a system at two different levels of abstraction. The first is the Service Specification (S-SPEC), which describes the relation between the service primitives from a user in a higher layer or a process in a lower layer. Thus, the S-SPEC is responsible for defining the valid sequences of interactions visible at the boundary between two adjacent layers [9]. The specific realization of a service depends on the assumptions that are made about the environment in which the protocol is to be executed [2]. Concurrently, while designing a protocol, the service specification is receiving more and more attention. The other kind of specification is the Protocol Specification (P-SPEC), which prescribe relationships between messages from processes in the lower layer. Or in other words, it defines the logical implementation of  a service in terms of the behavior of the protocol entities inside a layer[9]. The protocol specification, as well as the service one, can be modeled by Communicating Finite State Machines (CFSM).





This service concept has several advantages. It provides a framework on which the complexity of protocol design can be better managed. Moreover, a protocol designed using the service concept can be changed without affecting any layer other than the one the protocol resides in. This is due to the principle of separation of concerns and orthgnality in the service concept. Finally, using the service concept in protocol design can facilitate the correctness proofs. Without the service concept, the verification of a communication system becomes  a difficult task [9].





Since protocol specifications are much complex than service specifications because of their refined nature, it seems quite natural to start the protocol design process from a complete and unambiguous service specification, which assists in eliminating complex protocol design problems [3]. A construction of a protocol specification from a given service specification is called Protocol Synthesis. Protocol synthesis is considered as an easy and time-saving task. That is, instead of applying a sequence of design, analysis, error detection and correction iteratively until the design becomes error-free, as in the analytic approach, no further validation is needed for the protocol design in synthesis approach. The synthesis approach is used to construct or complete a partially specified protocol design such that the interactions between the constructed or completed protocol entities proceed without encountering any logical error and ideally provide the specified services. Furthermore, the syntactic correctness of the synthesized protocol is often a direct byproduct of the synthesis method [4].





Protocol synthesis is an important issue, since an efficient and reliable design method is required for large scale and complicated communication protocols [4]. Thus, various methods have appeared in the literature. Saleh and Probert [3] have proposed an automatic synthesis method of CFSM-modeled protocol specification starting from service specification. However, they left the concurrent service users behavior problem, which can occur in real communication services, open for research.


 


In autonomous systems, in which at any time a user can initiate a service, distributed users can compete for the same service and resources. In communicating protocols, if some primitives are executed simultaneously, then the occurrence of two or more service users simultaneously issuing service requests to each other is possible. Protocol errors such as unspecified receptions may happen due to the collision problem [6]. Therefore, in this paper, we extend Saleh's synthesis method to deal with handling possible concurrent behavior of service users.





This paper is organized as follows. In Section 2, we define the model used in the extended synthesis method. In Section 3, we review Saleh's synthesis method and the two extensions that dealt with the concurrency problem. In Section 4, we introduce the extended synthesis method for true concurrency. In Section 5, we provide an example of the application of the extended synthesis method. Finally, in Section 6, we conclude the paper.





2. MODEL DEFINITION


In [3], both the service and protocol specifications  are modeled by finite state machines. The FSM model is a natural and simple formalism to describe the sequencing of control during the operation of a protocol entity. However, one of the drawbacks of the FSM model for the specification of communication software lies in its limitation in expressing complex control aspects of protocols such as concurrent behaviors. FSMs are more suitable to model sequential communication behaviors expressed as a set of linear sequences of transitions. Therefore, the basic FSM model is not suitable to express the asynchronous and concurrent nature of user activities distributed at the different SAPs of the communication system.





In the extended service specification, concurrent service user behaviors are possible when a service state has two or more outgoing transitions labeled by service primitives occurring at different SAPs. A service state at which the number of distinct SAPs at which the SPs labeling its outgoing transition may occur is greater than one is refered to as a mixed state. The set of outgoing SP-labeled transitions at a mixed state is partitioned such that all transitions labeled by SPs occurring at the same SAP are included in the same partition [6].  In the case of concurrent behavior systems, a mixed state at which the concurrent action occurs is typed by ||. Thus, a concurrent behavior at a mixed state of type || implies the possible concurrent execution of all SP-labeled transitions, each belonging to a different partition. Therefore, we do not consider the case when SPs  occur at the same SAP as a concurrent activity since the service user can only select to engage in one activity at a time.





The extended service specification ES models the concurrent behaviors of service users, and is denoted by a tuple (Ss, Ss, Ts, s), where Ss is a non-empty finite set of service states, Ss is a finite set of service primitives, Ts is a partial transition function between service states (a subset of the cartesian product Ss x Ss x Ss), and s خSs is the initial service state.





L(ES) denotes the set of legal global service traces of the extended service specification. This set includes the traces of the basic service model (L(S)) in addition to other traces describing possible concurrent service primitives occurrences. L(EP) denotes the set of legal global extended protocol traces observable at the interaction points with the service users (at upper SAPs) and with the communication medium (at lower SAPs). The projection onto a set X of SAPs is denoted by Px. In this work, we assume that the communication medium is reliable and that messages are delivered in the first-in-first-out (FIFO) order.





3. BACKGROUND


In this section, we briefly describe the basic service-oriented synthesis method introduced by Saleh and Probert [3]. Then, we overview two extensions to the basic method proposed by Saleh [5, 6] and Kakuda [7].





3.1. The Basic Specification Model and Synthesis Method


Starting from an FSM specification of the service (S-SPEC), the algorithm outlined below automatically derives the protocol entities that provide the service given in S-SPEC.





Synthesis algorithm. Derivation of protocol specification from the service specification.


Input: FSM-based service specification.


Output: FSM-based protocol entities specification (PE-SPECs).





Steps:


1. 	Project the service specification S-SPEC onto each SAP to obtain the PS-SPECs.


2.	Apply the transition synthesis rules (see Table 1 in [3]) to each transition in the PS-SPECs to obtain PE-SPECs.


3.	Using the algorithms described in [1], remove e-cycles and e-transitions to obtain the PE-SPECs as reduced and equivalent finite state machines. 





3.2. Overview Of Proposed Extensions


Saleh [5, 6] and Kakuda [7] extended the basic Saleh and Probert [3] method to handle parallelly executable multiple primitives (i.e., concurrent service primitives). These two methods are briefly described below.





3.2.1. Extended Saleh and Probert method [5,6] : In this method, a mixed state is defined as a service state that has two or more outgoing transitions labeled by service primitives (SPs) occurring at different Service Access Points (SAPs). In addition there are four types of mixed states. A type specifies the degree of concurrency of a mixed state and its handling approach at the protocol level should a collision occurs. These types are ||; where only one SP may occur at any time, ||r0, ||rL, and ||i. In the second  type, ||r0, the S-SPEC machine is reset to its initial state when a collision is detected. However, the S-SPEC machine is reset to the last mixed service state where the collision has occurred if the mixed state is of the third type, ||rL, when a collision is detected. In the fourth type, ||i, when a collision is detected then the S-SPEC machine resolves the collision by giving entity i a higher priority to proceed, and by acknowledging  the low priority users.





In this extended method, only one step, considered as an incremental construction, is built on the top of the basic method. In this step, some timers and transitions are added to the PE-SPECs obtained using the basic synthesis algorithm, to allow the parallel execution of primitives.





In the case of handling two SAPs, each protocol entity must be ready to receive the colliding protocol message sent from the peer entity at the state reached after sending the colliding message, and at every other state along the path of event transmissions and/or SP occurrences [5]. This idea guarantees preventing the occurrence of  unspecified reception design errors.





However, in the case of  many SAPs, we need to control the asynchronous execution of entities not involved in a collision. A mechanism is proposed to rollback the asynchronous execution of these entities whenever necessary, otherwise, they will potentially diverge. A Reset-or-Timeout mechanism which handles all mixed state types can be applied whenever a divergence condition is satisfied [6].





3.2.2. Kakuda, Nakamura and Kikuno method [7] : In this method, a state that has two or more outgoing transitions labeled by service primitives occurring at the same number of SAPs is called a parallel state. This method imposes two restrictions. The first one is that the S-SPEC is a tree, while the second one is that priorities must be assigned to all primitives attached to edges outgoing from any parallel state in the S-SPEC. Based on these priorities, the priorities of all primitive execution sequences in the S-SPEC are assigned in the order of the Depth First Search, which is considered as the first step in the algorithm.





The second and third steps of the algorithm are the same as the first two steps in the extended Saleh and Probert method. However, the Synthesis Rules Table used in the third step in [7] differs from the Synthesis Rules table of [5, 6], specifically in the A3 and B3 rules in the case of multi concurrent SPs. Because of the new rules of [7], receptions are added to entities that are not involved in a collision. In the fourth step, some transitions are added for parallel execution of primitives to PE-SPECs refined at the previous step. This step has the same idea stated in Section 3.2.1. Rules A3 and B3 together with reception transitions added in Step 4 of the algorithm, control the asynchronous execution of entities that are not involved in the collision. Finally, in the last step, e-transitions are removed from each PE-SPEC.





When we compare both methods, we found that Kakuda's solution adds more transitions to the P-SPECs than the Extended Saleh's method, which complicates the PE-SPECs. In addition, the Extended Saleh's method solves the divergence problem by adding timeout transitions which may slow down some entities and requires computing the time delay values.





4. THE EXTENDED METHOD FOR TRUE CONCURRENCY


In this section, we describe the extended synthesis method for distributed and concurrent systems.


In this work, we are adding message exchanges and transitions to deal with the true concurrency of SPs to avoid any design errors such as unspecified receptions and deadlocks. We assume that the flow of control in any branch (defined in Section 4.2) always needs to be transferred to another protocol entity (or service user). Therefore,  the existence of two successive SPs in the same branch of the S-SPEC occurring at the same SAP is not allowed.


  


4.1. Definitions


The following definitions are needed for the development of our extended synthesis method.





Definition 1. Cycle Transition: A cycle transition is a transition that causes the protocol entity to be a cyclic protocol. In Fig. 7.a, the transition from s9 to s1 is called a cycle transition. 





Definition 2. Visited Node: A visited node is a node which has a cycle transition as an incoming transition. In Fig. 7.a, the s1 node is called a visited node. 





Definition 3. Joint Node: A joint node is a node that has two or more incoming transitions. Nodes s9 in figures 5 and 7.a are called joint nodes, respectively. 





Definition 4. Free Node: A PE-SPEC node that has no outgoing transition and only one incoming transition is called a free node.





Definition 5. Branch: A branch is a sequence of nodes and transitions that starts and ends by nodes such that each node has only one incoming transition and one outgoing transition, except for the mixed node, its PE-SPEC image, and the joint nodes. In Fig. 5, nodes s6, s7, and s8 are contained in one branch.





Definition 6. Concurrent Branch: A concurrent branch is an outgoing S-SPEC or PE-SPEC branch from a mixed state of type ||, which ends by a non-visited joint node, an end of cycle transition node or by a free node. In Fig. 3, nodes s1, s3, s4, s5, s6 and s7 and transitions between pairs of states such as (s1,s3), (s1,s4), (s3,s5), (s4,s5), (s5,s6) and (s6,s7) are contained in one concurrent branch. Moreover, nodes s1, s4 and s5 and transitions between pairs (s1,s4) and (s4,s5) are contained in another concurrent branch.





Definition 7. Outer Joint Node: An outer joint node is a non-visited node at which all the PE-SPEC concurrent branches that are outgoing from the mixed node image are joint. In Fig. 3, node s7 is considered as an outer joint node since all reversed paths from it to s1 contain all the PE-SPEC concurrent branches outgoing from s1.





Definition 8. Inner Joint Node: An inner joint node is a joint node which is not an Outer Joint Node. In Fig. 3, node s5 is an inner joint node.





Definition 9. Sending Concurrent Branch: A sending concurrent branch is a PE-SPEC Concurrent Branch which starts by sending a primitive. In Fig. 7.a, the branch that contains nodes s2, s6, s8 and s9 is a sending concurrent branch. 





Definition 10. Sending Concurrent Partition: A sending concurrent partition is a  set of Sending Concurrent Branches that occur at the same SAP in a PE-SPEC.


Definition 11. Sending Concurrent Machine (PE-SPEC):  A sending concurrent machine is a machine that has at least one Sending Concurrent Branch. PE-SPEC of Fig. 7.a is a sending concurrent machine.





Definition 12. Binary Self Loop Branch: A binary self loop branch is a branch that starts at a node and ends at the same node and has only two transitions.





Definition 13. Reception Concurrent Branch: A reception concurrent branch is a  PE-SPEC Concurrent Branch that starts by a reception transition. In Fig. 7.a, the branch that contains nodes s2, s5, and s9 is a reception concurrent branch. 





4.2. Outline Of The Protocol Synthesis Method


Apply the following algorithm:


Input: ES.


Output: EPEs providing the ES.


Steps:


1. 	Apply the three steps of the basic synthesis algorithm (outlined in Section 3.1) to obtain PEs.


2. 	Add some transitions for the true concurrent execution of primitives to PE-SPECs refined at Step 1.


3. 	Eliminate any Reception Concurrent Branch in any Sending Concurrent Machine. This step is illustrated in Fig. 1.





4.3. Details Of The Steps


In the second step, we apply the following rules:





Rule 1:


At each node -except for the first node in Reception Concurrent Branches- of each Sending Concurrent Partition or Reception Concurrent Branch not in Sending Concurrent Machine, in each PE-SPEC, add  all other receiving and sending transitions in all other receiving concurrent branches, as follows:


- 	If the receiving transition is succeeded by a sending transition in a concurrent branch that is not an outgoing transition from an inner joint node then add them as a binary self loop branch that has the first transition as the receiving transition and the other one as the sending transition.


- 	Otherwise, add the receiving transition as a self loop.





This rule is illustrated in Fig. 1, where at each node of the sending concurrent branch that starts by sending primitive C, a binary self loop which contains the two messages (?b2, K) is added.





       


Figure 1: Illustration of Rule 1 and Step 3 of the extended synthesis method


							


Rule 2:


In the case of having a non tree S-SPEC graph follow one of the following three cases:





Case1: Non Visited Outer Joint Node


In PE-SPECs that have receiving outgoing transition from the non visited outer joint node do the following:


  - 	Split the joint node into the number of incoming transitions to it, taking into account that added transitions by Rule 1 to the split node have to be added to the new nodes according to Rule 1. So, they do not have to be copied from the split node to the new nodes, but to be rearranged between the new nodes.


  - 	Join each split node with a reception transition to the incoming node of the original reception transition, such that this reception transition has the same label of the original one.





In PE-SPECs that have sending outgoing transition from the non visited outer joint node do the following:


  - 	Split the joint node into the number of incoming transitions to it, taking into account that added transitions by Rule 1 to the split node have to be added to the new nodes according to Rule 1. So, they have not to be copied from the split node to the new nodes, but to be rearranged between the new nodes.


  - 	Join each split node to the original sending transition by a timer.





This case is illustrated in Fig. 2, where the shadowed node is the non-visited outer joint node. Because the shadowed node in PEi is followed by ?xj, it is split into two nodes such that each of them is connected to the transition that follows ?xj transition by ?xj transition. In PEj, since the shadowed node is followed by a sending transition (X/xi), it is split into two nodes such that each of them is connected to the (X/xi) transition via a timeout transition.








Figure 2: Illustration of Rule 2 (Case 1) of the extended synthesis method


(A) Before applying the rule  (b) After applying the rule





Case 2 : Non Visited Inner Joint Node


In PE-SPECs that have receiving outgoing transition from the non visited inner joint node do the following:


 - 	Split the joint node into the number of incoming transitions to it, taking into account that added transitions by Rule 1 to the split node have to be added to the new nodes according to Rule 1. So, they do not have to be copied from the split node to the new nodes, but to be rearranged between the new nodes.


 - 	Join each split node with a reception transition to the incoming node of the original reception transition, such that this reception transition has the same label of the original one.





In PE-SPECs that have sending outgoing transition from the non visited inner joint node do the following:


 - 	Split the joint node into the number of incoming transitions to it, taking into the account that added transitions by Rule 1 to the split node have to be added to the new nodes according to Rule 1. So, they do not have to be copied from the split node to the new nodes, but to be rearranged between the new nodes.


  - 	Join each split node to the original sending transition by a timer.


 - 	Add each outgoing sending transition from the non visited inner joint node to all nodes -except for the first node in Reception Concurrent Branches- of each Sending Concurrent Partition or Reception Concurrent Branch not in Sending Concurrent Machine, in that PE-SPEC as binary  self loops that starts by a timer transition and ends by that sending transition.





 This case is illustrated in Fig. 3, where the shadowed node is the non-visited inner joint node. Because this node is followed by a sending transition (K/Kn), it is split into two nodes such that each of them is connected to the (K/Kn) transition by a timeout transition. Moreover, add the binary self loop that contains the timeout and (K/Kn) transitions to all nodes that satisfy the conditions listed above.








Figure 3: Illustration of Rule 2 (Case 2) of the extended synthesis method


(a) Before applying the rule  (b) After applying the rule





Case 3: Visited Sink Node (No joint node)


At the end of the incoming transition to the visited node in each PE-SPEC (sending or receiving transition) add a timer. And at the new end of the incoming transition to the visited node in each PE-SPEC (the node that has the timer transition as an outgoing transition) add all kinds of self loop transitions added at the previous node.





This case is illustrated in Fig. 4, where the shadowed node is the visited sink node, the dashed self loop transition represent all self loop transitions added in Rule 1, and the transition that could be ?x or !x is the incoming transition to the visited sink node. By this rule, a time-out transition is added between the (?x or !x) transition and the visited sink node, and all transitions represented by dashed self loop transition are added to the new end of (?x or !x) transition.








Figure 4: Illustration of Rule 2 (Case 3) of the


extended synthesis method. (a) Before applying


the rule  (b) After applying the rule





5. EXAMPLE


To demonstrate the extended synthesis method, we consider the service specification shown in Fig. 5. The FSM S-SPEC describes the valid sequences of SPs observable at there SAPs. Our method derives three protocol entity specifications (PEs) from the given S-SPEC.








Figure 5: S-SPEC example





For the given S-SPEC, we have: Ss = {s1, s2, s3, s4, s5, s6, s7, s8, s9}, Ss = {A, B, C, D, E, F, L, M, N, K}, s = 1, OUT(1) = {sap1}, OUT(s2) = {sap1, sap2}, OUT(s3) = {sap3}, OUT(s4) = {sap2}, OUT(s5) = {sap1}, OUT(s6) = {sap2}, OUT(s7) = {sap3}, OUT(s8) = {sap1}, OUT(s9) = {sap2}.





Step 1 of the Algorithm (Section 3): Fig. 6 shows the projected service specifications.








Figure 6: Projected service specifications








Figure 7: Protocol specifications after removing e-cycles and e-transitions.





Step 2 and 3 of the algorithm (Section 3): Fig. 7 shows the PEs after removing e-cycles and e-transitions.


Steps 2 and 3 of the Extended Algorithm (Section 4): Fig. 8 shows the protocol specifications when there is true concurrent service users activities at the mixed service state s2 of type ||.


�











Figure 8: Extended protocol specifications





6. CONCLUSIONS


In this paper, we have proposed an extension to a protocol design method which synthesizes protocol entity specifications from a service specification. This extension allows the specification of true concurrent behaviors of service interactions by overcoming the limitations caused by the sequential nature of the finite state machine model. Moreover, our extension specifies the handling of such behaviors in the derived protocol. The restriction of only synthesizing a tree graph service specification of Kakuda's method can be solved by using the branching approach in the proposed extension to Saleh's synthesis method. 
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